
2D structure of a molecule 
Isomorphism and canonical indexing 

 
 

1 

Radka Svobodová 



Content 
 

2 

• Introduction: concept of chemoinformatics, content of 

the subject, history of the field 

• Computer model of a molecule: 1D, 2D and 3D 

structure, molecule representation using graph and 

matrix 

• 2D structure (topology) of a molecule:  

• writing a molecule using a string (SMILES, InChi, 

InChiKey) 

• Molecular graphs: Isomorphism and canonical 

indexing 

• 3D structure (geometry) of the molecule: 

• representation using Cartesian and internal 

coordinates, data formats, geometry comparison 



Definition of molecular 
graph: 

G = (V, E, L, ) 

Molecule: 

Figure of the molecular graph: 

 

V – set of nodes (atoms) 

V = {v1, v2, v3, v4} 

E – multiset of edges (bonds) 

E = {{v1, v3}, {v2, v3}, 

     {v3, v4}, {v3, v4}} 

L – multiset of loops (free electron pairs) 

L = {{v4, v4}, {v4, v4}} 

 – function for naming of  nodes by 

element symbols 

(v1) = H, (v2) = H, 

(v3) = C, v4) = O 

l2

l1

e4

e3

e2

e1
v4v3

v2

v1

H

H

C O

 – set of element symbols  = {C, O, H} 

2D structure as a molecular graph 

V1 

V2 
V3 V4 

Description of its mol. graph: 

 



2D structure as a matrix 

4 

Molecule of 

formaldehyde:  

Neighbourhood matrix 

of formaldehyde:  

A =  

 0    0    1    0       v1 

 0    0    1    0       v2 

 1    1    0    2       v3 

 0    0    2    4       v4 

 v1  v2   v3  v4     

V1 V2 

V3 

V4 



Isomorfism of molecular graphs 

• Two molecular graphs are isomorphic if they represent the same 
molecule.  

• Two molecular graphs are isomorphic if they differ only in the 
indexing of the nodes.  

• Two molecular graphs are isomorphic if: 
• Every node Ni of the graph G can be mapped to a node N´i of the graph 

G´. 

• Neighboring nodes of a node Ni can be mapped to neighboring nodes of a 
node N´i.  

 

 



Isomorfism of molecular graphs 

 

 Graphs G = (V, E, L, , ) and G  = (V , E , L , , ) are 
isomorphic, if exist a bijective projection (permutation) f: V V  
with the following properties: 

• if nodes u, v  V have n edges {u, v} of graph G, then nodes f(u),         
f(v)  V  have also n edges {f(u), f(v)} in a graph G

• if node u  V have n loops {u, u} of graph G, then node f(u)  V  have n 
loops {f(u), f(u)} graph G  

• the projection f maintain naming of the edges:                                     
(u) = (f(u)) for each u  V 



Isomorphism and adjacency matrix 

Molecular graphs determined by the neighborhood matrix:   
G = (V, A, , ) a G  = (V , A , , ) 

 

Isomorphismus (=permutation) f: V V´ 

 

For a permutation of f, one can construct a permutation matrix P.  

Note: The permutation matrix is formed from the unit matrix by 
permuting their row. 

Then: A = PT A  P  

 



Time complexity 

A problem is NP-complete if an algorithm with worst polynomial time 
complexity cannot be constructed for it. 

 

Examples: 

• Algorithms solvable in polynomial time belong, for example, to the 
complexity classes: O(n), O(n log n), O(n2), O(n3), etc. 

• NP-complete algorithms belong, for example, to the complexity classes: 
O(2n), O(n!), O(nn), etc. 



Isomorphism - time complexity  

• The problem of isomorphism of general graphs is 
probably (not proven, but all indications are :-) 
among NP-complete problems. 

• How we can solve it?: 
• Brute force 

• Improvements: 

• backtracking 

• Classes of edges 

• Limited classes of graphs: 

• planar graphs 



Algorithms: brute force 

• Description: 

 For each permutation f: V  V   

  test if it is an isomorfismus. 

• Complexity: 

 Sets V and V  have the same number of nodes (n).  

 => it exist n! permutations f: V  V

the algorithm has complexity in the class O(n!) 

  



Algorithm: backtracking 

• Streamlining the brute force method 

• It does not deal with all views. Adds an additional 
vertex only to partial views that satisfy the 
isomorphism condition. 

• In the worst case, this method also has factorial 
complexity, but for common cases the computation is 
much shorter than using brute force. 



Brute force X backtracking 

Molecular graph G:

  

v4

v3 v2

v1

X

X

Y

Y
Molecular graph G´:

  

l2
v́ 1 v́ 2

v́ 3

v́ 4
Y

Y

X X

Brute force:  Bactracking:  
v1, v2, v3, v4 

  v´1, v´2, v´3, v´4;  v´1, v´2, v´4, v´3;  

v´1, v´3, v´2, v´4;  v´1, v´3, v´4, v´2;  

v´1, v´4, v´2, v´3;  v´1, v´4, v´3, v´2  

v´2, v´1, v´3, v´4;  v´2, v´1, v´4, v´3;  

v´2, v´3, v´1, v´4;  v´2, v´3, v´4, v´1;  

v´2, v´4, v´1, v´3;  v´2, v´4, v´3, v´1  

v´3, v´1, v´2, v´4;  v´3, v´1, v´4, v´2;  

v´3, v´2, v´1, v´4;  v´3, v´2, v´4, v´1;  

v´3, v´4, v´1, v´2;  v´3, v´4, v´2, v´1  

v´4, v´1, v´2, v´3;  v´4, v´1, v´2, v´3;  

v´4, v´2, v´1, v´3;  v´4, v´2, v´3, v´1;  

v´4, v´3, v´1, v´2;  v´4, v´3, v´2, v´1  

v1   v´1 

v1   v´2 

v1   v´3 

v1, v2, v3  v´3, v´1, v´4 

v1, v2, v3  v´3, v´4, v´1 

v1, v2, v3 , v4 v´3, v´4, v´1 , v´2 

v1   v´4 

Brute force:  

 24 iterations (4!) 

Backtracking: 

 7 iterations   



Algorithm: Division of nodes into classes 

Classing criteria: 

• atom rating 

• degree of peak 

Principle:  

• Vertices of a graph G belonging to a certain class are mapped only to 
vertices of the graph G′ belonging to the same class.  

• Note: A finer class partitioning can also be used:  

• In addition to the rank and degree of an atom, we take into account the rank and 
degree of its neighbors in the partitioning. 

• Divide the nodes according to the number of single, double and triple bonds that 
a given bond forms. 



Example: Division of nodes into classes 

Molecular graph G:

  

v4

v3 v2

v1

X

X

Y

Y Molecular graph G´:

  

l2
v́ 1 v́ 2

v́ 3

v́ 4
Y

Y

X X

Classes: 

 T1 = {v4}    (name X, degree 2) 

 T2 = {v3}    (name X, degree 4) 

 T3 = {v1, v2}   (name Y, degree 3) 

 T´1 = {v´2}      (name X, degree 2) 

 T´2 = {v´1}      (name X, degree 4) 

 T´3 = {v´3, v´4} (name Y, degree 3) 

Principle: 

 We can project members of Ti only to members of T´i 

 It exists only 2 possible projections: 

  v1, v2, v3 , v4 ->   v´3, v´4, v´1 , v´2 

v1, v2, v3 , v4 ->   v´4, v´3, v´1 , v´2 



Algorithm: planar graphs 

Definition: A graph is called planar if it is possible to create a planar 
drawing of it. 

 

A graph drawing is a procedure that assigns to each vertex of the graph 
a point of the plane and assigns to each edge {u, v} a continuous simple 
arc that connects the points assigned to vertices u and v. 

 

Planar drawing = A drawing that is made such that two arcs have at most 
1 point in common. And only if this common point corresponds to the 
vertex from which both edges originate. 

 



Planar graphs 

Planar graph G:  

 

Planar drawing of graph G:  

 

v1 v2

v3v4

Graph G´:  

 v4

v3

v2v1

v5



Planar graphs 

Planar graph G:  

 

Planar drawing of graph G:  

 

v1 v2

v3v4

Graph G´:  

 v4

v3

v2v1

v5

For G´ does not exist any 

planar drawing 

=>  

G´ is not planar 

 



Algorithm: planar graphs 
 

The class of planar graphs is a subclass of general graphs. 

In chemistry, a large fraction of molecules have planar graphs. 

Exceptions: zeolites, fullerenes, some bioorganic substances (alkaloids, 
hormones, ...), more complex polymers and biopolymers. 

 

Determine whether the graph is planar:  

• An algorithm to find its planar drawing; O(n) 

• Isomorphism of planar graphs: 

• Hopcroft and Tarjan's algorithm; O(n log n) 

=> Isomorphism of planar graphs is not an NP-complete problem :-) 

 



Isomorphismus: application in chemistry 

Isomorphic graphs represent the same molecules. 

 

Can be applied for finding of identical molecules in 
databases 

Input: molecule graph   

Output: information about the input molecule (or report 
that the molecule was not found 

Procedure: search for isomorphism between the input 
molecule and database elements 

 

Disadvantage: High time complexity. Finding a 
molecule of size N in a database with M molecules: 
O(M.N!) 



Automorphism 

= isomorphism of the graph on itself  

 

= symmetry operations on molecular graphs that preserve the 
graph topology (= do not change the adjacency matrix) 

 

Topological equivalence: 

 A pair of vertices vi and vj is topologically equivalent if there 
exists an automorphism  such that one vertex maps to the 
other: (vi) = vj 



Authomorphism: examples 

l2

l1

e4

e3

e2

e1
v4v3

v2

v1

H

H

C O

Description of automorphisms (symetry operations):  

 1   identity  

 2   axis symmetry (the axis passes through the nodes v3 and v4) 

 

Nodes v1 and v2 are topologically equivalen. 

Molecule of formaldehyde has 2 authomorphisms: 

 
1 v1 

 

v2 
 

v3 
 

v4 

v1 
 

v2 
 

v3 
 

v4 

v1 
 

v2 
 

v3 
 

v4 

v2 
 

v1 
 

v3 
 

v4 

2 



Automorphism and neighborhood matrix 

Molecular graph determined by the neighborhood 
matrix:  

 G = (V, A, , ) 

 

Automorphism (=permutation) : V V 

 

The permutation  is described by a matrix P.  

 

Then holds:  

 A = PT A P  

 



Automorphism as a group 

Set of all automorphisms:    

 Aut = { 1, 2, …}, where  : V  V 

Operation of composition of projections:   

 o: ( , )   

Grup of automorphisms:    

 Gaut = (Aut, o) 

A group of automorphisms can be isomorphic to some 
point group of spatial symmetry. 

For formaldehyde: 

Gaut = ({ 1, 2},o) 



Indexing of molecular graph nodes 

Molecular graph:  G = (V, E, L, , ) 

Indexing the nodes of the molecular graph G:  

 bijection : V  I 

 I is an index set: I = {1, 2, …, |V|} 

 

Thus, each node is assigned a natural number (index). 



Canonical indexing of molecular graph nodes 

Canonical indexing = indexing that fulfills the following conditions: 

For a molecular graph MG, indexing I can be generated algorithmically 
(using some alg_CI algorithm) 

Consider arbitrary indexings I1 and I2. For the canonical indexings  
 CI1 = alg_CI(MG, I1) and CI2 = alg_CI(MG, I2) must hold: 

i(CI1) = i (CI2)   

atom having index i(CI1) is topologically equivalent with atom having index i(CI2) 



Number of possible indexing 

A molecular graph has n nodes => there are n! different ways of 
indexing this graph. 

 

If |Aut| > 1 (there exist an automorphism other than identity), 

then exit only n! / |Aut| possible indexing 

 

Example - formaldehyde: 
number of atoms: 4 

number of authomorphisms: 2 

number of indexing: 4! / 2 = 12 



Canonical indexing and neighborhood matrix 

 For two canonically indexed molecular graphs  

 G = (V, A, , ) and G  = (V , A , , ) hold: 

  

  A = A´  <=>    

  graphs represent the same molecule <=>   

  graphs are isomorphic 



Canonical indexing - application 

Searching databases of molecules  

Database: contains canonically indexed molecules 

Input: canonically indexed molecule  

Procedure: compares the adjacency matrices of the input molecule 
and the molecules in the database   

 (Comparing matrices of size N has complexity O(N2).)  

Advantage: Significantly less time complexity than if we search for 
isomorphism for each pair (input molecule, database molecule)  

Finding a molecule of size N in a database with M molecules:  

• Using isomorphism: O(M.N!)    

• Using canonical indexing: O(M.N2)  



Canonical indexing - algorithms 

The "brute force" solution: 

• a large number of such algorithms can be created  

• For example: for each indexing, determine the numerical 
value that the linear notation of the neighborhood matrix 
takes.  

• Then choose the indexing with the highest numerical value. 

• advantage: no error cases 

• disadvantage: complexity O(n!) => not used in practice  



Canonical indexing - Morgan's algorithm 

• First algorithm for canonical indexing (1965) 

• Most of the others work on a similar principle 

• Notes:  
• Morgan's algorithm is based only on the topology of the 

molecule, ignoring multiple bonds, loops, and the evaluation 
of vertices with chemical tags. 

• This is not real limitation:  

• We can determine these data from the topology.  

• For example: degree of node (atom) + atom bonding => 
number of multiple edges  



Morgan's algorithm 

• Grade each node by its degree 

• Determine the number of distinct 
values 



• Grade the node by the sum of 
the scores of the neighbouring 
nodes  

• Determine the number of 
different values 

• Repeat the above two points 
until the number of distinct 
values changes 

Morgan's algorithm 



• Grade the node by the sum of 
the scores of the neighbouring 
nodes  

• Determine the number of 
different values 

• Repeat the above two points 
until the number of distinct 
values changes 

Morgan's algorithm 



• Grade the node by the sum of 
the scores of the neighbouring 
nodes  

• Determine the number of 
different values 

• Repeat the above two points 
until the number of distinct 
values changes 

Morgan's algorithm 



• Grade the node by the sum of 
the scores of the neighbouring 
nodes  

• Determine the number of 
different values 

• Repeat the above two points 
until the number of distinct 
values changes 

Morgan's algorithm 



• Grade the node by the sum of 
the scores of the neighbouring 
nodes  

• Determine the number of 
different values 

• Repeat the above two points 
until the number of distinct 
values changes 

Morgan's algorithm 



• Grade the node by the sum of 
the scores of the neighbouring 
nodes  

• Determine the number of 
different values 

• Repeat the above two points 
until the number of distinct 
values changes 

Morgan's algorithm 



• Most nodes have a different 
score 

• Mark as 1 the node with the 
highest score 

• Mark its neighbours in order 
of their scores 

Morgan's algorithm 



The remaining neighbours of 
node 2 have the same score 

• choose the one that is 
connected by multiple edges 
(C=C is green)  

• it is also possible to consider 
the mass of the atoms (for 
different ones) 

• when the atoms are equi-
valent, choose any 

Continue until all atoms are 
marked 

Morgan's algorithm 



Morgan's algorithm 

The remaining neighbours of 
node 2 have the same score 

• choose the one that is 
connected by multiple edges 
(C=C is green)  

• it is also possible to consider 
the mass of the atoms (for 
different ones) 

• when the atoms are equi-
valent, choose any 

Continue until all atoms are 
marked 



After finishing of the algorithm: 

 

Canonically 

indexed graph. 

  

Morgan's algorithm 



Advantages of the algorithm: 

• Low complexity of the algorithm: O(n2). 

 

Disadvantages of the algorithm:  

• The algorithm may in some cases index incorrectly (assign the same index to 
atoms that are not chemically equivalent)  

Morgan's algorithm - evaluation 



Canonical indexing – example of other algorithms 

Shelley-Munk algorithm: 

• An extension of Morgan's original idea 

• takes into account the properties of the neighbors of the atom 
being evaluated 

• complexity: O(n2) 

 



 
 

Thank you for your attention 


