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Part 1: Element
hierarchy



Basic building blocks of user interfaces:
Elements, Views, Widgets, ...
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Each Element is responsible for how a
specific piece of information is rendered.

// A gross oversimplification...
class Button {
 
 draw(canvas) {
     canvas.drawRectangle(self.bounds, self.backgroundColor)
        canvas.drawText(self.text, self.centerPoint(), self.fontStyle)
        canvas.drawBitmap(self.icon, self.iconPoint())
    }
 
}
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Part 2: Basis of
interactivity
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Events are generated (mostly) in relation to input
devices or some other external "stimuli".
Event is delivered by the "platform" (browser, OS,
etc.) to an Element based on its position, focus, etc.
A capturing Event is delivered to an Element and
that Element either consumes the Event it or not.
A bubbling Event is delivered to an Element and if it
is not consumed by that Element, it is propagated
upwards in the Element tree.

Events
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Part 3: State
hierarchy



So what happens if an Event is
consumed?



So what happens if an Event is
consumed?

Until this point, the vast majority of UI systems agree on
this architecture, even if they sometimes have
abstractions to hide it from the programmer...
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These are the most fundamental questions that
UI frameworks/architectures are trying to answer: 

 

Where is application state stored?
How is application state updated?
How is state change propagated to the user interface?



Element state

"Stuff that you lose if you remove an element."
Position, scroll location, input field values, ...
Stored by the individual UI Elements.

A useful framework for thinking about state...
(what goes into each category depends on the application)
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A useful framework for thinking about state...
(what goes into each category depends on the application)

Session state

"Stuff that you lose if you close the window."
E-shop cart, login credentials, navigation...
Stored by the browser or by the server (and linked
to browser using session cookies).
Session ends when the browser says it ends (for
"normal" apps, it's usually when you close the app).

Browser
[session state]
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"Stuff that you lose if the hard drive breaks down."
Account information, settings, "content", ...
Stored in files or databases, both within the
browser (locally) or on a server (remotely).



A useful framework for thinking about state...
(what goes into each category depends on the application)

Persistent state

"Stuff that you lose if the hard drive breaks down."
Account information, settings, "content", ...
Stored in files or databases, both within the
browser (locally) or on a server (remotely).



Element state
"what the UI looks like right now"

Session state
"what the user is doing"

Persistent state
"what the user has saved"



Part 4: Client vs.
Server
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Server-side
rendering

Not rendering in the GPU sense, but
"where is state turned into HTML".

We started
here

Then everyone
wanted to do this

And now we are
somewhere in

between
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Element state is still managed by the client and can be non-trivial, so
the client is not entirely state-less. But for the most part, client is not

meaningfully changing the UI hierarchy.
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Back-end (server)

Front-end (client)

UI Element
hierarchy Session State

Persistent State

Client-side rendering

API calls
(REST, Graph QL, etc.)

Client is responsible for updating the UI hierarchy based on both the local state and
the data received from the server. Server's only responsibility is serving and storing

data. (Less common, but client can also store some of the persistent state)
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Server first: you have a lot of state that needs to be
precisely synchronized across many users, the UI does
not need too much interactivity (request-response)...

More centralized: the response is always what's in the database.

Less work for clients, no need for business logic written in JavaScript.

More bandwidth (sometimes, depends), more compute.



Which is "better"?
Any sufficiently large project will usually mix both, at
least to some extent.
Server first: you have a lot of state that needs to be
precisely synchronized across many users, the UI does
not need too much interactivity (request-response)...

More centralized: the response is always what's in the database.

Less work for clients, no need for business logic written in JavaScript.

More bandwidth (sometimes, depends), more compute.

Client first: More complex and responsive interaction
patterns, reduced server costs, modular (multiple
clients, one API)...

Can have offline or other "native" features.

More logic (generally more complex UIs, but also logic for retrieving and

sending data, caching, etc.).



Part 5: Managing
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Model View Controller

Multiple types of each component can interact
together (e.g. one view per "entity" in a database, one controller per

business process, and one view per page).
Views can be often relatively large (e.g. a whole page)
and relatively "active" in that they generate the
complete Element hierarchy for every state change.
Example:  A HTML template that is filled with data.

Model is relatively "passive": it ensures data
validation, integrity and persistence.
Controller performs updates based on UI events.

But where does this "live" in a Web app?
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MVC, server-side rendering
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Server-first frameworks like ASP.NET (C#), Spring
(Java), Django (Python), Rails (Ruby), Laravel (PHP)

are usually "MVC-like".



Model-View-Template?
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"MVC-like": Other minor interpretations of
what View and Controller stand for.
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Model View Presenter

Removes the ambiguity of who updates the View.
The View is completely passive, all updates are done
by the Presenter.
Presenters tend to be more tightly integrated with
the View, while Controllers tend to be more tied to
the Model. Often leads to smaller/more granular
Presenters in MVP vs. MVC.
Most frameworks mentioned previously are primarily
classified as MVP now, but the distinction is often
slightly arbitrary (one can implement both).
Same considerations for server-side vs client-side
rendering apply.
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Model View ViewModel
Very similar to MVP, but the relationship between the
View and the ViewModel is declarative, while the
relationship between the Presenter and the View is
imperative.

Presenter listens to the events emitted by the View and manipulates it

accordingly.

ViewModel does not interact with the View directly, but observes the

declared properties through a special data binding layer.

More robust to changes in the View hierarchy.
Less verbose, data binding eliminates a lot of
"boilerplate" code related to events.
Most modern JavaScript frameworks (React, Svelte,
Vue.js, ...) could be classified as MVVM (but most have other

mechanisms, on top of MVVM, e.g. templates, that make this less clear)



We'll come back to declarative vs.
imperative UI in the next lecture...
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Problem:
The UI Element hierarchy on its own is
often quite hard to manage, even if
we only consider "Element state" that
has nothing to do with business logic.
To achieve a specific style, we may
need to combine a lot of Elements
that need we to coordinate and thus
expose unnecessary "implementation
details".
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UI Components

Encapsulates a complex, but self-contained UI
Element hierarchy, making it reusable.
"From the outside", a Component appears as just
another Element.
A well-designed Component encapsulates the state of
multiple Elements that would otherwise have to
interact with each other and share state.

Architecturally, this allows us to convert some of the "Session-like" state

into pure Element state.

Was hugely popularized by React (now used by most JS
frameworks), but similar ideas have existed outside of
Web development before.
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WebComponents

https://developer.mozilla.org/en-US/docs/Web/API/Web_components/

A Web standard for implementing UI Components.
Came after React and similar frameworks, but provides tighter

integration with browsers (e.g. CSS and Event encapsulation).

You can mix WebComponents and existing JS frameworks, since each

Component is just a standard HTML Element.

 Each Component behaves just like an ordinary HTML
Element with a custom tag name.
A Component can have a shadow DOM, i.e. a hierarchy
of HTML elements that is not accessible outside of the
component.
The standard adds a <template> tag to make writing
reusable HTML markup easier.

https://developer.mozilla.org/en-US/docs/Web/API/Web_components/Using_custom_elements
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WebComponents

A component is either autonomous, or it extends an
existing HTML element.
Tag names must contain a "-" to differentiate them
from current (and future) HTML elements.

// Autonomous Web Component
class TabBar extends HTMLElement {
  constructor() {
    super();
  }
  // Element functionality written in here
}
 
customElements.define("tab-bar", TabBar);
 
// Usage in HTML:
// <tab-bar>Some content</tab-bar>
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adopted, disconnected.



WebComponents

Components have lifecycle events: connected,
adopted, disconnected.

// Autonomous Web Component
class TabBar extends HTMLElement {
  constructor() {
    super();
  }
  
  connectedCallback() {
    console.log("Custom element added to page.");
  }
 
  disconnectedCallback() {
    console.log("Custom element removed from page.");
  }
 
  adoptedCallback() {
    console.log("Custom element moved to new page.");
  }
  
}
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A shadow DOM is used to attach child elements that
should not be discoverable through the normal DOM.

They won't appear as child Elements nor can they be discovered using

querySelector or similar.

If mode: "open" is set, the shadow DOM is accessible through

element.shadowRoot.



WebComponents
A shadow DOM is used to attach child elements that
should not be discoverable through the normal DOM.

They won't appear as child Elements nor can they be discovered using

querySelector or similar.

If mode: "open" is set, the shadow DOM is accessible through

element.shadowRoot.

// Autonomous Web Component
class TabBar extends HTMLElement {
  static observedAttributes = ["color", "size"];
  
  connectedCallback() {
    // Create a shadow root
    const shadow = this.attachShadow({ mode: "open" });
 
    // Create internal span tag
    const wrapper = document.createElement("span");
    wrapper.setAttribute("class", "wrapper");
    wrapper.innerHTML = "Shadow DOM content";
    
    shadow.appendChild(wrapper);
  }
}
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WebComponents
Templates provide a friendlier mechanism for
declaring shadow DOM elements

// Declared somewhere in our HTML:
<template id="tab-bar">
  <div id="tab-buttons"></div>
  <div id="tab-panels">
    <slot>Child elements will appear here.</slot>
  </div>
</template>
 
class TabBar extends HTMLElement {
  constructor() {
    super();
    let template = document.getElementById("tab-bar");
    let templateContent = template.content;
 
    const shadowRoot = this.attachShadow({ mode: "open" });
    shadowRoot.appendChild(templateContent.cloneNode(true));
  }
}
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WebComponents
Child elements can be placed depending on slot
name.

// Declared somewhere in our HTML:
<template id="tab-bar">
  <div id="tab-buttons">
    <slot name="header"></slot>
  </div>
  <div id="tab-panels">
    <slot>Child elements will appear here.</slot>
  </div>
</template>
 
// Usage with tab-bar:
<tab-bar>
 <span slot="header">Some header content.</span>
    <div>Other elements go to the default slot.</div>
</tab-bar>
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encapsulated from any "outside" CSS rules.
We need to either add our own styles
programmatically, or add a <style> (or <link>)
directly into the shadow DOM.



WebComponents
Same as JavaScript, the shadow DOM is also
encapsulated from any "outside" CSS rules.
We need to either add our own styles
programmatically, or add a <style> (or <link>)
directly into the shadow DOM.

<template id="tab-bar">
  <style>
    .tab-buttons {
      margin: 0 auto;
    }  
  </style>
  <div id="tab-buttons">
    <slot name="header"></slot>
  </div>
  <div id="tab-panels">
    <slot>Child elements will appear here.</slot>
  </div>
</template>
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More about WebComponents (and
components in general) on the next

seminar...



Takeaways
User interfaces are represented as tree hierarchies of
elements (widgets, views, ...).
Interacting with elements triggers events.
Events update application state. Managing state is
one of the fundamental roles of UI frameworks.
Very broadly, state can be understood as element
state, session state and persistent state.
Server-side vs. client-side rendering: where is the
state converted into the UI hierarchy?
MVC, MVP, MVVM: basic design patterns for
separating state, logic and user interface.
Component-based design: defining new UI elements
that encapsulate non-trivial behavior.
WebComponents, a modern standard for defining UI
components in the browser.


