
1

Let’s mix some HTML and JS together

JavaScript 
& React basics
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Agenda

History of Javascript - the old and the new

What do we need to create a web UI?

Tools and technologies

New goodies in JavaScript

Web UI key principles

React basics - props, state, component lifecycle

Project setup
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React
A JavaScript library for 
building user interfaces
Uses Shadow DOM

2006-03-22

jQuery
The most ❤ and 💩

DOM manipulation library

ES6
Big improvement to JS
Prepared for many years
Introduces a lot of new features

2013-05-29

2015-01-12

Babel
Previously known as 6t5 babel

Transpiles new JS to old one

2015-06-17

JavaScript    Dark age ended like 10 years ago…

Javascript practices - old and new

2016+

ES7 end ES next
From now on ES committee 

creates every year new 
standard

1995
Brendan Eich
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What do we need to create a web UI?
● web browser (see the page & debug)
● code editor (VS code)
● programming language (JavaScript)
● library to help us create the app (React)
● package manager (NPM) 
● transpile new code features for older web browsers (Babel)
● bundle JS in a single file (Webpack)
● deploy the app (OpenShift, Surge)
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https://en.wikipedia.org/wiki/Ajax_(programming)

Ajax (Asynchronous JavaScript and XML)

● Also known as XHR (XMLHttpRequest)

● At first used to exchange XML documents (Extensible 

Markup Language) 
● Asynchronously exchange data with server
● No longer needed to reload entire page just to get 

the data
● Need for clever way how to identify user
● Polling was used to update data on the fly

https://en.wikipedia.org/wiki/Ajax_(programming)
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Single session
● User logs in and is given a specific ID on server called session ID

● User performs asynchronous operations

● Once user is done, browser is closed and server resources are cleaned

● Resources consuming

● User has to log in every time new browser is opened (if application allows that)

● Session hijacking (no need to know the password, just listen on specific events 

and get the session ID)
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Single sign on/out
● Transfers the need of tracking the log-in state 

from server to browser
● Better user experience - no need to log in for each 

application
● Allows you to login with social media and other 

providers
● Allows user to automatically log out of all devices if 

there are some suspicions
● Uses JWT and Oauth 2
● JWT - header, pyload and signature
● Oauth 2 - protocol for authorization
● Multiple services to take care of for us

○ Keycloak, Auth0

https://www.keycloak.org/
https://auth0.com/
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Internet explorer was the master
● First there was Netscape
● Internet explorer followed and gained a lot of 

traction because they were improving browser API 
and were the leading giants

● IE used to had some quirks in order to support 
their paid customers and these changes were not 
adopted by other browsers because they were not 
standardized

● Firefox was at that time heavily improving 
standards and adopting them

● Opera and Chrome followed
● Now Chrome has the leading (63.56%) followed 

by Safari (19.85%) with IE and Edge on third place 
(5.43%)

https://www.w3counter.com/globalstats.php
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jQuery

● Easy to understand wrapper around JavaScript
● In its prime, it was the most used JavaScript library 
● People could program in jQuery, not JavaScript
● To this date, for many people it is still a go to library when they need some quick prototype 
● With the evolution of the language “$” is becoming obsolete
● And here is why:

el.classList.add('show');
el.classList.remove('hide');

.show {
  transition: opacity 400ms;
}
.hide {
  opacity: 0;

}

$(el).fadeIn();
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New vs old
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New is always better!
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Variables and their scoping - old and new
● Global - var

○ Variable leaking 
○ Variable overriding

● Local scope - let and const (new way)
○ let - can be changes, meaning its data type 

and value can be changed
○ const - can’t be changed, meaning its data 

type can’t be changed but inner value can

const myVariable = ‘hello’;

// error!

myVariable = ‘something’;

const otherVar = { foo: 

‘bar’ };

// correct!

otherVar.foo = ‘baz’;
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Callback hell
● A way how to execute some code after 

asynchronous action happened
● Chain functions together
● Choose function based on some conditions
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Callback hell
● A way how to execute some code after 

asynchronous action happened
● Chain functions together
● Choose function based on some conditions

// first we must get user by id

const hotcakes = await 

CallEndpoint('/api/getidbyusername/hotcakes' );

const followers = await CallEndpoint('/api/getfollowersbyid' );

const other = await CallEndpoint('/api/someothercall' );

const another = await CallEndpoint('/api/someothercall' );

const andOther = await CallEndpoint('/api/someothercall' );
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Transpilers

● Transpiler is a tool, that takes a code written in one language and transforms it into a 
different language (or different version in some cases)

● Due to browser backwards compatibility we can’t just use the latest features of JS. They 
would not work.

● Code has to be transformed into something browsers understand
● There are also many variations of the language that will never be supported in browsers. 

Yet we want to use them.
○ JSX
○ Typescript

● JS is becoming more and more compiled language
● Many speak of an “Age of a Transpilers”
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● Transpiler is a tool, that takes a code written in one language and transforms it into a 
different language (or different version in some cases)
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Type checkers

● Typechecker is a tool to help developers keep code stable by introducing types
● Since many languages (JavaScript included) have no types it can be hard to do complex 

features

http://drive.google.com/file/d/1srp1qFFIQw8XjQdVVGk6pbN5T-SSl4Is/view
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Type checkers - Typescript

● > TypeScript is a strongly typed programming language that builds on JavaScript, giving 

you better tooling at any scale.

● Created by Microsoft, very similar to c#

● First introduction to classes - JavaScript has no understanding of classes, even new 

classes are just syntax sugar

○ Adds option to private and public properties

● Generic types

○ Really powerful, but hard to understand

● Type checking when building your application
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JS is slowly moving towards functional programming
● With a release of ES6 (ES2015) JS specification the language drastically shifted towards 

functional programming
● Introduction of lambda functions, many many new prototype functions

○ Prototypes (Array, Object, Map, Set, ...) received a huge upgrade when it comes to natively 
supported functions which were previously only possible thanks to certain libraries. (Map, 
Reduce, Entries, ...)

● There are whole frameworks based on FP and shifting away from OOP
● There are also many JS extensions which are based entirely upon FP

○ RxJS, CircleJS, LodashFP, Ramda
● Can fully replace Objects with closures and composition

Although there are some who don’t like this that much

https://rxjs.dev/
https://github.com/cyclejs/cyclejs
https://lodash.com/
https://ramdajs.com/
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https://www.ecma-international.org/

Improved Browser API
● Browsers (not IE) have transformed significantly in a past few 

years
● Most of the are actually following and keeping up with ECMA 

(Javascript) specifications
● Many JS utility libraries are becoming obsolete because 

browsers support is getting better and better
● Browsers support I18N (Internationalization and localization) 

natively
● And many more

○ Browser plugins
○ Security
○ Performance
○ Debugging tools

https://www.ecma-international.org/
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Build tools - module based codebase
● Script tags are the history, now you need only one and the rest will be loaded 

on demand
● Move from CommonJS to MJS 

○ You can now actually reference a different module from JS file in a 
browser?!. (import/export)

● We no longer need global variables everywhere
● JS is sadly becoming compiled language (Thanks IE)
● Thanks to modules, code splitting is becoming really simple and easy

○ Scripts are no longer loaded all at once
○ They can be loaded on demand
○ Huge performance and also UX improvements
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Dependency headache
● Thanks to the explosion of JS in recent years, your bundles will have 

thousands of external dependencies
● Libraries depend on libraries which depend on libraries of libraries
● After installing React, ReactDOM and Patternfly you will have over 100 

external dependencies
● At larger scale, any breaking change to a single dependency may cause the 

whole project collapse and requires extreme caution
● Any upgrade must be considered and planned and will likely require tons of 

refactoring
● YOU DON’T NEED LIBRARY FOR EVERYTHING
● Some libraries has become so popular that everybody uses them and you 

can end up with multiple copies of the same code but in different versions
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NPM vs Yarn

NPM

● Created by Google

● Included by default with node

● Finally supports monorepo 

(from version 7)

● Hosts over 1.3 mil of packages

● Option to audit your packages

Yarn

● Created by Facebook

● First introduction of lock file

● First introduction of monorepo

● Mirror of all npm packages

● Yarn 2.0 adds plg’n’play - option 

to minimize download of 

packages on install
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Web UI key principles   (React based)

1. Component-Based Approach
● UI is divided into reusable pieces of code called 

components (like a LEGO)

● Components can have a hierarchy, allowing the 
creation of complex user interfaces from simple parts.

2. JSX (JavaScript XML)

● Syntax similar to HTML, used in React to 
describe what the UI should look like. 

● During compilation, JSX is transformed 
into JavaScript function calls.
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Web UI key principles   (React based)

3. One-Way Data Binding
● Data can be passed to components via read-only props. 
● Components can have their own internal state, which can change. 
● When the state changes, the component re-renders to reflect it.

4. Virtual DOM
● It is a lightweight representation of the actual DOM.
● Minimizes the number of updates made to the actual DOM by batching them together. 

It only updates parts of the DOM that have changed, rather than re-rendering the entire page.

5. Declarative Approach
● Instead of telling the system step-by-step how to change the UI, React describes what the 

final state should look like.

6. State Management
● In smaller applications, state management can be handled directly within components, while in 

larger applications, libraries like Redux or Context API are often used to help manage global 
state.
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https://reactjs.org/

What is React? Definition

Declarative, component based JavaScript library for building UI
● Components are (sometimes) stand alone units with well defined API.
● You don’t need to know how the component works under the hood to be able to use it.
● React is build on rather simple principles which allow developers build complex 

solutions to satisfy their customers needs.

React IS NOT: 
● state management library
● data fetching library
● data visualization library
● framework

https://reactjs.org/
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https://www.youtube.com/playlist?list=PL4cUxeGkcC9gZD-Tvwfod2gaISzfRiP9d

React tutorials

http://www.youtube.com/watch?v=j942wKiXFu8
http://www.youtube.com/watch?v=kVeOpcw4GWY
http://www.youtube.com/watch?v=9D1x7-2FmTA
http://www.youtube.com/watch?v=pnhO8UaCgxg
http://www.youtube.com/watch?v=0sSYmRImgRY
http://www.youtube.com/watch?v=NbTrGcz4DW8
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Component and props

● Component is a stand alone UI piece with well defined API
● API can provide a set of props (you can send multiple props to single component)

● Props is an object
● Props are given to component from its parent
● Prop can be required or optional
● Key is a prop name, and value is its value
● Prop is a variable which is consumed and used by the component
● Component will most likely throw an error if its missing a required props
● Prop requirement and props can be defined via propTypes
● PropTypes is a static attribute on a component type
● Each prop type definition is a function that checks the prop content
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Props manipulating

● There are two types of props
○ Values - passing data down 
○ Callbacks - user (or async) interactions

● Use spread to control multiple props
● Combine them together
● Spread them to pass them down const InputComponent = ({ onChange, ...props }) => {

 return (

   <input

{ ...props }

     onChange={(event) => 

onChange(event.target.value )}

   />

 )

}
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Component props examples

const TitleComponent = props => {

 const {text, size} = props;  // ES6 destructuring

 return (

   <h1 style={{ fontSize: size }}>{text}</h1>

 )

};

const Parent = () => {

 return (

   <TitleComponent text="Hello" size={48} />

 )

}
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Component prop types examples

import PropTypes from 'prop-types';

const TitleComponent = props => {

 const {text, size} = props;

 return (

   <h1 style={{ fontSize: size }}>{text}</h1>

 )

};

TitleComponent.propTypes = { // prop types static attribute definition

 text: PropTypes.string.isRequired, // will throw an error if the prop missing

 size: PropTypes.number // will be set to 24 if the prop is missing

};

TitleComponent.defaultProps = { // default values for the props

 size: 24

};
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Class vs function component - Function

● Components are state and props in a nutshell
● React is moving towards function component

○ Hooks to control lifecycle
○ Hooks to connect to redux and router
○ Hooks to control everything

● Prefer functions for calculation to be moved out of function component 
as they are re-initialized on every render

const InputComponent = () => {

 return (

   <input />

 )

}
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Class vs function component - Class

● As some hooks are still missing so classes will still be around, but rare
● Binding of this in classes is necessary
● To ease binding @babel/plugin-proposal-class-properties should be used
● Do not call setState from render method as you end up with infinite loop

class InputComponent extends Component {

 render() {

  return (

   <input />

  )

 }

}
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Component and state

● Component can have its internal state

○ It should not hold application state (data)

■ You have state management libraries for that

○ State should only hold component specific data

What is the value of input? Is the dropdown expanded?

What are the attributes of value logged in user?

● State is directly accessible only within the component

● If you want to expose it to children, it must be sent to them as a prop
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Component state example

const InputComponent = () => {

 const [value, setValue] = useState(''); // storing the value here

 const handleInputChange = (({ target: { value } }) => setValue(value));

 return (

   <input

name="controlled-input"

value={value}

placeholder="No value"

onChange={handleInputChange}

/>

 )

};
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Project start! 
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Clone the repository!
● https://gitlab.fi.muni.cz/qhala/dashboard-PV278
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Install, start and build
● Run `npm install`
● Run `npm start`
● Optionally run `npm run build`
● Optionally run `npm run deploy`
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APIs
● Price per country
● Sunshine
● Air
● Temperture

https://app.swaggerhub.com/apis/CH4RLIEN_1/energy-1_ed_6_rest_api/1.0.0
https://app.swaggerhub.com/apis/karelhala/munisun-d_71_a_rest_api/1.0.0
https://app.swaggerhub.com/apis/karelhala/muniair-f_106_rest_api/1.0.0
https://app.swaggerhub.com/apis/CH4RLIEN_1/munitest-16_ae_rest_api/1.0.0
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● Deploy application - 
https://gitlab.fi.muni.cz/qhala/dashboard-PV278

● Record a short video and submit it to the IS homework vault

● Deadline 3.11.2024

VÝVOJ INTUITIVNÍCH UŽIVATELSKÝCH ROZHRANÍ

https://gitlab.fi.muni.cz/qhala/dashboard-PV278

