

A Method for Information Security and Privacy Management in Smart Solutions

Mariia Bakhtina

Junior Research Fellow in Information Security, PhD student

About Me

- BSc in System Analysis,
 - National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine (2014 – 2018)
- Junior AX Developer,
 - SMART Business, Ukraine (2018 2019)
- MA in Innovation and Technology Management,
 - University of Tartu, Estonia (2019 2021)
- PhD in Computer Science,
 - University of Tartu, Estonia (2021 Present)

PhD research project

"A Method for Information Security and Privacy Management in Smart Solutions"

Smart Parking Solution

Motivation Scenario

An expert group aims to update the business processes and systems

to ensure information security and privacy

of a collaborative data exchange

as a part of a smart solution (e.g., smart parking).

The expert group consists of:

- a data protection officer (DPO),
- a chief information security officer (CISO),
- 🔏 a business analyst,

a security architect

How to support an expert group in ensuring information security and privacy of cross-organisational data exchange for a smart solution?

Open Problems

Frameworks and models for information security and privacy are **too abstract** and aim to guide info. sec. mgmt activities, not depict the state

- Objective 1: develop a framework for information security and privacy management to enable defining the static current state

High-level requirements guiding the need for **privacy analysis** and assurance w.r.t. GDPR & ISO/IEC 27001

- Objective 2: develop a method for privacy analysis of collaborative business processes to enable defining and fulfilling local data protection regulations

Emerging alternative trust and identity models are not researched for the organisational context

- Objective 3: develop a method for trust and identity model selection

Results (1/4)

The final method for information security and privacy management of cross-organisational collaboration

Results (2/4)

Results (2/4): FISP-ProCOP

Step 1

<u>Framework for Information Security and</u> <u>Privacy Management</u> -- FISP-ProCOP -- for depicting the static view of information security and privacy management in organisations

Dimension	Category	Attribute				
	DA Astanz	Actors, stakeholders, entities				
P. People	PA. Actors	Goals, tasks, motives				
	PR. Relationships	Relationships and dependencies between actors				
	OS Stratogy	Purpose for the system usage, org. design & strategy				
	05. Strategy	Challenges to address				
	OC. Formal Constraints	Legislation, regulation, standard				
0. Organisation		Type of information used				
	OI. Information Involved	How the information is manipulated				
		Security criteria				
		Privacy objectives				
	CP. Policies & Practices	Policies & practices				
	CE. Training & Education	Training & education				
C. Sec. & Privacy		Architectural measures				
Countermeasures	CT. Tashralasy	Use case-oriented technological measures				
	CT. Technology	Cryptographic building blocks				
		Others technological measures				
Pr Processes	PrL. System Lifecycle	Security as a part of the system lifecycle				
TT. Frocesses	PrU. Usage of the System	Use cases of the system as a part of the business processes				

The usability of FISP-ProCOP has been validated with respect to:

- a tool for current InfoSec & Privacy management state definition
- a tool for cross-validating the usage of measures within the organisation
- a tool for comparing InfoSec & Privacy management states

Validation:

- Literature review of measures (24 papers) -> Targeted state (To-Be)
- Survey of organisations (15 organisations) -> Current state (As-Is)

FISP-ProCOP

Dimension	Category	Attribute	Attribute instances										
P. People	PA (Actors)	PA	Time-stamping authority	Defence	Parking/Toll Officer	Trusted Authority	Passenger	Parking Service Provider	System provider	Employee	City Government	Driver	
O. Organi- sation	OS (Strategy)	OS System purpose	Safety of urban traffic	Reduced cost for goods delivery	More livable cities	Improved parking facilities	Public transport control	Decreased the traffic congestion	Improved city services	On-demand mobility			
		OS Challenges	Hetero- geneous network	Resource constrained devices	High system quality expectations	Privacy vs efficiency	User data privacy and security	Data minimisation	Expected level of security	Lack of industry regulations	Interoperability		
	oc	OC regulations	EU 2019/2144	EU 2018/858	ITS Directive	UN R155	GDPR						
	(Formal Constraints)	OC standards	NIST SP	Other standards from ISO/IEC 27000-series	E-ITS	ETSI standards series	Cyber Security Act in Czechia	ISO 27001					
	OI (Information types)	оі	Information about roadside units	Other information	Information about passenger	Information about transactions	Aggregated information	Information about driver	Information about vehicle				
C. Sec. & Privacy	CP (Practicies & Policies)	СР	Normal best practices	Penetration testing	Threat modelling	Security Development Lifecycle	Risk management	Security framework	Security strategy				
Counter- measures	CE (Training & Education)	CE Trainings Employees	Reading news about security isues	Cyber hygiene trainings	Trainings for raising awareness about security threats	Data protection trainings							
		CE Sources For Survey	Documentation	Colleagues	Knowledge of the organisation	Knowledge of the system							
	CT (Technology)	CT Crypto	Homomorphic encryption	Zero- Knowledge Proof	Oblivious pseudorandom function (OPRF)	Blind signature	Oblivious transfer protocol	Trusted execution environment (TEE)	Private set intersection (PSI)	Hash-based message authent. codes	Elliptic curve cryptography	Diffie- Hellman group key exchange	RSA digital signature
		CT Secure Communication	Custom asymmetric encryption	IPSec protocol	Other secured communication protocol	Customer end-to-end encryption	VPN solution	TLS protocol					
		CT Architectural Measures	Blockchain- based system	Multi-party computation (MPC)	Storage of anotated data	Secret-sharing	Anonymous authentication	Storage of personal data on the data subject device	Securing data in transit				
		CT Authent. & Access Control	Biometric- based authentication	Pseudo- random identity assignment	Anonymous credential system	Attribute-based credentials and access control	RFID authenti- cation	2-factor authentication	Role-based access control	Public Key Infrastructure			
		CT UC Navigation & Routing	Location obfuscation	Third-party navigation system	Privacy- preserving navigation systems								
		CT UC Payment	Anonymous payment	Automated payment using smart contract	Cash	Direct carrier billing (DCB)	Token-based payment	Card-based payment					
		CT UC Location Based Search	Private information retrieval	Hashmap storing of parking slot/toll/vehicle locations	Search based on the exact location								
		CT UC Reserv. Document Creation	Blind signature	Anonymous reservation	Presenting proof-of- knowledge								
Pr. Proc- esses	PrL (System Lifecycle)	PrL Principles for System Development	Privacy-related testing and verification	Usage of sensor devices which have built-in security measures	Data minimisation	Secure programming	Privacy by design						
		PrL System Support Networkt	Firewall	VLANS	Security incident and event management systems (SEIM)	Intrusion detection system	Behavioural analytics system	Vulnerability scanner	Network traffic analyser				
	PrU (Usage of the System)	PrU Use Cases	Pass/reservation document creation	Navigation or routing	Payment	Location-based search							
Cell colo	our mapping:	0	3	6	14	Text colou	r mapping:	measure1	(black) - s	tate-of-the	e-art meas	ure	
(by num	ber of supportin	g responses)						measure2	(grey) - c	other			

- a tool for crossvalidating the usage of measures within the organisation
- a tool for comparing InfoSec & Privacy management states -As-Is vs To-Be (e.g., from standard)

Results (3/4)

Results (3/4)

Step 2

The *tool-supported privacy analysis method* **proved** to:

- support the elicitation of requirements to the information system to comply with GDPR
- support the selection of technical measures for privacy assurance

[2] Mariia Bakhtina, Raimundas Matulevičius, and Mari Seeba. "Tool-supported method for privacy analysis of a business process model".
 [6] Sander Truu. 2024. "Tool-Supported Privacy Analysis of Smart Parking". BSc thesis.

Tool-supported privacy analysis

Validation:

- Scenario 1: Autonomous Vehicle usage for ride-hailing
- Scenario 2: Smart parking

Results (4/4)

Results (4/4)

Step 3

<u>Comparison of 3 identity management models</u> in the selected data exchange systems

• The selection of trust and identity models is defined by the business objectives and the required IdM system qualities

Figure 11: Method for identity management system analysis

[3] Bakhtina et al. "On the Shift to Decentralised Identity Management in Distributed Data Exchange Systems."

[4] Mariia Bakhtina et al. "A Decentralised Public Key Infrastructure for X-Road".

[5] Mariia Bakhtina, Jan Kvapil, Petr Švenda, and Raimundas Matulevičius. "The Power of Many: Securing Organisational Identity Through Distributed Key Management".

Quality criteria	Quality sub-criteria	Indicators	How to measure			
	Preventing insider threat	Fact of having built in prevention mechanism	Yes / No			
	Decentralisation Decentralisation Decentralisation Decentralisation of credentials issuance/verification Decentralisation of credentials and keys management	Decentralisation of credentials issuance/verification	Yes / No			
Security	Decentralisation	Decentralisation of credentials and keys management	Yes / No			
	Tructloseness	Not having a single of fully trusted external entity	Yes / No			
	Trustiessness	Not having a single of fully trusted internal entity	Yes / No			
	Availability	Systematic operational delays	Time of credentials issuance / signing / verification			
	Responsibility over credentials	Level of responsibility over credentials by the identity	$\{0, 1, 2\}$			
Control	Control over identity attributes	Control over the revealed details	Number of entities to who the attributes from the credentials are revealed during issuance / verification			
	Traceability	Fact of having built in traceability mechanism	Yes / No			
Tashilita	Portability	Fact of having built in mechanism for portability	Yes / No			
Usability	Multiple users	Fact of having built in mechanism for having multiple users	Yes / No			
	Backwards compatibility	Fact of being backwards compatible with PKI	Yes / No			
Maintain- Ibility	Complexity	Dependence on social actors	Number of actors involved in the credentials issuance /signing / verification			
	Comprexity	Dependence on external systems	Number of systems to be integrated with for issuance/ signing / verification			

Results (4/4)

<u>Comparison of 3 identity management models</u> in the selected data exchange systems (X-Road)

- All the three analysed IdM systems have its pros & cons
- DPKI-based IdM system is not feasible for the organisational context
- PKI-based IdM system with distributed key management is a more feasible alternative to DPKIbased, enabling zero trust (partial trustlessness & decentralization)

Quality	Quality sub-criteria	Indicators		Measurement						
criteria			How to measure	PKI	DPKI	DPKI	vs PKI	DKMS DKM		vs PKI
Security	Preventing insider threat	Fact of having built in prevention mechanism	Yes / No	No	No	=		Yes	+	
	Decentralisation	Decentralisation of credentials issuance/verification	Yes / No	No	Yes	+		No	=	
		Decentralisation of credentials and keys management	Yes / No	No	No	=	+	Yes*	+	
	Trustlessness	Not having a single of fully trusted external entity	Yes / No	No	Yes	+		No	=	+
		Not having a single of fully trusted internal entity	Yes / No	No	No	=		Yes	+	
	Availability	Systematic operational delays	Time of credentials issuance / signing / verification	P / 0 / msec *	sec / 0 / sec*	+		P / msec* / sec *	-	
Control	Responsibility over credentials	Level of responsibility over credentials by the identity	{0, 1, 2}	1	2	-		1*	=	
	Control over identity attributes	Control over the revealed details	Number of entities to who the attributes from the credentials are revealed during issuance / verification	1/1	1/01*	+	=	1/1	-	+
	Traceability	Fact of having built in traceability mechanism	Yes / No	No	No	=		Yes*	+	
Usability	Portability	Fact of having built in mechanism for portability	Yes / No	No	No	=	_	Yes*	+	
	Multiple users	Fact of having built in mechanism for having multiple users	Yes / No	No	No	=	_	Yes	+	7
Maintain- ability	Backwards compatibility	Fact of being backwards compatible with PKI	Yes / No		No	-		Yes	+	
	Complexity	Dependence on social actors	Number of actors involved in the credentials issuance /signing / verification	1/1/2	1/1/1	=+		1/K/2	-	=-
		Dependence on external systems	Number of systems to be integrated with for issuance/ signing / verification	0/ 0/ 1	12 */ 1 / 1			0 / 1 / 1	=-	

[3] Bakhtina et al. "On the Shift to Decentralised Identity Management in Distributed Data Exchange Systems."

[4] Mariia Bakhtina et al. "A Decentralised Public Key Infrastructure for X-Road".

[5] Mariia Bakhtina, Jan Kvapil, Petr Švenda, and Raimundas Matulevičius. "The Power of Many: Securing Organisational Identity Through Distributed Key Management".

Main contribution

A method for information security and privacy management of cross-organisational collaboration

Future Work

- Development of a supplementary tool for analysing data extracted through FISP-ProCOP
- Extension of privacy analysis method with commercial tools
- Extension of the GDPR reference model and the update of the used compliance analysis tool
- The guideline/decision tree for the identity management model selection

Thank you for attention!

Mariia Bakhtina bakhtina@ut.ee

Information Security Research Group https://infosec.cs.ut.ee/

Funded by the European Union under Grant Agreement No. 101087529.

Credits: the used icons are from www.flaticon.com

- [1] Mariia Bakhtina, Raimundas Matulevičius, and Lukaš Malina. "Information Security and Privacy Management in Intelligent Transportation Systems". In: CSIMQ 38 (2024), pp. 100–131, DOI: 10.7250/csimq.2024-38.04
- [2] Mariia Bakhtina, Raimundas Matulevičius, and Mari Seeba. "Tool-supported method for privacy analysis of a business process model". In: JISA 76 (2023), p. 103525, DOI: 10.1016/j.jisa.2023.103525
- [3] Bakhtina et al. "On the Shift to Decentralised Identity Management in Distributed Data Exchange Systems." Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing. 2023. doi:10.1145/3555776.3577678
- [4] Mariia Bakhtina et al. "A Decentralised Public Key Infrastructure for X-Road". In: Proceedings of the 18th International Conference on Availability, Reliability and Security. 2023. DOI: 10.1145/3600160.3605092
- [5] Mariia Bakhtina, Jan Kvapil, Petr Švenda, and Raimundas Matulevičius. "The Power of Many: Securing Organisational Identity Through Distributed Key Management". In: Advanced Information Systems Engineering. DOI: 10.1007/978-3-031-61057-8_28
- [6] Sander Truu. 2024. "Tool-Supported Privacy Analysis of Smart Parking". BSc thesis. University of Tartu
- [7] Mariia Bakhtina. "Towards More Secure and Data Protective Intelligent Infrastructure Systems". CAiSE (Doctoral Consortium). 2023.

Table 11: Components of the method for information security and privacy management in smart solutions

Concept	Procedure	Notation				
Business	Identified by the requirements and goals of the smart	In plain text as Goals				
Goal	solution	or Requirements				
Business	Using documentation and tacit knowledge, the busi-	BPMN, PE-BPMN,				
Process	ness analyst creates the BPMN models to depict the	in plain text within				
	key collaborative processes within the smart solu-	FISP-ProCOP matrix				
	tion. The models might be extended or annotated					
	based on the input from DPO, CISO, and Security ar-					
	chitect to depict their domain knowledge during any					
	stage of the framework.					
Actors	Describes dependencies and trust between actors in-	i*, trust model,				
Relationship	volved in a smart solution. Using documentation and	in plain text within				
	tacit knowledge, the business analyst creates the i*	FISP-ProCOP matrix				
	models to depict the dependencies (including trust)					
0	between smart solution entities.					
System	Using documentation and tacit knowledge, the secu-	Class diagram,				
Component	nty architect creates the models to depict the system	Conceptual Architec-				
	within the smart solution. The models might be av	nont diagram				
	tended or appoteted based on the input from DPO	in plain text within				
	CISO and a business analyst to denict their domain	FISP-ProCOP matrix				
	knowledge during any stage of the framework					
Data	Describe types of information used in the smart so-	BPMN Class dia-				
Object	lution	gram i*				
object	Auton (in plain text within				
		FISP-ProCOP matrix				
Data Flow	Describes how the data objects are manipulated and	BPMN, Class dia-				
	transferred between system components and actors.	gram, Conceptual				
	Depicted as a part of InfoSec & privacy mgmt as-	architecture model,				
	pects, business processes, system architecture, and	i*, in plain text within				
	actor relationships	FISP-ProCOP matrix				
Security	Identified for the exchanged data in the collaborative	in plain text within				
Criteria	processes by understanding the importance of such	FISP-ProCOP matrix				
	data objects.					
Privacy	Identified for the personal data objects used in the	in plain text within				
Objective	smart solution with respect to the trust model	FISP-ProCOP matrix				

