

7. Visualization of multivariate data

http://www.statistics4u.com/fundstat_eng/wrapnt3EE177_basic_knowledge.html

Credits: Manuela Waldner, TU Wien

High-Dimensional Data

- Consist of multiple types of attributes
 - E.g., weight w, height h, shoe size s of randomly selected sample of people
 - The triples (w_1, h_1, s_1) , (w_2, h_2, s_2) then form a set of multivariate data
- Techniques for visualization of lists and tables of data that generally do not contain explicit spatial attributes

High-Dimensional Data

- Image features
 - Vocabulary of visual words
 - Classification
 - Example: MNIST
 - 10 000 hand-written digits

 28x28 pixels → 784-dimensional feature vector (intensity values) per image

https://www.tensorflow.org

High-Dimensional Data

- Gene expression data
 - Dimensions: genes
 - Samples: experimental conditions / species /...

http://cancerres.aacrjournals.org/content/64/23/8558

Curse of Dimensionality

- Efficiency of many algorithms depends on the number of dimensions
- With increasing number of dimensions, data becomes sparse
- Number of required training samples grows exponentially with the number of dimensions

Goals of Visualization

- Visual exploration of high-dimensional data sets
 - Detecting clusters
 - Finding regularities and irregularities
 - Identifying relevant data dimensions
- Visual inspection of classification results
- Understanding and quality assessment of algorithms

Exemplary Dataset

- Example: Iris dataset
 - 3 species
 - 50 samples per species
 - 4 features: length and width of sepals and petals

Wikipedia: Iris flower data set

Line-Based Representations

- Visualization technique for single variable, where vertical axis represents possible range of variable values and horizontal axis represents certain ordering of records in a given dataset
- Extension for multivariate data
 - superimposition,
 - juxtaposition

Record Number

Superimposition vs. juxtaposition

www.craniofacial-id.com

www.usenix.org

Line Charts

 Classic line chart for 8-dimensional dataset vs. stacked line chart (for each added dimension the chart of previous dimension serves as the base)

Line Charts

• Sorting of records by single dimension

Line Charts

- If the dimensions have the same units, it is possible to use one of the previous techniques
- However, if the individual variables have different units, it is necessary to use different approach, e.g.:
 - Using multiple vertical axes
 - Vertical stacking of charts for individual dimensions

RadViz

- Based on Hooke's law of elasticity for finding equilibrium position of the point.
- For N-dimensional dataset, N so-called "anchor" points are placed on the circumference of a circle (for simplicity we consider a unit circle placed at the origin of the coordinate system) – these represent fixed ends of N strings assigned to each data point.

bioinformatics.oxfordjournals.org

RadViz

For a given normalized vector of data record
 D_i = (d_{i,0}, d_{i,1},..., d_{i,N-1}) and a set of vectors A,
 where A_j is the j-th anchor point, we get the equilibrium equation:

$$\sum_{j=0}^{N-1} (A_j - p) d_j = 0$$

where p is the vector for the point in equilibrium position and can be found as:

$$p = \frac{\sum_{j=0}^{N-1} (A_j d_j)}{\sum_{j=0}^{N-1} d_j}$$

RadViz

- Different placement and order of anchor points leads to different results
- Points with different position in the Ndimensional space can be mapped to the same position in 2D space
- These problems concern all the techniques for projection and dimension reduction
- The simple solution for RadViz is enabling the user to interact (manipulate) with anchor points

Radial Axis Techniques

- For each technique with horizontal and/or vertical orientation of coordinate system there exists equivalent technique using radial orientation
- Radial line chart

Radial Techniques

• Radar

• Star chart

- Polar chart
 - Displaying
 polar coordinates

Radial Techniques

1200

• Radial column charts

• Radial bar charts

• Radial area charts

datavizproject.com

Types of Techniques for Radial Axes

- Concentric circles
- Continuous spiral does not exhibit discontinuity at the end of each cycle
- Compared to traditional bar representation enables observation of patterns between elements at the same position in different cycles

Techniques for Area Data

- Usage of filled polygons of given size, shape, color, ...
- The aim of some of these techniques is not showing individual data records, but their clusters and distribution
- Originally designed for univariate data (single variable) pie charts and bar charts.
 Subsequently extended for multiple dimensions.

Bar Charts/Histograms

Multivariate data – stacked bar chart

Tabular Visualizations

- Multivariate data often in tables
- Heatmaps
 - displaying records using color instead of text
 - each value is rendered as a colored rectangle

akweebeta.com

Tabular Visualizations

• Survey plot

- Instead of color, the size of the cell depicts the value
- Centres of the cells are aligned to individual attributes
- Measurement of area is more prone to errors than measurement of length

 Mapping of data from discrete N-dimensional space to 2D image in such way that the data occlusions are minimalized, while the majority of the spatial information is preserved

- Data of 2N+1 dimensions
- Select final cardinality for each dimension
- Select one dimension as dependent variable, the rest of the dimensions are independent
- Create ordered pairs of independent variables (N pairs) and assign unique value (speed) to each pair – from 1 to N
- Pair corresponding to speed 1 creates virtual image with size corresponding to the cardinality of its dimensions
- In each position of this virtual image, new virtual image corresponding to the dimensions of pair with the speed 2 is created
- The process is repeated, until all dimensions are not included

 Begins with discretisation of the range of each dimension. Orientation and order is then assigned to each dimension. Dimensions with two lowest orders are then used to split the virtual screen into sections - the cardinality of the dimensions indicates, how many sections are generated on horizontal and vertical axes. Each generated section is then used for recursive splitting of virtual screen in next two dimensions in the same way. This process is repeated until all the dimensions are not processed and the data are not placed to their corresponding positions on the screen.

Treemap

Azureus - BitTorrent Client		PDFCreator Printing AFPL Ghostscript	MiKTe) Anonym.OS LiveCD Gimp-F Security - Top Jasper F Antivirus R HP 0 Scribu	KccPass IPCop V Passwork Firewal Safe Darik's Winpe Boot and Watch Nuke MU' K Clam - AntiViru: BO2 S AntiViru: - Safe - Safe - Safe -	irtualDub Au Lai Lir Srr Co System Ye Jav Lir
<u>Internet</u>		NASA World Wind	WinSCP	OSXv:Notepad++ Aste S A	Scintilla GnuWin32 Tcl wxWidThe (formeQu / for
Audacity	nMSN	FreeMind Tux Paint Earth OPER 2314 Dev-C++ XOOPS Dynam	Risk Risk BitPim nic	Onse Text Ed	Itors Desktop X Sm Environne Sakura Port Designed Editor Nu css synergy Progra Sur Linu
	Chickenet-sni Halflizen SSI of the AdmirCart VNC Licg AMFP Me Di A	NUnit PHPeelir Spring Boost IF Net - PHP Framewor C++	ScummVM Advance nt rect Advar LGam Free(G3K-Yr L/	RSS Bandit Pental Other/Non Topic RSSO Phex GreCr Z Sun	XMI Hibernat Java NH Advi Jet ITD Kor Alfre IST Database

- Visual representation of parts of data or information, where graphical entity and its attributes are driven by one or more attributes of input data
- Graphical attributes, to which the data values can be mapped:
 - position, size, shape, orientation, material, line style, dynamics

- Types of mapping:
 - 1:1 each data attribute is mapped to unique graphical attribute
 - 1:N set of redundant mappings (e.g., mapping data attribute simultaneously to size and color)
 - M:N multiple or all data attributes mapped to a common type of graphical attribute

- We must be aware of inaccuracies and restrictions of these techniques:
 - Inaccuracy of perception depends on the type of used graphical attributes
 - Distance between graphical attributes influences the accuracy of their comparison – the closer, the more precise comparison
 - Number of dimensions and data records which can be effectively displayed using glyphs is limited

- After selection of the type of glyph there are N! possible orderings of the dimensions, which can be used when mapping
- Several strategies for selection of suitable order exist:
 - Sorting of dimensions based on their correlation
 - Increasing influence of glyph with symmetrical shape
 - Sorting by the values of dimensions in a single record
 - Manual sorting based on knowledge of the domain

Placement of Glyphs

- Three basic types of strategies for placement of glyphs on the screen:
- 1. Uniform
- 2. Data-driven
- 3. Structure-driven

Uniform Placement

- Uniform placement on screen
- Elimination of overlaps, effective usage of screen space

Data-Driven Placement

- Two approaches:
 - Select two dimensions to direct the placement (left)
 - Positions derived using PCA, MDS (right)

Structure-Driven Placement

• Using structure of the data – cyclic, hierarchical

- Hybrid method between point-based and regional (area-based) methods
- Maps each value to individual pixel and for each dimension creates filled polygon
- Displaying millions of values within one screen
- Number of data points determines the number of individual items in the image
- The technique relies on application of color

- Simplest form:
 - Each dimension of dataset generates independent separated "sub-image" on the screen
 - Each dimension can be considered as an independent set of numbers, each set determines the color of the corresponding pixels
 - The placement of the items within the set (highlighting relationships between close points): alternating passes form right to left and from left to right; if the edge of the image is reached, move to the next line

screen filling

recursive patterns

Recursive Patterns, Circular Segments

Placement of sub-images using different approaches:

- Last important aspect is ordering of the data
- Time-series data have fixed ordering
- In other types of data the change of order can reveal interesting properties

 Overloading of classical bar chart – including more information about individual items

 Each pixel of the bar represents a data point belonging to the group represented by this

bar

 Internet shopping – relationship between the type of product and the price. Color is mapped onto:

• Placement of dense pixels to bar chart

- We can derive, e.g.:
 - The largest amount of customers came in December, while in February, March, and May there was minimum of customers.
 - From February to May there were largest amounts of purchases.
 - Number of purchases in December is average.
 - From March to June the customers returned more frequently than in other months. December customers were mostly one-time customers.
 - Customers shopping the most are returning more often and buying more stuff.

Scatterplots

- One of the first and most used visualization techniques used for data analysis
- Data analysis consists of:
 - 1. Multiple displays displaying multiple plots together at once (superimposition, juxtaposition)
 - 2. Search for a subset of input data dimensions
 - 3. Dimension reduction (PCA, multidimensional scaling)
 - 4. Dimension embedding mapping dimensions onto additional graphical atributes (color, size, shape)

Multiple Displays – Scatterplot matrix

- Grid containing scatterplots
- N² cells, where N is the number of dimensions
- Each dimension pair is displayed twice just rotated by 90°
- Usually symmetric about the main diagonal
- Main diagonal displays
 - Description of corresponding dimension or
 - Histogram of the given dimension

Scatter Plot Matrix

Other representations

• Parallel coordinates

• Chernoff faces

1 2 3 4 5 ©©©©©	51 52 53 54 55	101 102 103 104	105
678910 ©©©©©©	56 57 58 59 60 ම ම ල ල	106 107 108 109	110
11 12 13 14 15 ම ම ම ම ම	61 62 63 64 65 ବି ବି ବି ବି ବି	111 112 113 114 \$	115 🛱
16 17 18 19 20 © © © © ©	66 67 68 69 70 T T T T	116 117 118 119	120
21 22 23 24 25 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	71 72 73 74 75	121 122 123 124	125
26 27 28 29 30	76 77 78 79 80 T T T T T	126 127 128 129	130
31 32 33 34 35 ම ම ම ල ල	81 82 83 84 85	131 132 133 134	135
36 37 38 39 40	86 87 88 89 90 ම ම ම ම ම	136 137 138 139	140 E
41 42 43 44 45 © © © © ©	91 92 93 94 95 🐨 🐨 🐨 🐨		145
46 47 48 49 50	96 97 98 99 100 TO TO TO TO	146 147 148 149	150
setosa	versicolor	virginica	[Icke & Sklar, 2009]

Solving the scalability problem

• Solutions for a lot of samples/items/records:

But what about a lot of dimensions (axes)?

Approaches

- Feature selection (dimension subsetting)
 - Selecting a subset of existing features without a transformation
 - Using multi-dimensional data visualization techniques
- Feature extraction (dimension reduction)
 - Transforming existing features into lower dimensional space
 - Using 1D / 2D / 3D /nD visualization technique
- Hybrid approach
 - Selecting a subset of existing features
 - Transforming feature subset into lower dimensional space

Feature Selection

- Selecting a subset of existing features without a transformation
- Dimensions (or dimension pairs) are ranked based on quality metric:
 - Number of outliers
 - Correlation between pair of dimensions
 - Image-based
 - ..
- Quality metrics can be combined
- Using multi-dimensional data visualization techniques

Rank-by-Feature Framework

- Exploratory analysis of multidimensional data
- Based on ranking criteria
 - 1D ranking criteria: Normality or uniformity (entropy) of distribution, number of potential outliers, number of unique values

Order by	Score Overview	Ordered List		Make Views	Transpose>	
Normality 💌	UACC091 9.981 UACC1273	Rank Column Nan	e Score ⊽ Min Q1(.	Median Q3(Max	Mean Stdev 🔺	68
Omnibus Moments Test	M93-007 UACC1256	1 UACC2837	9.981 -2.996 -0.1	98 0.030 0.262 1.394	-0.005 0.460	
Chillibus Monterius Test	M91-054	2 UACC930	9.643 -2.996 -0.0	94 0.122 0.336 2.996	0.131 0.418	
	KA	3 UACC502	9.563 -2.996 -0.2	23 -0.020 0.191 1.934	-0.024 0.426	
	UACC383	4 UACC1097	9.024 -2.996 -0.0	078 0.166 0.412 2.512	0.158 0.478	
Use Orig Values	M32-001	5 UACC1012	7.448 -2.996 -0.2	288 0.000 0.207 2.083	-0.058 0.523	
Show Co ol Plot	UACC2534	6 M93-007	6.845 -2.996 -0.1	98 0.068 0.300 2.875	0.052 0.508	
	TC-1376-3 TD-1376-3	7 SRS5	6.784 -2.996 -0.1	98 0.010 0.285 2.890	0.040 0.519	
I Show Hi gram	UACC1022	8 UACC1273	6.764 -2.996 -0.1	51 0.104 0.358 2.538	0.083 0.521	
Show CI curve	TD-1720	9 M93-047	6.658 -2.996 -0.1	28 0.086 0.322 2.996	0.096 0.427	
	TD-1638	10 UACC091	6.646 -2.996 -0.2	23 0.049 0.278 2.497	0.005 0.505	4
	HA-A 3 264	11 UACC903	6.604 -2.996 -0.2	23 -0.010 0.191 2.322	-0.008 0.387	
	3 264 17	12 UACC3093	6.454 -2.996 -0.3	01 -0.041 0.270 2.965	-0.054 0.621	
	TD.1730 22	13 WM1791C	6.108 -2.996 -0.1	51 0.122 0.419 2.996	0.118 0.566	
Ranking	UNICE V	14 UACC2534	5.736 -2.996 -0.3	29 -0.117 0.215 2.996	-0.079 0.572	
Ranking	UACC10 12	15 M92-001	5.719 -2.996 -0.3	29 -0.030 0.166 2.582	-0.073 0.562	
Criteria	UACC1097	16 UACC827	5.421 -2.996 -0.2	261 0.030 0.300 2.029	-0.001 0.556	
Cinterna	SR S3	17 HA-A	5.396 -2.996 -0.4	46 -0.105 0.191 2.110	-0.153 0.579	
	MCF10A	18 UACC1529	5.380 -2.996 -0.2	23 0.010 0.296 2.996	0.032 0.544	
	UACC903	19 UACC1256	5.305 -2.996 -0.2	36 0.058 0.336 2.780	0.047 0.534	300 300
	UACC930	20 A-375	5.266 -2.996 -0.2	74 0.030 0.378 2.743	0.005 0.541	
	CRC1634	21 TC-MA	5.147 -2.996 -0.3	371 -0.186 0.182 2.582	-0.170 0.616 _1	Item Slider
	NIL.C	100 0000	E 10E 0.000 0.4	MC 0 100 0 005 0 000	0.000 0.500	10-1730

[Seo and Shneiderman, 2004]

Rank-by-Feature Framework

• 2D ranking criteria:

 Correlation coefficient, least squares error for linear regression / curvilinear regression, number of items in region of interest, uniformity of scatterplots

[Seo and Shneiderman, 2004]

Selection and Ordering of Parallel Coordinate Axes

Every dimension pair is converted to Hough space

Tatu et al., 2009]

 Quality metric: good dimension pairs have fewer, well-defined clusters in Hough space

Selection and Ordering of Parallel Coordinate Axes

- Example: dataset of cars
 - 7404 cars
 - 24 attributes
 - Classes separated into benzine (black) and diesel (red)
 Best ranked views using SM

Feature Extraction

- Transforming existing features into lower dimensional space
- Dimensionality reduction
 - Linear
 - Non-linear
- Using 1D / 2D (/3D)/nD visualization technique

Dimensionality Reduction

• Linear projection

- Linear transformation projecting data from highdimensional space to low-dimensional space
- Techniques:
 - Principal component analysis (PCA)
 - (metric) multi-dimensional scaling (MDS)
 - ...

Principal Component Analysis

- Projecting data onto lower dimensions (= principal components)
- First principal component: as much variability of the data as possible
- Principal components are orthogonal

Wikipedia: principal component analysis

Force-Based Methods

- Projection of points from large dimensions into 2D or 3D space
- Aims to preserve the properties of N-dimensional data while projecting to different dimension
- Projection can introduce unwanted artifacts to appear in the resulting visualization

Multidimensional Scaling (MDS)

- Numerous variants of the algorithm exist. The main differences are in:
 - Method for similarity and stress computation
 - Definition of start
 and end conditions
 - Strategy for updating the position of points

Problems

- Results are not unique small changes in start conditions can lead to different results
- Coordinate system after the projection may not be easily understandable to the user – with respect to the dimensions of the original data
 - The most significant are the relative positions of individual points rather than their absolute positions, which may differ from algorithm to algorithm

Non-Linear Dimensionality Reduction

- Low-dimensional surface embedded nonlinearly in high-dimensional space
- Preserves the neighborhood information
 - Locally linear
 - Pairwise distances

"swiss roll" http://scikit-learn.org

Non-Linear Dimensionality Reduction

Manifold Learning with 1000 points, 10 neighbors

scikit-learn.org Comparison of Manifold Learning methods

Hybrid Approaches

- Dimensionality reduction often unwanted because domain knowledge is required to understand which dimension combinations make sense
- Combination of feature selection and feature extraction
- Feature selection:
 - User selection based on visual analysis
 - Quality metrics
- Feature extraction is performed on selected dimensions
- Using multi-dimensional data visualization techniques