
PV252 Intro

Welcome!

Hi! I’m Sam, and I’m new(-ish) here.
I have worked for ~10 years as a freelance Android/Web/iOS developer,

now I’m an assistant professor for software engineering.

You’ll also meet Maria (Maya) Šviriková.
Senior Interaction Designer @ RedHat, will cover UX research,

prototyping and testing.

The course is in English.
We can speak Czech if needed, but English is recommended both in the

classroom and for the assignments/project.

Course under construction

This is the first run of this
course.
There will be problems.
Please communicate issues as
soon as possible so that we
can fix them.

Anonymous feedback:
https://forms.gle/9JCoRY2Edo21syeVA

What even is "web development"

You should have basic knowledge of
HTML/CSS/JavaScript (this is not an ”introductory”
course in that regard).

Still, some content may be redundant for you: students come from

diverse backgrounds.

Web development is a vast and evolving topic.

Challenge the status quo: Feel free to suggest
approaches, architectures and technologies that you
are interested in.

https://www.youtube.com/watch?v=aWfYxg-Ypm4

https://www.youtube.com/watch?v=aWfYxg-Ypm4

What even is "web development"

The goal isn’t to teach you a specific technology or a
framework (React, Angular, Vue, Svelte, Next.js, etc.).

“Frameworks they come, they go. Saturday through Sunday Monday…” –

Eminem or something

Learn how to think about (web) user interface
architecture: recognize what tools and resources you
need depending on the scope of your project.

We still need to teach something though…

Course evaluation

Seminar reviews/retrospectives
A group project (2 students)

Seminar retrospective

Each seminar will have a small final assignment that you
should complete until the next seminar.* *(well-justified

extensions possible)

Once finished, you’ll put a link to your solution in the
discussion forum, and another student* should write a
review for it. *(reviewers are selected as first-come-first-serve, but it should

not be your project partner)

In the end, you should have your own solution and a
review of someone else’s solution.
Be polite and constructive, but thorough.

Virtually no one works alone: communicating clearly about the pros/cons of

your design and the design of someone else is often more important than

“coding skills”.

https://is.muni.cz/auth/discussion/predmetove/fi/podzim2024/PV252/seminar_1/

https://is.muni.cz/auth/discussion/predmetove/fi/podzim2024/PV252/seminar_1/

Project

Projects are completed by pairs of students.
Projects are presented at the last lecture of the
semester.
Each team has the same core assignment, but
personalized goals will be added during the semester.
There will be room to consult your progress during
the semester, but feel free to ask questions using the
discussion forum as well.
You are free to use technologies that you prefer (i.e. no
need to use X if X was shown at a seminar), but don't
overcomplicate things :)

Project

Research, design and implement the user interface
for ordering meals through a food delivery service.
Focused on a particular demographic group (more
info during the UX lectures).
You can ignore components like user accounts,
payment options, etc. The goal is to focus on product
discoverability and order creation.

A user should be able to come to your page, somehow discover

meals/restaurants (search/list/recommendations/all of the above?)

and submit an order for a meal/meals.

A backend API with fake restaurants will be published
this week, but you can add extra items/dimensions if
your use case needs it.

PV252 Seminar 1
(Tooling)

JavaScript, HTML and CSS are not "compiled", yet most
projects use some automated tooling to generate the
content that is served to users. Why?

(For now, we are assuming the server is simply sending HTML files to

users. We'll come be to server-side rendering later)

Compatibility: Not all browsers support all features.
Your code may need to be transpiled to run on older devices.

 Performance: Simplify and minify code.
Smaller codebase consumes less network bandwidth and (generally)

executes faster.

Safety: JavaScript is very flexible, but provides a lot of
room for small mistakes.

Type safety, linters and testing help prevent this.

npm

Package Manager (npm)

Stores dependencies and package metadata in the
package.json file.

Many other tools support the package.json format.

npm isn't doing anything "special" beyond copying all
the dependencies into node_modules.

You can use npm to manage dependencies for other languages.

Most packages are just code: you can edit your dependencies (please

don't do this outside of troubleshooting or mischief).

npm follows semantic versioning.

Tricky transitive dependencies: A requires C=“1.12”, but B requires

C=“2.0”… Now what?

https://docs.npmjs.com/cli/v10/commands/npm

 https://docs.npmjs.com/cli/v10/configuring-npm/package-json

https://docs.npmjs.com/about-semantic-versioning

https://docs.npmjs.com/cli/v10/commands/npm
http://https//docs.npmjs.com/cli/v10/configuring-npm/package-json
https://docs.npmjs.com/about-semantic-versioning

Package Manager (npm)

package-lock.json stores exact versions of
dependencies from last successful install.

Storing it in version control ensures reproducibility: you can revert to last

known "good dependencies" if new versions don't work.

You can define custom commands ("scripts") in
package.json.

 Call other tools that actually build your project.

Download everything declared in package.json into node_modules
npm install
Add dependency to package.json
npm install my_fancy_library
Add development dependency to package.json
npm install --save-dev my_fancy_build_tool
Find latest (compatible) versions of dependencies and save them
npm update --save
Execute packages that support it
npx my_fancy_build_tool --fancy-option "fancy"
Execute a custom script defined in package.json
npm run run-fancy-tool-with-my-options

1
2
3
4
5
6
7
8
9

10
11
12

webpack

webpack is bundler: it resolves imports in your code
(both to other code and to assets) and packages them
into files that can be deployed on a webserver.

Many bundlers exist (bun, vite, ...).

webpack.config.js: Exports a single object with all
the settings and actions that will be applied.

It's actually JavaScript: you can run code and have logic in here.

 Resources are processed by loaders: image loader,
css loader, html loader, ...

 Most loaders return the content (e.g. html) or a URL in the final bundle.

https://webpack.js.org/concepts/

Bundler (webpack)

Build all entry points
npx webpack --mode=development
npx webpack --mode=production
Start a live server (requires webpack-dev-server)
npx webpack serve --open --mode=development

1
2
3
4
5

https://webpack.js.org/concepts/

Entry point: A separate "bundle", typically one fully
independent page of your application.

Bundler (webpack)

entry: {
 site_a: { import: ["./src/site_a.ts", "uikit"] },
 site_b: { import: ["./src/site_b.ts", "uikit"] },
 main: {
 dependOn: ["site_a", "site_b"],
 import: ["./src/index.ts", "uikit"],
 },
}

1
2
3
4
5
6
7
8

Rule: Matches a particular content type (typically by
file extension) and specifies which loader (or loaders)
should be applied.

Bundler (webpack)

module: {
 rules: [
 {
 test: /\.(png|svg|jpg|jpeg|gif)$/i,
 type: "asset/resource",
 },
 {
 test: /\.html$/i,
 loader: "html-loader",
 },
 {
 test: /\.less$/i,
 // Compiles Less to CSS
 use: ["style-loader", "css-loader", "less-loader"],
 },
],
},

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Plugin: Provides extra functionality. Here,
HtmlWebpackPlugin is used to generate a .html file
for each entry point using a .ejs template.

Bundler (webpack)

plugins: [
 new HtmlWebpackPlugin({
 title: "PV252 Example project",
 chunks: ["main", "site_a", "site_b"],
 filename: "index.html",
 template: "./src/html/index.template.ejs",
 }),
 new HtmlWebpackPlugin({
 title: "Site A",
 chunks: ["site_a"],
 filename: "site_a.html",
 template: "./src/html/site_a.template.ejs",
 }),
 new HtmlWebpackPlugin({
 title: "Site B",
 chunks: ["site_b"],
 filename: "site_b.html",
 template: "./src/html/site_b.template.ejs",
 }),
],

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Output: Describes where and how the bundles and
assets should be printed.

A good practice is to use content hash in the file name: if the browser

has a previous version of your site saved in the cache, it will know based

on the file name when the content changes.

Bundler (webpack)

output: {
 clean: true,
 filename: "[name].[hash].bundle.js",
 path: path.resolve(__dirname, "dist"),
},

1
2
3
4
5

babel

Transforms "modern" JavaScript into JavaScript that is
compatible with older browsers.
Not that critical, but still useful in some cases (see later).

With webpack, we can use babel-loader.
Configuration in .babelrc (mostly declaring plugins:

optimization, obfuscation, ...).

https://babeljs.io/

"Compiler" (babel)

rules: [
 {
 test: /\.(js|ts|jsx|tsx)$/,
 use: {
 loader: "babel-loader",
 options: {
 presets: ["@babel/preset-env"],
 },
 },
 exclude: /node_modules/,
 },
]

1
2
3
4
5
6
7
8
9

10
11
12

https://babeljs.io/

typescript (tsc)

Typed extension of JavaScript
Gradual typing: Not all parts of your application need to be typed

Comes with its own compiler (tsc; ts-
loader in webpack), but is also babel support.

webpack build does not check types by default!

Configuration in tsconfig.json
What to include/exclude and how strict the type checking should be.

 Some more advanced stuff will come later, but going too deep into

TypeScript itself is beyond the scope of this course :(

https://www.typescriptlang.org/

TypeScript (tsc)

function sum(a: number, b: number): number {
 return a + b;
}

1
2
3

https://www.typescriptlang.org/

LESS
(or SASS, etc.)

Extensions of CSS that are compiled into CSS.
(Global) variables and basic calculations, hierarchical
styles, mix-ins, inheritance, ...

Hierarchical styles are now part of CSS too!

webpack loaders (less-loader, sass-loader)

https://lesscss.org/
https://sass-lang.com/

Rich CSS (LESS, SASS)

@primary: green;
@secondary: blue;

.section {
 color: @primary;

 .element {
 color: @secondary;
 }
}

1
2
3
4
5
6
7
8
9

10

https://lesscss.org/#
https://sass-lang.com/

Simple... right?

Developer
Hygiene

How often do you
brush your teeth?

prettier

Automatic code formatting: Just use it. No excuses :)
Essentially no downsides or overhead, and your code will be easier to

read by everyone, not just you

Configuration in .prettierrc (change the default
styling choices)

https://prettier.io/

Code formatting (prettier)

Format all files in ./src
npx prettier ./src --write
Check that all files in ./src are formatted correctly
npx prettier ./src --check

1
2
3
4

https://prettier.io/

eslint

Detect common issues in JavaScript (and TypeScript)
Also almost no reason not to use it. Might need some time investment

to learn the recommended constructs and patterns, but will almost

certainly save you from a lot of common bugs

Configuration in .eslint.config.js (turn rules on/off,

include/exclude files, etc.)

https://eslint.org/

Linter (eslint)

Check files in the ./src folder
npx eslint ./src

1
2

https://eslint.org/

jest

Tests are usually placed in *.test.js files (but other options

are supported).

Tests assert facts using expect + matcher (toBe,
toEqual, toBeNull, toBeGreaterThan, ...).

Why matchers? Comparisons are generally tricky, and we also need a

mechanism that generates nice error messages.

https://jestjs.io/

Unit testing (jest)

This one is really simple
npx jest

1
2

import { sum } from "./some_module.ts";

test("adds 1 + 2 to equal 3", () => {
 expect(sum(1, 2)).toBe(3);
});

1
2
3
4
5

https://jestjs.io/

User interfaces are notoriously

hard to unit test

Usually, unit testing is mostly reserved
for the "business logic" in your code since

they don't run in the browser

playwright

Runs in the actual browser (you can even test multiple browsers).

Locators: page.getByRole (based on accessibility attributes),
page.getByText, ...

page.locator("css-selector") exists, but is discouraged.

Navigation: page.goto(address), el.click(), ...
Tests can be generated from "recordings".

https://playwright.dev/

End-to-end/interaction tests (playwright)

Run all the tests in the background
npx playwright test
Run tests with interactive UI
npx playwright test --ui
Show a visual report with test results
npx playwright show-report

1
2
3
4
5
6

test("profile-picture-visible", async ({ page }) => {
 await page.goto("/");
 await expect(page.getByAltText("Profile picture")).toBeInViewport();
});

1
2
3
4

https://playwright.dev/

istanbul (+ nyc)

Who watches the watchmen?
Code coverage isn't perfect, but gives us some insight
into what is tested and what isn't
For unit tests, code coverage is relatively easy (jest
--coverage)
For or E2E tests, TypeScript, etc., things get tricky...
Babel for the rescue! (istanbul plugin)

https://istanbul.js.org/

Code coverage (istanbul + nyc)

Run executable JS module with coverage collection
npx nyc some_npm_module
Generate JSON coverage report from collected data
npx nyc report --reporter=json
Combine coverage data from multiple runs (e.g. unit and e2e tests)
npx istanbul-merge --out combined.json partial_a.json partial_b.json
Generage a HTML report from JSON reports
npx istanbul --include combine.json report html

1
2
3
4
5
6
7
8

https://istanbul.js.org/

CI...

Fork the example project on Github.

Make a commit that causes the CI code formatting
check to fail and then fix it.
Make a commit that causes the CI type checking to fail
and then fix it.
Make a commit that causes the CI unit tests to fail and
then fix it.
Make a commit that causes the CI end-to-end tests to
fail and then fix it.
Add new unit/e2e tests to improve code coverage.
Read more about testing with Playwright and create
4-5 meaningful tests for a website you visit regularly.

(These can be placed in the example project too)

https://github.com/daemontus/pv252-project-template

Tasks for today

https://github.com/daemontus/pv252-project-template

