
PV252 Seminar 2
Low-level design of UI Elements

How many elements is too
many elements?

How many elements is too
many elements?

Only RAM is the limit (in theory).

How many elements is too
many elements?

Only RAM is the limit (in theory).
In practice, many performance linters
already consider 800-1400 elements a
problem.

How many elements is too
many elements?

Only RAM is the limit (in theory).
In practice, many performance linters
already consider 800-1400 elements a
problem.
What's going to happen if we use too
many elements?

Examples of websites that
display a lot of (visually

similar) data?

Examples of websites that
display a lot of (visually

similar) data?

A few kB of data can generate thousands of UI
elements (even small dataset can require a lot of UI).

Examples of websites that
display a lot of (visually

similar) data?

A few kB of data can generate thousands of UI
elements (even small dataset can require a lot of UI).
Social media timelines.
Lists of products (eshops).

Examples of websites that
display a lot of (visually

similar) data?

A few kB of data can generate thousands of UI
elements (even small dataset can require a lot of UI).
Social media timelines.
Lists of products (eshops).
Photo reels (Google Photos).

Examples of websites that
display a lot of (visually

similar) data?

A few kB of data can generate thousands of UI
elements (even small dataset can require a lot of UI).
Social media timelines.
Lists of products (eshops).
Photo reels (Google Photos).
Tables and documents (Google Sheets/Docs/Slides).

Examples of websites that
display a lot of (visually

similar) data?

A few kB of data can generate thousands of UI
elements (even small dataset can require a lot of UI).
Social media timelines.
Lists of products (eshops).
Photo reels (Google Photos).
Tables and documents (Google Sheets/Docs/Slides).
Large folder structures (Github; or file content).

How do you deal with too
many UI elements?

How do you deal with too
many UI elements?

Pagination or hierarchical navigation
Works, but can be "immersion breaking" for users.

Confusing or impractical for "continuous" data structures, like tables.

How do you deal with too
many UI elements?

Pagination or hierarchical navigation
Works, but can be "immersion breaking" for users.

Confusing or impractical for "continuous" data structures, like tables.

 Lazy List/Grid/Table
Also called "windowing", "virtual lists", etc.

Item A

Item B

Item C

Item D

Visible area

"Normal" list

Item A

Item B

Item C

Item D

Visible area

"Normal" list

Item A

Item B

Item C

Item D

Visible area

"Virtual" list

Item A

Item B

Item C

Item D

Visible area

"Virtual" list

Only data needed to display
items C and D is kept. The UI

elements are not present.

Item A

Item B

Item C

Item D Visible area

"Virtual" list

Item A

Item B

Item C

Item D Visible area

"Virtual" list

When visible area moves, the
data is used to "render" new

UI elements and the
unnecessary UI is removed.

How do you deal with too
many UI elements?

Pagination or hierarchical navigation
Works, but can be "immersion breaking" for users.

Confusing for "continuous" data structures, like tables.

How do you deal with too
many UI elements?

Pagination or hierarchical navigation
Works, but can be "immersion breaking" for users.

Confusing for "continuous" data structures, like tables.

 Lazy List/Grid/Table
Also called "windowing", "virtual lists", etc.

 Harder to implement ("virtual items" usually need to be the same type).

Some unexpected behavior with browser features (e.g. ctrl+F search, CSS

selectors like ::last-child).

Task for today

Implement a "lazy" (virtual) list of famous people from
the example as a WebComponent.
We are not looking for a perfect solution. Assume
that:

The height of the list component itself is fixed.

Items use the same UI hierarchy with (roughly) known height.

Elements won't be resized or moved within DOM, list items won't be

added or removed on the fly.

No need to over-optimize (e.g. if the visible area meaningfully changes,

you can recompute the HTML for the whole area instead of

removing/adding elements one by one, etc.).

The user can only interact with the list through "normal" scrolling, not

scroll bars or by jumping to a specific item.

(if you want to implement any of these extra points, feel free to, but they

are not required)

Task for today

What you need to focus on:
Only a fixed number of items is present in the DOM at any moment.

The component responds to scroll events by adding/removing list items.

List items must not be in the Shadow DOM so that they can be accessed

and styled from the outside of the component.

A "passable" solution can be implemented with <200 lines of code within the

provided template. Feel free to make your solution as feature-complete as

you want, but the most basic implementation does not need to be overly

complicated.

How to get there

(this is a hint, you don't have to follow it exactly)

Make sure you know how to build a naive list first.
Make the list show rendered items from the given array such that they

are in the web component, but not part of the shadow DOM.

Make sure you can show the first item and
manipulate its position based on scroll events.

For example, first check that you can make the item stay on screen while

the user is scrolling ("simulate" position: static).

Then try to adjust the position so that the item can scroll, but once it

leaves the visible area, it is repositioned to be visible again.

Still render just one item, but update the content to
match the scroll position.
Add more items to fill the visible area (here, three should be

enough, but if you want to dynamically compute the number, you can).

Item

Item

Item

Spacer
with

dynamic
height

Spacer
with

dynamic
height

A lot of ways you can "move" the
items while scrolling. One
straightforward option is to add
spacer elements (e.g. an empty
div) of fixed height, and then
update the height to move
up/down items.

Top/bottom margin is another
option. Using position:
absolute/relative with
top could also work, but special
rules for scroll-able areas apply,
so it might not be the easiest
route.

// Get up-to-date scroll position.
el.onscroll = () => { console.log(el.scrollTop) }

// If the UI in a scrollable area changes, the browser
// will automatically try to move to the portion that
// was visible before the UI changed.
const oldScroll = el.scrollTop
... update items inside el ...
el.scrollTop = oldScroll

// Get up-to-date element dimensions (element height
// is not known before it is first rendered inside the DOM).
const observer = new ResizeObserver(() => {
 console.log(el.offsetHeight)
})
observer.observe(el)

// How do I insert items into <slot>?
<my-fancy-list>
 <div class=list> // shadow DOM
 <slot></slot>
 </div>
</my-fancy-list>

const list = ... // get reference to my-fancy-list instance
// "Normal" manipulation of child elements will not affect the
// shadow DOM, but will add/remove elements from <slot> directly.
list.innerHTML = "Some content in the list."
list.appendChild(someElement)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

git checkout -b list-component --track upstream/list-component1

(if you have the repository forked on
github from previous seminar)

