2D structure of a molecule
Isomorphism and canonical indexing

Radka Svobodova




Content

Introduction: concept of chemoinformatics, content of
the subject, history of the field o N2
Computer model of a molecule: 1D, 2D and 3D
structure, molecule representation using graph and |
matrix
2D structure (topology) of a molecule:
 writing a molecule using a string (SMILES, InChi,
InChiKey)
 Molecular graphs: Isomorphism and canonical
Indexing
3D structure (geometry) of the molecule:
« representation using Cartesian and internal
coordinates, data formats, geometry comparison




2D structure as a molecular graph

Definition of molecular Molecule: Description of its mol. graph:
graph: Y V= {Vy, V3, V3, Vy§
11 B
G=(V,EL,o,B) \ 2 E={{vi, v3}, {v2, v3},
S nodes (o (=0, (V3. Vab (V3 Vi)
V — set of nodes (atoms) v I’ V, .V4 3> V45> 1V3s V4
E — multiset of edges (bonds) i L= {1V4 Vai> 1V Vaj §
L — multiset of loops (free electron pairs) (P(Vl) = H, (p(Vz) = H,
¢ — function for naming of nodes by (P(V3) = C, (P(V 4) =0
element symbols
B — set of element symbols B = {C, O, H}
Figure of the molecular graph:
Vi 11
H €1 Vi C3 s
72 C C C4 1
EPCEITEC H 2



2D structure as a matrix

Molecule of Neighbourhood matrix
formaldehyde: of formaldehyde:
v, O 01 O v,
0 10 0 1 0] v,
I
H’CYSH 1 1 0 2| v,
Vi Ve 0 0 2 4 '

Vi Vy V3 Vy



Isomorfism of molecular graphs

« Two molecular graphs are isomorphic if they represent the same
molecule.

« Two molecular graphs are isomorphic if they differ only in the
indexing of the nodes.

« Two molecular graphs are isomorphic if:

« Every node Ni of the graph G can be mapped to a node N'i of the graph
G

* Neighboring nodes of a node Ni can be mapped to neighboring nodes of a
node N'i.

EPCEITEC



Isomorfism of molecular graphs

Graphs G=(V,E, L, 9p,B)and G' = (V', E', L', ¢’, B) are
Isomorphic, if exist a bijective projection (permutation) f: V >V’
with the following properties:
* if nodes u, v € V have n edges {u, v} of graph G, then nodes f(u),
f(v) € V' have also n edges {f(u), f(v)} in a graph G’
* if node u € V have n loops {u, u} of graph G, then node f(u) € V' have n
loops {f(u), f(u)} graph G’
* the projection f maintain naming of the edges:
o(u) = ¢ '(flu)) foreachu € V

EPCEITEC



Isomorphism and adjacency matrix

Molecular graphs determined bv the neighborhood matrix:
G=(VA o B)aG =(V,A ¢, P)

Isomorphismus (=permutation) f: V -V’

For a permutation of f, one can construct a permutation matrix P.

Note: The permutation matrix is formed from the unit matrix by
permuting their row.

Then: A=PTA'P

EPCEITEC



Time complexity

A problem is NP-complete if an algorithm with worst polynomial time
complexity cannot be constructed for it.

Examples:

* Algorithms solvable in polynomial time belong, for example, to the
complexity classes: O(n), O(n log n), O(n?), O(n3), etc.

« NP-complete algorithms belong, for example, to the complexity classes:
O(2M), O(n!), O(n"), etc.

EPCEITEC



Isomorphism - time complexity

* The problem of isomorphism of general graphs is
probably (not proven, but all indications are :-)
among NP-complete problems.

- How we can solve it?:

 Brute force

* Improvements:
 backtracking
» Classes of edges

 Limited classes of graphs:
« planar graphs

EPCEITEC



Algorithms: brute force

* Description:
For each permutation f: V —» V'
test if it is an isomorfismus.
« Complexity:
Sets V and V' have the same number of nodes (n).
=> it exist n! permutations f: V —> V'
=> the algorithm has complexity in the class O(n!)

EPCEITEC



Algorithm: backtracking

» Streamlining the brute force method

* |t does not deal with all views. Adds an additional
vertex only to partial views that satisfy the
Isomorphism condition.

* In the worst case, this method also has factorial
complexity, but for common cases the computation is
much shorter than using brute force.

EPCEITEC



Molecular graph G:

Brute force:
Vi, Vo, Vg, Vs

Brute force X backtracking

X

\%

=

—> V,h o y
—> V,h o ‘i
—> V’la V%o V,3,
iavr

—> V'2’ o i
—> V'2’ o <

4

i

—> V'3, V5 »

7
>

_>V1,V2, »

_>V1,V3, -

i

~

_>V1,V4)

<
&}

>V 5, V5 s

—>V'5, V3, s

i

~

_>V2,V4)

<

_>V3,V1)
_>V3,V2)

4

Vo

/Z
~ l:;).‘

I
\Y
<

vy

V4)

<

4

N
Y
< /<
&%
<\

~

Vl) V3;

4

VZ)
_>V4)V3)

<

va'
Y Molecular graph G”: /
XV,1 Vg{
Bactracking:

M
V17V29V3 — ) ,V4
V,V29V3 —> V39\D

V17V29V39V4_> V39V4’V1,V

Vo>
Brute force:

24 iterations (4!)
Backtracking:

7 iterations



Algorithm: Division of nodes into classes

Classing criteria:
 atom rating
 degree of peak
Principle:

 Vertices of a graph G belonging to a certain class are mapped only to
vertices of the graph G’ belonging to the same class.
* Note: Afiner class partitioning can also be used:

* In addition to the rank and degree of an atom, we take into account the rank and
degree of its neighbors in the partitioning.

 Divide the nodes according to the number of single, double and triple bonds that
a given bond forms.

EPCEITEC



Example: Division of nodes into classes

Xe! YA
’\Vz
Molecular graph G: X Y Molecular graph G”: /
Vi
Y X X
Classes:
T,={v,} (name X, degree 2) T, ={v',} (name X, degree 2)
T, = {vi} (name X, degree 4) T, ={v"} (name X, degree 4)
T, = {v), v,} (name, degree 3) T'3={v’;, v/4} (name Y, degree 3)
Principle:

We can project members of T, only to members of T,
It exists only 2 possible projections:

Vi,Vy, V3, V== V3, V4,V (,V,
Vis V2, V3, V4 = Vi-Va




Algorithm: planar graphs

Definition: A graph is called planar if it is possible to create a planar
drawing of it.

A graph drawing is a procedure that assigns to each vertex of the graph
a point of the plane and assigns to each edge {u, v} a continuous simple
arc that connects the points assigned to vertices u and v.

Planar drawing = A drawing that is made such that two arcs have at most
1 point in common. And only if this common point corresponds to the

vertex from which both edges originate.

EPCEITEC



Planar graphs

Planar graph G:

V4 V3

<

Vi \%)

Graph G”:

Vs V3

Vi V2

Planar drawing of graph G:

g




Planar graphs

Planar graph G:

V4 V3

<

Vi V2

Graph G”:

Vs V3

Vi \'%)

Planar drawing of graph G:

For G” does not exist any
planar drawing

=>

G’ 1s not planar



Algorithm: planar graphs

EPCEITEC

The class of planar graphs is a subclass of general graphs.
In chemistry, a large fraction of molecules have planar graphs.

Exceptions: zeolites, fullerenes, some bioorganic substances (alkaloids,
hormones, ...), more complex polymers and biopolymers.

Determine whether the graph is planar:
 An algorithm to find its planar drawing; O(n)
* |Isomorphism of planar graphs:
* Hopcroft and Tarjan's algorithm; O(n log n)
=> |somorphism of planar graphs is not an NP-complete problem :-)



Isomorphismus: application in chemistry

Isomorphic graphs represent the same molecules.

Can be applied for finding of identical molecules in
databases

Input: molecule graph

Output: information about the input molecule (or report
that the molecule was not found

Procedure: search for isomorphism between the input
molecule and database elements

Disadvantage: High time complexity. Finding a
molecule of size N in a database with M molecules:
O(M.N!)

EPCEITEC



Automorphism

= isomorphism of the graph on itself

= symmetry operations on molecular graphs that preserve the
graph topology (= do not change the adjacency matrix)

Topological equivalence:

A pair of vertices v, and v; is topologically equivalent if there
exists an automorphism o such that one vertex maps to the

other: o(v)) =,

EPCEITEC



Authomorphism: examples

Molecule of formaldehyde has 2 authomorphisms:

Vi 1 0, r V1 A - (V1 A (P fv1\ fvz\
€1 €3
H V3 \Y ><
C V2 V2 V2 V1
V2 e e L < > < > < > < >
H V3 V3 V3 — V3
\ V4 J >\ Vs ) Vs ) ’ V4 )

Description of automorphisms (symetry operations):
o identity
®, axis symmetry (the axis passes through the nodes v; and v,)

Nodes v, and v, are topologically equivalen.



Automorphism and neighborhood matrix

Molecular graph determined by the neighborhood
matrix:

G=(V,A o B)
Automorphism (=permutation) o: V >V

The permutation o Iis described by a matrix P.

Then holds:
A=PTAP

EPCEITEC



Automorphism as a group

Set of all automorphisms:

Aut = {04, ®,, ...}, where ow:V—->V
Operation of composition of projections:

0. (0, ®) > o
Grup of automorphisms:

G, = (Aut, 0)

A group of automorphisms can be isomorphic to some
point group of spatial symmetry.

For formaldehyde:
Gt = ({04, ®,},0)

EPCEITEC



Indexing of molecular graph nodes
Molecular graph: G=(V,E, L, o, B)

Indexing the nodes of the molecular graph G:
bijection t: V — |

lisanindexset: | ={1, 2, ..., |V|}

Thus, each node is assigned a natural number (index).

EPCEITEC



Canonical indexing of molecular graph nodes

Canonical indexing = indexing that fulfills the following conditions:

For a molecular graph MG, indexing | can be generated algorithmically
(using some alg_ClI algorithm)

Consider arbitrary indexings |, and |,. For the canonical indexings
Cl, = alg_CI(MG, |,) and Cl, = alg_CI(MG, |,) must hold:
i(Cl,)=i(Cl,) &
atom having index i(Cl,) is topologically equivalent with atom having index i(Cl,)

EPCEITEC



Number of possible indexing

A molecular graph has n nodes => there are n! different ways of
indexing this graph.

If |Aut| > 1 (there exist an automorphism other than identity),
then exit only n! / |Aut| possible indexing

Example - formaldehyde:
number of atoms: 4
number of authomorphisms: 2
number of indexing: 4! /2 =12

EPCEITEC



Canonical indexing and neighborhood matrix

For two canonically indexed molecular graphs
G=(V,A o,B)and G' = (V', A, ¢', B) hold:

A=A <=>

graphs represent the same molecule <=>
graphs are isomorphic

EPCEITEC



Canonical indexing - application

Searching databases of molecules
Database: contains canonically indexed molecules
Input: canonically indexed molecule

Procedure: compares the adjacency matrices of the input molecule
and the molecules in the database

(Comparing matrices of size N has complexity O(N2).)

Advantage: Significantly less time complexity than if we search for
iIsomorphism for each pair (input molecule, database molecule)

Finding a molecule of size N in a database with M molecules:
 Using isomorphism: O(M.N!)
 Using canonical indexing: O(M.N?2)

EPCEITEC



Canonical indexing - algorithms

The "brute force" solution:
* a large number of such algorithms can be created

* For example: for each indexing, determine the numerical

value that the linear notation of the neighborhood matrix
takes.

* Then choose the indexing with the highest numerical value.
- advantage: no error cases

- disadvantage: complexity O(n!) => not used in practice

EPCEITEC



Canonical indexing - Morgan's algorithm

* First algorithm for canonical indexing (1965)
* Most of the others work on a similar principle

* Notes:

* Morgan's algorithm is based only on the topology of the
molecule, ignoring multiple bonds, loops, and the evaluation
of vertices with chemical tags.

 This is not real limitation:

» We can determine these data from the topology.

* For example: degree of node (atom) + atom bonding =>
number of multiple edges

EPCEITEC



Morgan's algorithm

- Grade each node by its degree

* Determine the number of distinct 1
values

3 different values
11,23}

EPCEITEC 1



Morgan's algorithm

* Grade the node by the sum of
the scores of the neighbouring 1
nodes

« Determine the number of
different values

- Repeat the above two points
until the number of distinct 2
values changes

3 different values
11,23}

EPCEITEC 1



EPCEITEC

Morgan's algorithm

Grade the node by the sum of
the scores of the neighbouring 3
nodes

Determine the number of
different values

Repeat the above two points
until the number of distinct 5
values changes

3 different values
{3,5,6}




Morgan's algorithm

* Grade the node by the sum of
the scores of the neighbouring 3
nodes

« Determine the number of
different values

- Repeat the above two points
until the number of distinct 11
values changes

8 different values
{506,10,11,

13 12, 13,14, 16 }

10

11

EPCEITEC 5



Morgan's algorithm

* Grade the node by the sum of
the scores of the neighbouring r
nodes

« Determine the number of
different values

- Repeat the above two points
until the number of distinct 26
values changes

O different values
{12, 13,14, 18, 24,
25,26,30,34 }

24

26

12
@
14 18 4

EICEITEC 12




Morgan's algorithm

* Grade the node by the sum of
the scores of the neighbouring 25
nodes

« Determine the number of
different values

- Repeat the above two points
until the number of distinct 48
values changes

O different values
{18, 24,25, 42, 48

61 51, 61,68, 82 }

51

48

EPCEITEC 24



Morgan's algorithm

* Grade the node by the sum of
the scores of the neighbouring 61
nodes

« Determine the number of
different values

- Repeat the above two points
until the number of distinct 134
values changes

10 different values
{ 42,61, 68,102,
109, 116, 127,
133, 138, 150 }

127

133

42

EPCEITEC 42



Morgan's algorithm

 Most nodes have a different
score

* Mark as 1 the node with the
highest score

* Mark its neighbours in order
Of thelr scores e 109° 09

6]

10 different values

{ 42,61, 68,102,
127 109, 116, 127,
133, 138, 150 }

133 133

138

¢ 150

42

102 116
EPCEITEC 42



Morgan's algorithm

The remaining neighbours of
node 2 have the same score

* choose the one that is 61
connected by multiple edges
(C=C is green) 127 109, 116, 127

* itis also possible to consider 133,138,150 }
the mass of the atoms (for . 1009 9P 109
different ones)

* when the atoms are equi- 133
valent, choose any

Continue until all atoms are
marked

10 different values
{42, 61, 68,102,

42

EPCEITEC 1



Morgan's algorithm

The remaining neighbours of
node 2 have the same score

* choose the one that is
connected by multiple edges
(C=C is green)

* |tis also possible to consider
the mass of the atoms (for
different ones)

* when the atoms are equi-
valent, choose any

Continue until all atoms are
marked

EPCEITEC



Morgan's algorithm

After finishing of the algorithm:

Canonically
iIndexed graph.




Morgan's algorithm - evaluation

Advantages of the algorithm:
« Low complexity of the algorithm: O(n?).

Disadvantages of the algorithm:

* The algorithm may in some cases index incorrectly (assign the same index to
atoms that are not chemically equivalent)

EPCEITEC



Canonical indexing — example of other algorithms

Shelley-Munk algorithm:
* An extension of Morgan's original idea

* takes into account the properties of the neighbors of the atom
being evaluated

« complexity: O(n2)

EPCEITEC



Thank you for your attention

EPCEITEC



