Chemoinformatics

Radka Svobodová

Central European Institute of Technology BRNO | CZECH REPUBLIC

Radka Svobodová - introduction

2000: Mgr., Biochemistry, MU
2003: Mgr., Informatics, MU
2006: RNDr., Physical chemistry, MU
2007: Ph.D., Biomolecular chemistry, MU
2017: Doc., Biomolecular chemistry, MU

Definition of chemoinformatics

Cheminformatics

also known as chemoinformatics and chemical informatics

= the use of computer and informational techniques, applied to a range of problems in the field of chemistry.

Applications:

- life science research
- pharmaceutical companies drug discovery
- chemical and allied industries

Why theoretical chemistry?

- Avoid working with toxic, explosive and radioactive substances
- We can work with unstable substances
- We can save costs for chemicals and for the implementation of the experiment
- We save time for experimental chemists :-)

Content

- Introduction: concept of chemoinformatics, content of the subject, history of the field
- **Computer model of a molecule:** 1D, 2D and 3D structure, molecule representation using graph and matrix
- 2D structure (topology) of a molecule:
 - writing a molecule using a string (SMILES, InChi, InChiKey)
 - Molecular graphs: Isomorphism and canonical indexing
- 3D structure (geometry) of the molecule:
 - representation using Cartesian and internal coordinates, data formats, geometry comparison

Content

Basic chemoinformatics tasks:

- Visualization of structures of molecules and molecular fragments, models for visualization of molecules
- Molecular descriptors computation: 1D, 2D and 3D
- **Similarity of molecules:** similarity comparison, similarity coefficients
- **QSAR and QSPR models:** Models for studying quantitative relationships between structure and activity/property of
- Databases of small and large molecule structures, searching them
- Generation of molecule structures using AI algorithms

Organization of the course

1 hour lecture + 1 hour praxis Please, bring your notebooks

Optional tasks – possibility to obtain additional points

End of the subject:

- Colloquium
- Written test
 - Theoretical questions
 - Examples
- All documents allowed

HISTORY

History of theoretical chemistry

Philosophical theories

Antics - 17. century

First theoretical models 17. century - 1960

Modern life sciences 1960 - now

Philosophical theories

Antics:

The word is composed from a first principle. It is a basic proposition or assumption that cannot be deduced from any other proposition or assumption.

What is the first principle?:

- Pre-Socratic philosophers
- Theory of 4 elements
- Atomistic theory

Raffael Santi Aténská škola

Philosophical theories Theory of 4 elements

Empedocles:

- Established four ultimate elements which make all the structures in the world - fire, air, water, earth.
- The four elements are both eternally brought into union and parted from one another by two divine powers, Love and Strife.
- He called them the four "roots"

Plato:

• The first to use the term "element"

Aristotle:

- Related each of the four elements to two of the four sensible qualities:
 - Fire is both hot and dry.
 - Air is both hot and wet (for air is like vapor, $\Box \ \tau \mu \Box$),
 - Water is both cold and wet.
 - Earth is both cold and dry.

Philosophical theories Atomistic theory

Leukippos:

- nature consists of two fundamental principles: atom and void
- clusters of different shapes, arrangements, and positions give rise to the various macroscopic substances in the world

Demokritos:

- all matter was composed of small indivisible particles which they called "atoms,"
- atoms are too small for human senses to detect, that they are infinitely many, that they come in infinitely many varieties, and that they have always existed

Which theory was prefered

Which theory was prefered?

How long?

How long?

Till 17th century

How long?

The four elements theory finally rejected.

Sir Robert Boyle, 1661

The Sceptical Chymist: or Chymico-Physical Doubts & Paradoxes

Comeback of the Democritos theory

B Y The Honourable ROBERT BOYLE, Efg;

LONDON, printed by J. Cadwell for J. Crooke, and are to be Sold at the Ship in St. F. aul's Church-Yard.

1808 J. Dalton extended the Democritos theory:

- The smallest particles of matter that cannot be physically or chemically divided are **atoms**.
- The atoms of the same element have the same quality, size and mass, and in these properties they differ from the atoms of other elements.
- In chemical combining, only the whole number of atoms belonging to the elements of which the compound under consideration is composed are always combined.

Atoms can be divided:

- 1897 J.J. Thompson detected an electron
- 1911 E. Rutherford found atomic core (nucleus)
- 1913 N. Bohr published a model of an atom:
 - The electron can only move around the nucleus in certain orbits without emitting energy.
 - The electron emits or receives energy only when it jumps from one energy level to another.

Quantum theory:

- 1925 1926 W. Heisenberg and E. Schrodinger published basic ideas of quantum theory
- 1926 E. Schrodinger formed a wave function, describing a probability of electron occurrence arround the nucleus.

Compute resources available:

- From the 1960s onwards, computers became available for research laboratories
- Available programming languages for scientific calculations (FORTRAN, C, etc.).
- New research field: Computational chemistry

Computational chemistry

"...an attempt to model all aspects of real chemistry as precisely as possible using computations, instead of experiments."

R. Schleyer

Specializations:

- Molecular mechanics
- Quantum mechanics
- Molecular dynamics

Molecular structure data available:

- From the 1970-1980s onwards, we have available protein structures and DNA sequences
- New field established: Bioinformatics
- Specializations:
 - Structural bioinformatics

Sequence bioinformatics

Molecular structure data available:

- From the 1980s, structures of small molecules are available
- New field established: Chemoinformatics

TRENDS

Number of experimental protein structures grows

> 200k protein structures

Size of experimental protein structures grows

Not only structures, also properties

BREADBE-K Protein Data Bank in Europe Know Views of Proteins	Aggregated	Home Documentation &
Search in PDBe		
Search		
Summary Structures Li	igands Interactions Annotations	Similarity Also in this section 👻
10 Structures	2 Ligands	4 Interactions
Download	Download	Download
3D view of superposed structures	3D view of superposed ligands	

Varadi M., ..., Svobodova R., ... et al,., 2022. *PDBe-KB: collaboratively defining the biological context of structural data*. **Nucleic Acids Research**, 50(D1), D534-D542.

Structures generated by artificial intelligence

Structure prediction challenge 2020: AlphaFold2 wins

https://predictioncenter.org/casp14/doc/presentations/2020_11_30_CASP14_Introduction_Moult.pdf

Structures generated by artificial intelligence

> 200M protein structures

>1 G structures of small molecules

Not only structures, also properties

	ne		
		Drugs v	
[BLOG] Precision Medicine in the	e Genomic Era. Read Mc	ore! (>)	×
Identification			
Pharmacology	Summary	Ibuprofen is an NSAID and non-selective COX inhibitor used to treat	
Interactions		mild-moderate pain, rever, and inflammation.	
Products	Brand Names	Addaprin, Advil, Advil Cold and Sinus, Advil Congestion Relief, Advil PM,	
Categories		Advil Sinus Congestion and Pain, Alivio, Caldolor, Cedaprin, Cl. <u>READ MORE</u>	
Chemical Identifiers	Generic Name	Ibuprofen	
References			
Clinical Trials	DrugBank Accession	DB01050	
Pharmacoeconomics			
Properties 🚽	Background	Ibuprofen is a non-steroidal anti-inflammatory drug (NSAID) derived	

Web based databases and tools

~ 30k tools and databases

Tools from our research group :-):

- Validation: <u>ValidatorDB</u>, <u>MotiveValidator</u>, <u>ValTrendsDB</u>
- Detection: MoleOnline, ChannelsDB, PatternQuery
- Properties: Atomic Charge Calculator, aCharges
- Visualization: Mol*, LiteMol, 2DProts, OverProt

Conclusions

Great era! We can enjoy it :-)))

Tools Databases Al

