
PV252 Lecture 1

Part 1: Element
hierarchy

Basic building blocks of user interfaces:
Elements, Views, Widgets, ...

Text Button

Text Input

Chart

Image

Tabs

Each Element is responsible for how a
specific piece of information is rendered.

// A gross oversimplification...
class Button {

 draw(canvas) {
 canvas.drawRectangle(self.bounds, self.backgroundColor)
 canvas.drawText(self.text, self.centerPoint(), self.fontStyle)
 canvas.drawBitmap(self.icon, self.iconPoint())
 }

}

1
2
3
4
5
6
7
8
9

10

UI Elements are
structured as a tree

Dialog Window

UI Elements are
structured as a tree

Dialog Window

Taskbar Body

Dialog Window

Taskbar Body

UI Elements are
structured as a tree.

Dialog Window

Taskbar Body

Icon

Title

Button

UI Elements are
structured as a tree.

Dialog Window

Taskbar Body

Icon

Title

Button

Tab
Container

Horizontal
Container

UI Elements are
structured as a tree.

Dialog Window

Taskbar Body

Icon

Title

Button

Tab
Container

Horizontal
Container

Button Button Button

etc...

Part 2: Basis of
interactivity

So far, the Element hierarchy is
completely static... how does user

interaction come into play?

So far, the Element hierarchy is
completely static... how does user

interaction come into play?

Event

Events

Events are generated (mostly) in relation to input
devices or some other external "stimuli".

Events

Events are generated (mostly) in relation to input
devices or some other external "stimuli".
Event is delivered by the "platform" (browser, OS,
etc.) to an Element based on its position, focus, etc.

Events

Events are generated (mostly) in relation to input
devices or some other external "stimuli".
Event is delivered by the "platform" (browser, OS,
etc.) to an Element based on its position, focus, etc.
A capturing Event is delivered to an Element and
that Element either consumes the Event it or not.

Events

Events are generated (mostly) in relation to input
devices or some other external "stimuli".
Event is delivered by the "platform" (browser, OS,
etc.) to an Element based on its position, focus, etc.
A capturing Event is delivered to an Element and
that Element either consumes the Event it or not.
A bubbling Event is delivered to an Element and if it
is not consumed by that Element, it is propagated
upwards in the Element tree.

Events

Dialog Window

Taskbar Body

Icon

Title

Button

Tab
Container

Horizontal
Container

Button Button Button

Tab Button Tab Button

Tab Panel

Title Text Image

Bubbling Events

Listener

Dialog Window

Taskbar Body

Icon

Title

Button

Tab
Container

Horizontal
Container

Button Button Button

Tab Button Tab Button

Tab Panel

Title Text ImageClick!

Bubbling Events

Listener

Dialog Window

Taskbar Body

Icon

Title

Button

Tab
Container

Horizontal
Container

Button Button Button

Tab Button Tab Button

Tab Panel

Title Text ImageClick!

Bubbling Events

Click!
Listener

Dialog Window

Taskbar Body

Icon

Title

Button

Tab
Container

Horizontal
Container

Button Button Button

Tab Button Tab Button

Tab Panel

Title Text ImageClick!

Bubbling Events

Click!
Listener

Click!

Dialog Window

Taskbar Body

Icon

Title

Button

Tab
Container

Horizontal
Container

Button Button Button

Tab Button Tab Button

Tab Panel

Title Text ImageClick!

Bubbling Events

Click!
Listener

Click!
Consumed

Part 3: State
hierarchy

So what happens if an Event is
consumed?

So what happens if an Event is
consumed?

Until this point, the vast majority of UI systems agree on
this architecture, even if they sometimes have
abstractions to hide it from the programmer...

Dialog Window

Taskbar Body

Icon

Title

Button

Tab
Container

Horizontal
Container

User Interface

Dialog Window

Taskbar Body

Icon

Title

Button

Tab
Container

Horizontal
Container

Application
State

User Interface

Observes
events

Dialog Window

Taskbar Body

Icon

Title

Button

Tab
Container

Horizontal
Container

Application
State

User Interface

Observes
events

Updates
UI

These are the most fundamental questions that
UI frameworks/architectures are trying to answer:

Where is application state stored?
How is application state updated?
How is state change propagated to the user interface?

Element state

"Stuff that you lose if you remove an element."
Position, scroll location, input field values, ...
Stored by the individual UI Elements.

A useful framework for thinking about state...
(what goes into each category depends on the application)

Element state

"Stuff that you lose if you remove an element."
Position, scroll location, input field values, ...
Stored by the individual UI Elements.

A useful framework for thinking about state...
(what goes into each category depends on the application)

Dialog Window

Taskbar Body

Icon Tab
Container

Element state

"Stuff that you lose if you remove an element."
Position, scroll location, input field values, ...
Stored by the individual UI Elements.

A useful framework for thinking about state...
(what goes into each category depends on the application)

Dialog Window

Taskbar Body

Icon Tab
Container

State

StateState

State State

A useful framework for thinking about state...
(what goes into each category depends on the application)

Session state

"Stuff that you lose if you close the window."
E-shop cart, login credentials, navigation...
Stored by the browser or by the server (and linked
to browser using session cookies).
Session ends when the browser says it ends (for
"normal" apps, it's usually when you close the app).

A useful framework for thinking about state...
(what goes into each category depends on the application)

Session state

"Stuff that you lose if you close the window."
E-shop cart, login credentials, navigation...
Stored by the browser or by the server (and linked
to browser using session cookies).
Session ends when the browser says it ends (for
"normal" apps, it's usually when you close the app).

Browser
[session state]

A useful framework for thinking about state...
(what goes into each category depends on the application)

Session state

"Stuff that you lose if you close the window."
E-shop cart, login credentials, navigation...
Stored by the browser or by the server (and linked
to browser using session cookies).
Session ends when the browser says it ends (for
"normal" apps, it's usually when you close the app).

Browser
[session state]

Request with
session cookie

A useful framework for thinking about state...
(what goes into each category depends on the application)

Session state

"Stuff that you lose if you close the window."
E-shop cart, login credentials, navigation...
Stored by the browser or by the server (and linked
to browser using session cookies).
Session ends when the browser says it ends (for
"normal" apps, it's usually when you close the app).

Browser
[session state]

Server
[session state]

Request with
session cookie

A useful framework for thinking about state...
(what goes into each category depends on the application)

Session state

"Stuff that you lose if you close the window."
E-shop cart, login credentials, navigation...
Stored by the browser or by the server (and linked
to browser using session cookies).
Session ends when the browser says it ends (for
"normal" apps, it's usually when you close the app).

Browser
[session state]

Server
[session state]

Request with
session cookie

State-based
response

A useful framework for thinking about state...
(what goes into each category depends on the application)

Persistent state

"Stuff that you lose if the hard drive breaks down."
Account information, settings, "content", ...
Stored in files or databases, both within the
browser (locally) or on a server (remotely).

A useful framework for thinking about state...
(what goes into each category depends on the application)

Persistent state

"Stuff that you lose if the hard drive breaks down."
Account information, settings, "content", ...
Stored in files or databases, both within the
browser (locally) or on a server (remotely).

Element state
"what the UI looks like right now"

Session state
"what the user is doing"

Persistent state
"what the user has saved"

Part 4: Client vs.
Server

Client-side

rendering

Server-side
rendering

Not rendering in the GPU sense, but
"where is state turned into HTML".

Client-side

rendering

Server-side
rendering

Not rendering in the GPU sense, but
"where is state turned into HTML".

We started
here

Client-side

rendering

Server-side
rendering

Not rendering in the GPU sense, but
"where is state turned into HTML".

We started
here

Then everyone
wanted to do this

Client-side

rendering

Server-side
rendering

Not rendering in the GPU sense, but
"where is state turned into HTML".

We started
here

Then everyone
wanted to do this

And now we are
somewhere in

between

Back-end (server)Front-end (client)

UI Element
hierarchy

Session State

Persistent State

Server-side rendering

Back-end (server)Front-end (client)

UI Element
hierarchy

Session State

Persistent State

User
request

Server-side rendering

Back-end (server)Front-end (client)

UI Element
hierarchy

Session State

Persistent State

User
request

HTML
Response

Server-side rendering

Back-end (server)Front-end (client)

UI Element
hierarchy

Session State

Persistent State

User
request

Updated UI
hierarchy HTML

Response

Server-side rendering

Back-end (server)Front-end (client)

UI Element
hierarchy

Session State

Persistent State

User
request

Updated UI
hierarchy HTML

Response

Server-side rendering

Element state is still managed by the client and can be non-trivial, so
the client is not entirely state-less. But for the most part, client is not

meaningfully changing the UI hierarchy.

Back-end (server)

Front-end (client)

UI Element
hierarchy Session State

Persistent State

Client-side rendering

Back-end (server)

Front-end (client)

UI Element
hierarchy Session State

Persistent State

Client-side rendering

Back-end (server)

Front-end (client)

UI Element
hierarchy Session State

Persistent State

Client-side rendering

API calls
(REST, Graph QL, etc.)

Back-end (server)

Front-end (client)

UI Element
hierarchy Session State

Persistent State

Client-side rendering

API calls
(REST, Graph QL, etc.)

Client is responsible for updating the UI hierarchy based on both the local state and
the data received from the server. Server's only responsibility is serving and storing

data. (Less common, but client can also store some of the persistent state)

Which is "better"?

Which is "better"?
Any sufficiently large project will usually mix both, at
least to some extent.

Which is "better"?
Any sufficiently large project will usually mix both, at
least to some extent.
Server first: you have a lot of state that needs to be
precisely synchronized across many users, the UI does
not need too much interactivity (request-response)...

More centralized: the response is always what's in the database.

Less work for clients, no need for business logic written in JavaScript.

More bandwidth (sometimes, depends), more compute.

Which is "better"?
Any sufficiently large project will usually mix both, at
least to some extent.
Server first: you have a lot of state that needs to be
precisely synchronized across many users, the UI does
not need too much interactivity (request-response)...

More centralized: the response is always what's in the database.

Less work for clients, no need for business logic written in JavaScript.

More bandwidth (sometimes, depends), more compute.

Client first: More complex and responsive interaction
patterns, reduced server costs, modular (multiple
clients, one API)...

Can have offline or other "native" features.

More logic (generally more complex UIs, but also logic for retrieving and

sending data, caching, etc.).

Part 5: Managing
state

Model View Controller

Model

View Controller

Model View Controller

Model

View Controller

sends input

Model View Controller

Model

View Controller

sends input

manipulates

Model View Controller

Model

View Controller

sends input

manipulatesupdates

Model View Controller

Model

View Controller

sends input

(sometimes)
updates

manipulatesupdates

Model View Controller

Model

View Controller

sends input

(sometimes)
updates

manipulatesupdates

Element
state

Model View Controller

Model

View Controller

sends input

(sometimes)
updates

manipulatesupdates

"App logic"Element
state

Model View Controller

Model

View Controller

sends input

(sometimes)
updates

manipulatesupdates

Session State

"App logic"Element
state

Persistent State

Model View Controller

Model View Controller

Multiple types of each component can interact
together (e.g. one view per "entity" in a database, one controller per

business process, and one view per page).

Model View Controller

Multiple types of each component can interact
together (e.g. one view per "entity" in a database, one controller per

business process, and one view per page).
Views can be often relatively large (e.g. a whole page)
and relatively "active" in that they generate the
complete Element hierarchy for every state change.
Example: A HTML template that is filled with data.

Model View Controller

Multiple types of each component can interact
together (e.g. one view per "entity" in a database, one controller per

business process, and one view per page).
Views can be often relatively large (e.g. a whole page)
and relatively "active" in that they generate the
complete Element hierarchy for every state change.
Example: A HTML template that is filled with data.

Model is relatively "passive": it ensures data
validation, integrity and persistence.

Model View Controller

Multiple types of each component can interact
together (e.g. one view per "entity" in a database, one controller per

business process, and one view per page).
Views can be often relatively large (e.g. a whole page)
and relatively "active" in that they generate the
complete Element hierarchy for every state change.
Example: A HTML template that is filled with data.

Model is relatively "passive": it ensures data
validation, integrity and persistence.
Controller performs updates based on UI events.

Model View Controller

Multiple types of each component can interact
together (e.g. one view per "entity" in a database, one controller per

business process, and one view per page).
Views can be often relatively large (e.g. a whole page)
and relatively "active" in that they generate the
complete Element hierarchy for every state change.
Example: A HTML template that is filled with data.

Model is relatively "passive": it ensures data
validation, integrity and persistence.
Controller performs updates based on UI events.

But where does this "live" in a Web app?

MVC, server-side rendering

Model

View Controller
UI Element
hierarchy

Client

Server

MVC, server-side rendering

Model

View Controller
UI Element
hierarchy

Client

Server

User
request

MVC, server-side rendering

Model

View Controller
UI Element
hierarchy

Client

Server

User
request

HTML
Response

MVC, server-side rendering

Model

View Controller
UI Element
hierarchy

Client

Server

User
request

HTML
Response

Server-first frameworks like ASP.NET (C#), Spring
(Java), Django (Python), Rails (Ruby), Laravel (PHP)

are usually "MVC-like".

Model-View-Template?

Model

Template View/Controller
UI Element
hierarchy

Client

Server

User
request

HTML
Response

"MVC-like": Other minor interpretations of
what View and Controller stand for.

MVC, client-side rendering

Model

View Controller

Client Server

Not that common... Angluar (JavaScript;
mostly older versions).

MVC, client-side rendering

Model

View Controller

Client

UI Element
hierarchy

Server

Not that common... Angluar (JavaScript;
mostly older versions).

MVC, client-side rendering

Model

View Controller

Client

UI Element
hierarchy

Server

API calls
(REST, etc.)

Not that common... Angluar (JavaScript;
mostly older versions).

Model View Presenter

View

Presenter

Model

Model View Presenter

View

Presenter

Model

Events

Model View Presenter

View

Presenter

Model

Updates

Events

Model View Presenter

View

Presenter

Model

Updates

Events

Events

Model View Presenter

View

Presenter

Model

Updates

Updates Events

Events

Model View Presenter

View

Presenter

Element
state

Model

Updates

Updates Events

Events

Model View Presenter

View

Presenter"App logic"

Element
state

Model

Updates

Updates Events

Events

Model View Presenter

View

Presenter

Session State

"App logic"

Element
state

Persistent State
Model

Updates

Updates Events

Events

Model View Presenter

Model View Presenter

Removes the ambiguity of who updates the View.

Model View Presenter

Removes the ambiguity of who updates the View.
The View is completely passive, all updates are done
by the Presenter.

Model View Presenter

Removes the ambiguity of who updates the View.
The View is completely passive, all updates are done
by the Presenter.
Presenters tend to be more tightly integrated with
the View, while Controllers tend to be more tied to
the Model. Often leads to smaller/more granular
Presenters in MVP vs. MVC.

Model View Presenter

Removes the ambiguity of who updates the View.
The View is completely passive, all updates are done
by the Presenter.
Presenters tend to be more tightly integrated with
the View, while Controllers tend to be more tied to
the Model. Often leads to smaller/more granular
Presenters in MVP vs. MVC.
Most frameworks mentioned previously are primarily
classified as MVP now, but the distinction is often
slightly arbitrary (one can implement both).

Model View Presenter

Removes the ambiguity of who updates the View.
The View is completely passive, all updates are done
by the Presenter.
Presenters tend to be more tightly integrated with
the View, while Controllers tend to be more tied to
the Model. Often leads to smaller/more granular
Presenters in MVP vs. MVC.
Most frameworks mentioned previously are primarily
classified as MVP now, but the distinction is often
slightly arbitrary (one can implement both).
Same considerations for server-side vs client-side
rendering apply.

Model View ViewModel (MVVM)

View

ViewModel

Session State

"App logic"

Element
state

Persistent State
Model

Updates

Data
binding

Events

Model View ViewModel

Model View ViewModel
Very similar to MVP, but the relationship between the
View and the ViewModel is declarative, while the
relationship between the Presenter and the View is
imperative.

Presenter listens to the events emitted by the View and manipulates it

accordingly.

ViewModel does not interact with the View directly, but observes the

declared properties through a special data binding layer.

Model View ViewModel
Very similar to MVP, but the relationship between the
View and the ViewModel is declarative, while the
relationship between the Presenter and the View is
imperative.

Presenter listens to the events emitted by the View and manipulates it

accordingly.

ViewModel does not interact with the View directly, but observes the

declared properties through a special data binding layer.

More robust to changes in the View hierarchy.

Model View ViewModel
Very similar to MVP, but the relationship between the
View and the ViewModel is declarative, while the
relationship between the Presenter and the View is
imperative.

Presenter listens to the events emitted by the View and manipulates it

accordingly.

ViewModel does not interact with the View directly, but observes the

declared properties through a special data binding layer.

More robust to changes in the View hierarchy.
Less verbose, data binding eliminates a lot of
"boilerplate" code related to events.

Model View ViewModel
Very similar to MVP, but the relationship between the
View and the ViewModel is declarative, while the
relationship between the Presenter and the View is
imperative.

Presenter listens to the events emitted by the View and manipulates it

accordingly.

ViewModel does not interact with the View directly, but observes the

declared properties through a special data binding layer.

More robust to changes in the View hierarchy.
Less verbose, data binding eliminates a lot of
"boilerplate" code related to events.
Most modern JavaScript frameworks (React, Svelte,
Vue.js, ...) could be classified as MVVM (but most have other

mechanisms, on top of MVVM, e.g. templates, that make this less clear)

We'll come back to declarative vs.
imperative UI in the next lecture...

Part 7: Component-
based design

Problem:
The UI Element hierarchy on its own is
often quite hard to manage, even if
we only consider "Element state" that
has nothing to do with business logic.
To achieve a specific style, we may
need to combine a lot of Elements
that need we to coordinate and thus
expose unnecessary "implementation
details".

UI Components

UI Components

Encapsulates a complex, but self-contained UI
Element hierarchy, making it reusable.

UI Components

Encapsulates a complex, but self-contained UI
Element hierarchy, making it reusable.
"From the outside", a Component appears as just
another Element.

UI Components

Encapsulates a complex, but self-contained UI
Element hierarchy, making it reusable.
"From the outside", a Component appears as just
another Element.
A well-designed Component encapsulates the state of
multiple Elements that would otherwise have to
interact with each other and share state.

Architecturally, this allows us to convert some of the "Session-like" state

into pure Element state.

UI Components

Encapsulates a complex, but self-contained UI
Element hierarchy, making it reusable.
"From the outside", a Component appears as just
another Element.
A well-designed Component encapsulates the state of
multiple Elements that would otherwise have to
interact with each other and share state.

Architecturally, this allows us to convert some of the "Session-like" state

into pure Element state.

Was hugely popularized by React (now used by most JS
frameworks), but similar ideas have existed outside of
Web development before.

Panel A

Taskbar

Window

Button A

TabComponent

Panel B

Panel C

Button B Button C

WebComponents

https://developer.mozilla.org/en-US/docs/Web/API/Web_components/

https://developer.mozilla.org/en-US/docs/Web/API/Web_components/Using_custom_elements

WebComponents

https://developer.mozilla.org/en-US/docs/Web/API/Web_components/

A Web standard for implementing UI Components.
Came after React and similar frameworks, but provides tighter

integration with browsers (e.g. CSS and Event encapsulation).

You can mix WebComponents and existing JS frameworks, since each

Component is just a standard HTML Element.

https://developer.mozilla.org/en-US/docs/Web/API/Web_components/Using_custom_elements

WebComponents

https://developer.mozilla.org/en-US/docs/Web/API/Web_components/

A Web standard for implementing UI Components.
Came after React and similar frameworks, but provides tighter

integration with browsers (e.g. CSS and Event encapsulation).

You can mix WebComponents and existing JS frameworks, since each

Component is just a standard HTML Element.

 Each Component behaves just like an ordinary HTML
Element with a custom tag name.

https://developer.mozilla.org/en-US/docs/Web/API/Web_components/Using_custom_elements

WebComponents

https://developer.mozilla.org/en-US/docs/Web/API/Web_components/

A Web standard for implementing UI Components.
Came after React and similar frameworks, but provides tighter

integration with browsers (e.g. CSS and Event encapsulation).

You can mix WebComponents and existing JS frameworks, since each

Component is just a standard HTML Element.

 Each Component behaves just like an ordinary HTML
Element with a custom tag name.
A Component can have a shadow DOM, i.e. a hierarchy
of HTML elements that is not accessible outside of the
component.

https://developer.mozilla.org/en-US/docs/Web/API/Web_components/Using_custom_elements

WebComponents

https://developer.mozilla.org/en-US/docs/Web/API/Web_components/

A Web standard for implementing UI Components.
Came after React and similar frameworks, but provides tighter

integration with browsers (e.g. CSS and Event encapsulation).

You can mix WebComponents and existing JS frameworks, since each

Component is just a standard HTML Element.

 Each Component behaves just like an ordinary HTML
Element with a custom tag name.
A Component can have a shadow DOM, i.e. a hierarchy
of HTML elements that is not accessible outside of the
component.
The standard adds a <template> tag to make writing
reusable HTML markup easier.

https://developer.mozilla.org/en-US/docs/Web/API/Web_components/Using_custom_elements

WebComponents

WebComponents

A component is either autonomous, or it extends an
existing HTML element.

WebComponents

A component is either autonomous, or it extends an
existing HTML element.
Tag names must contain a "-" to differentiate them
from current (and future) HTML elements.

WebComponents

A component is either autonomous, or it extends an
existing HTML element.
Tag names must contain a "-" to differentiate them
from current (and future) HTML elements.

// Autonomous Web Component
class TabBar extends HTMLElement {
 constructor() {
 super();
 }
 // Element functionality written in here
}

customElements.define("tab-bar", TabBar);

// Usage in HTML:
// <tab-bar>Some content</tab-bar>

1
2
3
4
5
6
7
8
9

10
11
12

WebComponents

Components have lifecycle events: connected,
adopted, disconnected.

WebComponents

Components have lifecycle events: connected,
adopted, disconnected.

// Autonomous Web Component
class TabBar extends HTMLElement {
 constructor() {
 super();
 }

 connectedCallback() {
 console.log("Custom element added to page.");
 }

 disconnectedCallback() {
 console.log("Custom element removed from page.");
 }

 adoptedCallback() {
 console.log("Custom element moved to new page.");
 }

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

WebComponents
A shadow DOM is used to attach child elements that
should not be discoverable through the normal DOM.

They won't appear as child Elements nor can they be discovered using

querySelector or similar.

If mode: "open" is set, the shadow DOM is accessible through

element.shadowRoot.

WebComponents
A shadow DOM is used to attach child elements that
should not be discoverable through the normal DOM.

They won't appear as child Elements nor can they be discovered using

querySelector or similar.

If mode: "open" is set, the shadow DOM is accessible through

element.shadowRoot.

// Autonomous Web Component
class TabBar extends HTMLElement {
 static observedAttributes = ["color", "size"];

 connectedCallback() {
 // Create a shadow root
 const shadow = this.attachShadow({ mode: "open" });

 // Create internal span tag
 const wrapper = document.createElement("span");
 wrapper.setAttribute("class", "wrapper");
 wrapper.innerHTML = "Shadow DOM content";

 shadow.appendChild(wrapper);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

WebComponents
Templates provide a friendlier mechanism for
declaring shadow DOM elements

WebComponents
Templates provide a friendlier mechanism for
declaring shadow DOM elements

// Declared somewhere in our HTML:
<template id="tab-bar">
 <div id="tab-buttons"></div>
 <div id="tab-panels">
 <slot>Child elements will appear here.</slot>
 </div>
</template>

class TabBar extends HTMLElement {
 constructor() {
 super();
 let template = document.getElementById("tab-bar");
 let templateContent = template.content;

 const shadowRoot = this.attachShadow({ mode: "open" });
 shadowRoot.appendChild(templateContent.cloneNode(true));
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

WebComponents
Child elements can be placed depending on slot
name.

WebComponents
Child elements can be placed depending on slot
name.

// Declared somewhere in our HTML:
<template id="tab-bar">
 <div id="tab-buttons">
 <slot name="header"></slot>
 </div>
 <div id="tab-panels">
 <slot>Child elements will appear here.</slot>
 </div>
</template>

// Usage with tab-bar:
<tab-bar>
 Some header content.
 <div>Other elements go to the default slot.</div>
</tab-bar>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

WebComponents
Same as JavaScript, the shadow DOM is also
encapsulated from any "outside" CSS rules.
We need to either add our own styles
programmatically, or add a <style> (or <link>)
directly into the shadow DOM.

WebComponents
Same as JavaScript, the shadow DOM is also
encapsulated from any "outside" CSS rules.
We need to either add our own styles
programmatically, or add a <style> (or <link>)
directly into the shadow DOM.

<template id="tab-bar">
 <style>
 .tab-buttons {
 margin: 0 auto;
 }
 </style>
 <div id="tab-buttons">
 <slot name="header"></slot>
 </div>
 <div id="tab-panels">
 <slot>Child elements will appear here.</slot>
 </div>
</template>

1
2
3
4
5
6
7
8
9

10
11
12
13
14

More about WebComponents (and
components in general) on the next

seminar...

Takeaways
User interfaces are represented as tree hierarchies of
elements (widgets, views, ...).
Interacting with elements triggers events.
Events update application state. Managing state is
one of the fundamental roles of UI frameworks.
Very broadly, state can be understood as element
state, session state and persistent state.
Server-side vs. client-side rendering: where is the
state converted into the UI hierarchy?
MVC, MVP, MVVM: basic design patterns for
separating state, logic and user interface.
Component-based design: defining new UI elements
that encapsulate non-trivial behavior.
WebComponents, a modern standard for defining UI
components in the browser.

