PV212 – SEMINAR TOPIC Martin Kňažovič 1 / 6 Intro • Thesis topic • Last week: DND • More thought • Too many systems • Too much time in non-AI development • Commercial use • AI Agents - why instead of what 2 / 6 Inquiry data extraction • Why? • Manual process • 1000x / month • Can be automated • How? • LLMs for data extraction • Langchain • What? • Business inquiry extraction via LLM 3 / 6 Current state • Solution already in development • Prompt engineering (PE) • Can be done better PE Process 4 / 6 Ideas • Retrieval-Augmented Generation (RAG) • Products tend to get misclassified • Goal: improve general accuracy • Evaluation dataset • Prompt augmentation with correct examples • Examples selected based on similarity with inquiry • Knowledge source scrapping • Product parameters incomplete in inquiry • Goal: improve detection of parameters • Build knowledge source (KS) • Table with products and parameters • Scrap customer website • Let LLM (Prod.) inquiry -> KS 5 / 6 Ideas cont. • Multiple ways to success • Do everything ? • Let LLM to decide ? UNCLE SAM WANT YOUR OPINIONS 6 / 6