React & Redux
advanced

Let's mix some HTML and JS together

Agenda
Project update - design system and usage
Design systems
Component lifecycle
React - additional hooks & optimization
Redux advanced

LLanding and dashboard

Project update - design system and usage

Definition of Design system

What are
Design systems?

The single source of truth which groups all
the elements that will allow the teams to
design, realize and develop a product.

It's not a deliverable, but a set of deliverables.

"A kit of Ul components without accompanying philosophy,
principles, guidelines, processes, and documentation is like
dumping a bunch of IKEA components on the floor and saying
"Here, build a dresser!”

The quidelines and documentation accompanying the
components serve as the instruction manual that come with the

IKEA components to help the user properly and successfully build
furniture.”

Brad Frost

& RedHat

Why working with
Design System?

Reduce inconsistency

Focus on the user
Faster prototyping
Quick iteration

Javascript practices - old and new

Multiple free and open source design systems

O
& ORBIT v e

‘ RedHat

e Material Ul (Google)

y

e PatternFly (Red Hat)

e Orbit (Kiwi)

e Antdesign

e Bit

https://material-ui.com/
https://www.patternfly.org/
https://orbit.kiwi/
https://ant.design/
https://bit.dev/

Difference between Style guide and Pattern library

Style quide x Pattern library

= ‘ PatternFly < Q (v} Current alphas v

Get started >

Style guide - focuses on graphic styles (colors, i

spacers, icons, content...) and their usage.

lcons PatternFly's palette

Colors

> Table of contents

Motion Our color palettes align with Red Hat's brand colors and are designed to reinforce content and support effective

Spacers communication across different Ul needs. Colors are applied to PatternFly elements using semantic design tokens.
This guide offers guidance for color use in some of the most common scenarios, but it does not cover all tokens.

Patte r n I i b ra ry - i nte g rate S fU n Cti O n a | Typography Additional color usage information is included in our tokens documentation.

Usage and behavior View all PatternFly tokens =

Co m p O n e n tS a n d t h e i r u Sa g e . Each example contains a descriptive label, a semantic token, and a color swatch circle. If you select a color swatch

Tokens 2 circle, you can see more details, including a hex code and usage information. Color swatches will automatically
update to match light or dark theme colors, based on your browser settings.

PatternFly Al >
Brand colors

Accessibility >

Brand colors are used to identify your brand, and are the colors most frequently used across your Ul. Our brand

D eS i g n Syste m u S u a | |y CO nta i n S b Ot h UX writing > color, "PatternFly blue", is used across all components. There are different brand tokens depending on the use case,

like icon tokens, text tokens, global color tokens, and so on.

Components >
Default
Patterns > . --pf-t--global--color--brand--
£ O pp—
defadle (_global/color/brand/default
Extensions >
Hover
’ --pf-t--global--color--brand--
Charts b4 hover
o o <
Topology > Text @
--pf-t--global--text--color-- y
Layouts > brandesdatanit global/color/brand/default

Utility classes >

https://docs.google.com/presentation/d/19RhzfziMAOJyxIRo0ddbNpjEhF0u3UtsLw5KdGPhw1o/edit#slide=id.gb6f3e2d2d_2_15
https://docs.google.com/presentation/d/19RhzfziMAOJyxIRo0ddbNpjEhF0u3UtsLw5KdGPhw1o/edit#slide=id.gb6f3e2d2d_2_15
https://docs.google.com/presentation/d/19RhzfziMAOJyxIRo0ddbNpjEhF0u3UtsLw5KdGPhw1o/edit#slide=id.gb6f3e2d2d_2_15

Architecture

Design principles

Design System

Themes & architecture

Brand guidelines How to

Sample pages

UX Recomendations

Developer documentation

Resources download

10

(C)) MATERIAL DESIGN

Components
App bars: bottom
App bars: top
Backdrop
Banners
Bottom navigation
Buttons
Usage
| Anatomy

Hierarchy and
placement

Text button
Outlined button
Contained button
Toggle button
Theming

Specs

Carbon Design Syste!

Get started
Tutorial
Guidelines
Components
Overview
Component status
Accordion
Breadcrumb
Button
Checkbox
Code snippet
Content switcher
Data table
Date picker
Dropdown
File uploader
Form
Inline loading
Link
List
Loading
Modal

Notification

Components > Buttons > Anatomy

Anatomy

b | PatternFly

Buttons contain one required element and four optional elements. Clipboard copy

o e Code block
Code editor
Content
UTTON utton —©)
Data list
c} ©
Date and time >

Description list

o o Divider
Drag and drop

+) BUTTON =B

Drawer

Dual list selector

Empty state
Expandable section

File upload >

Forms v
®©

Form

Form control

Form select
Link List Loading

Checkbox

Radio

Text link 0 Text area

- Text input

Helper text

Hint

Multiselect Notification Number input

Chip Deprecated

O i [] X Icon

Form

Q O Current alphas ¥

A form is a group of related elements that allow users to provide data and configure options in a variety of contexts,

such as within modals, wizards, and pages.

React HTML HTML demos Design guidelines

> Table of contents

Examples

When using helper text inside a FormGroup , the HelperText component should be wrapped with the

FormHelperText component to provide additional spacing.

Basic

Fullname * @

Include your middle name if you have one.

Email *

Phone number *

555-555-5555

How can we contact you?

(J Email [J Phone [J Mail
Time zone
() Eastern (O Central (O Pacific

Additional note

disabled

[I'd like updates via email.

https://material.io/
https://www.carbondesignsystem.com/

n

Centralized vs. Distributed system

Centralized vs. Distributed system

Centralized - one team is in charge of the

system and makes it evolve.

Distributed - several people of several teams

are in charge of the system. The adoption of the

fe
-
be— S0 ¢— o

system is quicker because everyone feels

involved.

https://docs.google.com/presentation/d/19RhzfziMAOJyxIRo0ddbNpjEhF0u3UtsLw5KdGPhw1o/edit#slide=id.gb6f3e2d2d_2_15
https://docs.google.com/presentation/d/19RhzfziMAOJyxIRo0ddbNpjEhF0u3UtsLw5KdGPhw1o/edit#slide=id.gb6f3e2d2d_2_15
https://docs.google.com/presentation/d/19RhzfziMAOJyxIRo0ddbNpjEhF0u3UtsLw5KdGPhw1o/edit#slide=id.gb6f3e2d2d_2_15

UUUUU

Components as elements

Dropdown w Details YAML Environment Events Terminal
Label
Ned Username
Text input (1)
V) @
First step Second step Third step
This is the first thing to happen This is the second thing to happen This is the last thing to happen

a0

Color palette

Group label @ Labell @ Label2 @ Label3 2more @

Type styles

Size 4xl

Size 3xl
Size 2xI
Size xl

Size Ig

Size md

Size sm

Size xs
Size xs bold

Heading label

Chart label

Size 4xl

Size 3xI

Size 2xI

Size x|

Sizelg
Size md

Size sm
Size xs

Size xs bold

Chart sublabel (standard)

Chart sublabel (small)

Size 4x|

Size 3xlI
Size 2xI

Size x|

Size lg
Size md

Size sm

Size xs

Size xs bold

Show library and template

= d% PATTERNFLY

o

Ned Username ~ ‘

System panel
tiary nav item 1

Policy

tacked form demo

Networ

Tertiary nav item 2 Tertiary navitem 3 Tertiary nav item 4 Tertiary navitem 5

Below is an example of a stacked form.

Server

Label

Text box

Please provide your full name.

Label

Text box

Label

Text box

[] Email [] Phone [T] Please don't contact me

]

| like updates via email

Submit form Cancel

Template

preview

UUUUU

\W) PATTERNFLY

Blog posts

Hello world! This is my first blog post

2 minute read | Beginner

This is a short description of my post. It really doesn’t contain much though. This is a short description

of my post. It really doesn’t contain much though.

Painting a wooden dresser: my journey

of my process and what went well and what did not. You'll leave this read with some good tips!

o

This is the tweet. It
awesome.

Why are millenials getting a bad rep?

3 minute read | Beginner

This is a short description of my post. But to answer the question I'm not really sure. Are you?

Tech savvy moments!

5 minute read | Beginner

A list of all the tech savvy moments I've experienced within the past decade. Some are funny. Some

are impressive. Most are not cool.

Blog

About Galler

Twitter feed

e Bonginkosi M

ladlana tweeted

This is the twe@retty awesome.

@ Deveeprasad iAcharya retweeted

This is the tweet. |
awesome.

i’s pretty cool and

“ Sidnee Gye tweeted

This is the tweet. |

t's pretty awesome.

This is the tweet. |
awesome.

& Wim Willems ti

This is the tweet. |

‘ Zhan Huo ret:

This is the tweet. |
awesome.

e Bonginkosi M

t's pretty cool and

eeted

t's pretty awesome.

eeted

t's pretty cool and

ladlana tweeted

This is the tweMretty awesome.

@ Deveeprasad

This is the tweet. |
awesome.

° Bonginkosi M

This is the tweet. |

Acharya retweeted

t's pretty cool and

ladlana tweeted

t's pretty awesome.

¢ Jacqueline Likoki re

PROPERTIES

Width Height

176px 21px

X Position Y Position
1226px 430px
APPEARANCE

Colour #6A6E73
TYPOGRAPHY

Typeface

RedHatText-Regular

Size Align

14px Left

Font Weight Line Spacing

500 21px

CONTENT Copy

Jacqueline Likoki retweeted

CSS Copy

.jacqueline-likoki-re {
color: #6A6E73;
font-family: RedHatText;
font-size: 14px;
font-weight: 500;
line-height: 21px;
text-align: left;

at

React advanced

Component lifecycle & optimization

React beginner

Component lifecycle

e After React dev team introduced hooks, the life cycles of react component
has changed significantly - preparation for concurrent mode and async rendering

e The management is different for React Class and Functional components

Mounting

v

‘ constructor

New props

v

Updating

setState()

v

forceUpdate()

\

render

v

l

componentDidMount

React updates DOM and refs

l

componentDidUpdate

Unmounting

v

componentWillUnmount

https://reactjs.org/docs/state-and-lifecycle.html#adding-lifecycle-methods-to-a-class

https://reactjs.org/docs/state-and-lifecycle.html#adding-lifecycle-methods-to-a-class

React beginner

Component lifecycle - Classes

There are several predefined class functions with a static trigger sequence
e constructor
o Is triggered when the class is instantiated
o Useful for setting initial component state, registering listeners...
o In most cases is not really necessary
e componentWillMount (deprecated)
o After constructor, but before first render
o Was used for initial data fetch
o Misuse will cause faulty state changes in async mode
e componentDidMount
o Is called once only after initial render
o New place for initial data fetch

https://reactjs.org/docs/state-and-lifecycle.html#adding-lifecycle-methods-to-a-class

https://reactjs.org/docs/state-and-lifecycle.html#adding-lifecycle-methods-to-a-class

20

React beginner

Component lifecycle - Classes

o componentWillReceiveProps (deprecated)
m Component is about to receive new props, but it did not re-render
o componentDidUpdate
m Props or component internal state were updated
m Based you can compare new and previous props/state to make some updates,
api calls, logs, etc.
m Danger of infinite loops
m State changes must be wrapped in condition

o componentWillUnmount

m Clean up phase before the component is removed from virtualDOM

https://reactjs.org/docs/state-and-lifecycle.html#adding-lifecycle-methods-to-a-class

https://reactjs.org/docs/state-and-lifecycle.html#adding-lifecycle-methods-to-a-class

React beginner

Component lifecycle - Classes

o shouldComponentUpdate
m Rendingis the most expensive operation in DOM an any library/framework
m Developer can use this method to programmatically check whether to trigger render
method or not
m This will affect component children and not send new props to them
m If children rely on parent component you cannot use this in most cases
o Render - main rendering method
m Must be implemented in every class component and return something renderable
m Renderis triggered on prop and state changes by default
e Can be handled via shouldComponentUpdate
o componentDidCatch - handler for unpredicted errors in virtual DOM
m The "Whoops! Something has happened.” screen

21

https://reactjs.org/docs/state-and-lifecycle.html#adding-lifecycle-methods-to-a-class

https://reactjs.org/docs/state-and-lifecycle.html#adding-lifecycle-methods-to-a-class

22

React beginner

Component lifecycle - functions

You can handle functional component lifecycle via useEffect hook

e Possible in React version 16.8.x and later

e Allows performing side effects in your functions
o Side effect triggers something outside of a function scope
o Breaks the pure function rule - same input may give you different output
o Necessary for efficiently reacting on (user) events

e Canreplace all lifecycle methods, except componentDidCatch

https://reactjs.org/docs/hooks-intro.html

https://reactjs.org/docs/hooks-intro.html

23

React beginner

Component lifecycle - functions

Component = ({ username })

useEffect arguments:
useEffect(() {

Y EffeCt functlon API.getUserDataAndUpdateAppGlobalState api/..
) {
cleanAppGlobalState()

e Listof triggers (dependencies)

}

[username])

(

<hl>{username}</hl>

There can be multiple effects, reacting on different triggers.

That way, we can mimic the life cycles of classes.

https://reactjs.org/docs/hooks-intro.html

https://reactjs.org/docs/hooks-intro.html

24

React beginner

Component lifecycle - functions

e No list of triggers means that the effect will trigger neeE et { ()
on every props/state change
o Will cause infinite loop if state is changed here L)
o Same use cases as componentDidUpdate
o Will also trigger like componentDidMount

e Empty dependencies list means that it will trigger only once, after initial mount
o componentDidMount

o Does not react on any props/state updates

https://reactjs.org/docs/hooks-intro.html

https://reactjs.org/docs/hooks-intro.html

25

React beginner

Component lifecycle - functions

e Effect will be called when any variable in
the list is changes

usekEffect (()

o componentDidUpdate,
componentDidMount e

o Non primitive types must follow immutable pattern to trigger effect -> must
return new instance

o Also will be triggered in first render

https://reactjs.org/docs/hooks-intro.html

https://reactjs.org/docs/hooks-intro.html

React beginner

Component lifecycle - functions

o |[f effect returns a function, it will be
called before component is

unmounted from DOM

e componentWillUnmount

26

https://reactjs.org/docs/hooks-intro.html

usebkEffect (()

https://reactjs.org/docs/hooks-intro.html

React beginner

Render cycle - when rendering happens

e Render function is triggered when
o Component props has changed
o Component state has changed
o Component context has changed
o Parent has re-rendered
e Everything can be optimized/block to save rendering cycles

e Render will not trigger if props/state are

MUTATED VARIABLES OF THE SAME INSTANCE

27

28

React beginner

Different data binding (one vs two way)

e One way data binding
Used by all modern Ul libraries/frameworks

Data can be send only in one direction in the DOM
Data is "bubbling” down through nodes to the leaves of the DOM tree

Predictable behaviour
Forces component independence

From parents to children (React)
From children to parents (not a good idea)
Although technically parents can access its children data it's not a good idea

O o o O o O O

m DO NOT TOUCH CHILDREN!
m It opens pandora's box of bugs

29

React beginner

Two way data binding

Used in older libraries/frameworks

One of the reasons why original Angular was abandoned

Developers ignored good practices and were accessing parent data from children
Components lost their independence

InputComponent = ()
return (
<
name="controlled-input"
value={parent.parent.data.value

placeholder="No value"

onChange={parent.parent.parent.parent.handleInputChange

30

React beginner

Optimization hooks

e There are several hooks that can help you optimize your code
o As always, before optimizing, check if you actually need it
e useCallback
o Used to define a function that has referential equality between renders - changes when
its dependencies change
e useMemo
o Used to calculate a value that has referential equality between renders - changes
the value when their dependencies change
e useRef

o Special hook, that behaves similar to useState, but does not trigger re-render

React beginner

Additional hooks

e useContext

o React.provider hook to consume context

o Easy to use multiple context providers in one component
e useReducer

o State management hook, if you need to store big chunk of data in component
e Custom hooks

o You can write your own hooks, and share them in your library

o Great examples: useDispatch, useSelector from react-redux library

o Any function can be "hook” as long as it uses any React’s hooks

31

Redux

Thinking with redux - one state to rule them all

33

Agenda
What is redux - principles
Going from action type trough action to state update
How to use connect - 3 parts of connect function
How to use hooks with Redux
Middlewares and other cool tricks
Redux Toolkit
You might not need Redux - useReducer

Let's do some coding...

Redux basics

What is Redux - definition

e A predictable state container for JavaScript applications.

Key concepts:

e State - asingle object that represents the application’s state

e Store - single source of truth (object) where the global state of the entire application is stored
o provides methods: getState(), dispatch(action), subscribe()

e Action - plain objects that describe what should happen
o must have a type (identifies the action) and can carry payload to change the state

e Reducer - function taking the current state and an action and returning a new state
o pure function => always returns the same output for the same inputs

e Dispatch - method used to send an action to the reducer which updates the state

e Subscriber - function that gets called every time the state changes
o React Redux provides higher-level abstractions that take care of it (useSelector, connect)

34

‘ RedHat

35

Redux basics

Draw it, and it all makes sense...

1. Something triggers an action - pure
function that returns object

2. Action is dispatched into store
(carrying payload)
3. Reducers pass this action around and

mutate state based on type and payload

4. You can track history of actions because
they are pure functions

Actions

N

\’

(N\
Reducer

deposit $10

withdraw $10

84015

36

Redux basics

Going from action type

e Action type - string constant to identify action, kinda like name

SOME ACTION = 'SOME ACTION TYPE';

37

Redux advanced

Going from action type trough action

e Action - combined type, payload, error, meta

Type - to identify action

Payload (optional) - actual data, usually object

Meta (optional) - additional data, usually to identify records
Error (optional) - boolean value to indicate error

o O O O

doSomeAction = (data, entityId)

type: SOME ACTION,

payload: {
entityId,
data

b

meta: { entityId },

error:

https://aithub.com/redux-utilities/flux-standard-action

https://github.com/redux-utilities/flux-standard-action

38

Redux basics

Going from action type trough action to state update

e Reduceris function that takes state and action
e Reacts to action and mutates state in expected way

reducer = (state, action)
return {
...State,
entities: state.entities.map(item ({

..ltem,

..1tem.id === action.entityId && action.data

39

Redux basics

Going from action type trough action to state update and use them

e createStore - the OLD way - to use reducers in a store
o Reducer function
o Default state
o Enhancers
e combineReducers - to namespace your state and split reducers
e applyMiddleware - enhancer function to user middlewares (logger, async functions,etc.)

createStore (
combineReducers ({

{ appState: {} 1},

applyMiddleware (
) ;

Redux basics

How to use reduxin react app

e Connect function - the OLD way
o mapStateToProps
o mapDispatchToProps (optional)
o mergeProps (optional)
e Hooks
o useDispatch - provides access to the dispatch function
o useSelector - allows you to extract data from the state
m takes a selector that receives the entire store state and
returns the piece of state you need
o useStore - direct access to the store (actions not tied to
component’'s rendering)

40

41

Redux basics

How to use hooks with redux - useSelector

e Replaces mapStateToProps and mergeProps functions
e Allows to pluck pieces of state from store
e |t'srecommended to use multiple selectors in component to improve performance
o Always try to requests only primitive values, not whole objects (not always possible)

Component = ({ userld }) {
name = useSelector(({ userReducer: { profile: { name } } }) name) ;
email = useSelector(({ userReducer: { profile: { email } } }) email);

orders = useSelector(({ orderReducer: { orders } }) orders.find(order order.userId === userId));

return (

42

Redux basics

How to use hooks with redux - useDispatch

e Replaces mapDispatchToProps
e Returns a dispatch function from closest store
e Use this function to call redux actions

Component = () {
dispatch = useDispatch()
handleThemeToggle = themeVariant dispatch({ type: 'TOGGLE_THEME', payload: themeVariant })

return (

onClick={() handleThemeToggle('blue’)}>Change UI to blue theme

onClick={() handleThemeToggle('orange')}>Change UI to orange theme

Redux basics

How to use hooks with redux - useStore

e |n order to access store

Component = () {

store = useStore ()

console.log (store) ;
return 'FooBar';

}

43

44

Redux basics

Middlewares and other cool tricks

As reducer, listens on actions, but catches them before they are passed to reducers

Can observe, modify action or even prevent it from reaching reducers
Usually middleware is used to add some side effect to action

type: ‘Foo’

7/ Reducer 1 /

Duplication S
middleware Bpes e
-
——> type: ‘New Foo’

—7/ Reducer 2 /

45

Redux basics

Redux toolkit

e Allinone library
e Heavily opinionated
e Reducers replaced with slices
o Map of reducers
e APl creator - allows you to easily setup endpoints connected to redux

e Alot of abstraction, quite an overkill for small apps, opinionated = less flexibility.
(Jotai - easier and minimalistic, granular state, more flexible, less boilerplate, lightweight)

® [} Rodux TodomvC exampie

Redux DevTools

Add extension's enhancer

Install extension

® abrowser extension .
e useful for debugging application’s state changes v : “" '

https://chromewebstore.google.com/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en

46

Redux basics

You might not need redux - useReducer

e Hookintroduced in React version 16.8.0
Introduces reducers to core React
Its meant to be used for complex component state updates
o More than two “setState” calls in one callback
o FEvery setState triggers one render always
o Multiple setState have negative performance impact
e useReducer is here to prevent developers store objects in state (useState)
o Trigger unnecessary re-renders
e useReducer on its own cannot replace redux
o Lacks optimizations, middlewares, namespacing, context, etc.
o Would require additional functions to fully replace redux
o But at that point, you have implemented redux library
e Onits own (with clever context and memo usage), can replace redux in smaller scale applications

‘ RedHat

47

Redux advanced

Let’'s do some coding

e State vs Redux vs UseReducer -
https://codesandbox.io/s/friendly-lovelace-sf7s59

https://codesandbox.io/s/friendly-lovelace-sf7s59

48

Redux advanced

Homework

e Deploy your application

49

React beginner

Table - let's write some code

e Deploy application
e |ogout
e Table

