2D structure of a molecule Isomorphism and canonical indexing

Radka Svobodová

Content

- **Introduction:** concept of chemoinformatics, content of the subject, history of the field
- **Computer model of a molecule:** 1D, 2D and 3D structure, molecule representation using graph and matrix
- **2D structure (topology) of a molecule:**
	- writing a molecule using a string (SMILES, InChi, InChiKey)
	- **Molecular graphs:** Isomorphism and canonical indexing
- **3D structure (geometry) of the molecule:**
	- representation using Cartesian and internal coordinates, data formats, geometry comparison

2D structure as a molecular graph

Definition of molecular graph:

 $G = (V, E, L, \varphi, \beta)$

- V set of nodes (atoms)
- E multiset of edges (bonds)
- L multiset of loops (free electron pairs)
- φ function for naming of nodes by element symbols
- β set of element symbols $\beta = \{C, O, H\}$

Molecule:

 $V = \{v_1, v_2, v_3, v_4\}$ **Description of its mol. graph:**

 $E = \{\{v_1, v_3\}, \{v_2, v_3\},\}$ ${v_3, v_4}, {v_3, v_4}\}$ $L = \{\{v_4, v_4\}, \{v_4, v_4\}\}\$ $(v_1) = H$, $\varphi(v_2) = H$, $(v_3) = C, \phi(v_4) = O$

Figure of the molecular graph:

2D structure as a matrix

Molecule of formaldehyde: Neighbourhood matrix of formaldehyde:

$$
A = \begin{bmatrix} 0 & 0 & 1 & 0 & v_1 \\ 0 & 0 & 1 & 0 & v_2 \\ 1 & 1 & 0 & 2 & v_3 \\ 0 & 0 & 2 & 4 & v_4 \\ v_1 & v_2 & v_3 & v_4 & v_5 \end{bmatrix}
$$

Isomorfism of molecular graphs

- Two molecular graphs are isomorphic if they represent the same molecule.
- Two molecular graphs are isomorphic if they differ only in the indexing of the nodes.
- Two molecular graphs are isomorphic if:
	- Every node Ni of the graph G can be mapped to a node N[']i of the graph G´.
	- Neighboring nodes of a node Ni can be mapped to neighboring nodes of a node N´i.

Isomorfism of molecular graphs

Graphs $G = (V, E, L, \varphi, \beta)$ and $G' = (V', E', L', \varphi', \beta)$ are isomorphic, if exist a bijective projection (permutation) f: $V \rightarrow V'$ with the following properties:

- if nodes u, $v \in V$ have n edges $\{u, v\}$ of graph G, then nodes $f(u)$, $f(v) \in V'$ have also n edges $\{f(u), f(v)\}$ in a graph G'
- if node $u \in V$ have n loops $\{u, u\}$ of graph G, then node $f(u) \in V'$ have n loops {f(u), f(u)} graph G
- the projection f maintain naming of the edges: $\varphi(u) = \varphi'(f(u))$ for each $u \in V$

Isomorphism and adjacency matrix

Molecular graphs determined by the neighborhood matrix: $G = (V, A, \varphi, \beta)$ a $G' = (V', A', \varphi', \beta)$

Isomorphismus (=permutation) f: $V \rightarrow V'$

For a permutation of f, one can construct a permutation matrix P. Note: The permutation matrix is formed from the unit matrix by permuting their row.

Then: $A = P^T A' P$

Time complexity

A problem is **NP-complete** if an algorithm with worst polynomial time complexity cannot be constructed for it.

Examples:

- Algorithms solvable in polynomial time belong, for example, to the complexity classes: $O(n)$, $O(n \log n)$, $O(n^2)$, $O(n^3)$, etc.
- NP-complete algorithms belong, for example, to the complexity classes: O(2ⁿ), O(n!), O(nⁿ), etc.

Isomorphism - time complexity

- The problem of isomorphism of general graphs is probably (not proven, but all indications are :-) among **NP-complete problems**.
- **How we can solve it?:**
	- Brute force
	- Improvements:
		- backtracking
		- Classes of edges
	- Limited classes of graphs:
		- planar graphs

Algorithms: brute force

• **Description:**

For each permutation f: $V \rightarrow V'$

test if it is an isomorfismus.

• **Complexity:**

Sets V and V' have the same number of nodes (n).

 \Rightarrow it exist n! permutations f: $V \rightarrow V'$

 \Rightarrow the algorithm has complexity in the class $O(n!)$

Algorithm: backtracking

- Streamlining the brute force method
- It does not deal with all views. Adds an additional vertex only to partial views that satisfy the isomorphism condition.
- In the worst case, this method also has factorial complexity, but for common cases the computation is much shorter than using brute force.

Algorithm: Division of nodes into classes

Classing criteria:

- atom rating
- degree of peak

Principle:

- Vertices of a graph G belonging to a certain class are mapped only to vertices of the graph G′ belonging to the same class.
- Note: A finer class partitioning can also be used:
	- In addition to the rank and degree of an atom, we take into account the rank and degree of its neighbors in the partitioning.
	- Divide the nodes according to the number of single, double and triple bonds that a given bond forms.

Example: Division of nodes into classes

Classes:

 $T_3 = \{v_1, v_2\}$ (name Y, degree 3)

 $V_1, V_2, V_3, V_4 \rightarrow V_4, V_3, V_1, V_2$

 $T_1 = \{v_4\}$ (name X, degree 2) $T'_1 = \{v'_2\}$ (name X, degree 2) $T_2 = \{v_3\}$ (name X, degree 4) $T'_2 = \{v'_1\}$ (name X, degree 4) $T'_{3} = \{v'_{3}, v'_{4}\}$ (name Y, degree 3)

Principle:

We can project members of T_i only to members of T_i It exists only 2 possible projections: $V_1, V_2, V_3, V_4 \rightarrow V'_3, V'_4, V'_1, V'_2$

 $\overline{}$

Algorithm: planar graphs

- **Definition:** A graph is called planar if it is possible to create a planar drawing of it.
- **A graph drawing** is a procedure that assigns to each vertex of the graph a point of the plane and assigns to each edge $\{u, v\}$ a continuous simple arc that connects the points assigned to vertices u and v.
- **Planar drawing** = A drawing that is made such that two arcs have at most 1 point in common. And only if this common point corresponds to the vertex from which both edges originate.

Planar graph G: Planar drawing of graph G:

Graph G´ :

Planar graph G: Planar drawing of graph G:

Graph G´ :

For G´ does not exist any planar drawing

 \Rightarrow

G´ is not planar

Algorithm: planar graphs

The class of planar graphs is a subclass of general graphs. In chemistry, a large fraction of molecules have planar graphs. Exceptions: zeolites, fullerenes, some bioorganic substances (alkaloids, hormones, ...), more complex polymers and biopolymers.

Determine whether the graph is planar:

- An algorithm to find its planar drawing; O(n)
- Isomorphism of planar graphs:
	- Hopcroft and Tarjan's algorithm; O(n log n)
- => Isomorphism of planar graphs is not an NP-complete problem :-)

Isomorphismus: application in chemistry

Isomorphic graphs represent the same molecules.

- Can be applied for finding of identical molecules in databases
- **Input:** molecule graph
- **Output:** information about the input molecule (or report that the molecule was not found
- **Procedure:** search for isomorphism between the input molecule and database elements

Disadvantage: High time complexity. Finding a molecule of size N in a database with M molecules: O(M.N!)

Automorphism

= isomorphism of the graph on itself

= symmetry operations on molecular graphs that preserve the graph topology (= do not change the adjacency matrix)

Topological equivalence:

A pair of vertices v_i and v_i is topologically equivalent if there exists an automorphism ω such that one vertex maps to the other: $\omega(v_i) = v_j$

Authomorphism: examples

Molecule of formaldehyde has 2 authomorphisms:

Description of automorphisms (symetry operations):

- ω_1 identity
- ω_{2} axis symmetry (the axis passes through the nodes v_3 and v_4)

Nodes **v₁** and **v₂** are **topologically** equivalen.

Automorphism and neighborhood matrix

Molecular graph determined by the neighborhood matrix:

 $G = (V, A, \varphi, \beta)$

Automorphism (=permutation) $\omega: V \rightarrow V$

The permutation ω is described by a matrix P.

Then holds:

 $A = P^T A P$

Automorphism as a group

Set of all automorphisms:

Aut = { $\omega_1, \omega_2, \ldots$ }, where $\omega: V \rightarrow V$

Operation of composition of projections:

 ϕ : $(\omega, \omega) \rightarrow \omega$

Grup of automorphisms:

 $G_{\text{aut}} = (\text{Aut}, o)$

A group of automorphisms can be isomorphic to some point group of spatial symmetry.

For formaldehyde:

$$
\mathsf{G}_{\mathsf{aut}} = (\{\omega_1,\,\omega_2\},\mathsf{o})
$$

Indexing of molecular graph nodes

Molecular graph: $G = (V, E, L, \varphi, \beta)$ Indexing the nodes of the molecular graph G: bijection $\tau: V \rightarrow I$

I is an index set:
$$
I = \{1, 2, ..., |V|\}
$$

Thus, each node is assigned a natural number (index).

Canonical indexing of molecular graph nodes

Canonical indexing = indexing that fulfills the following conditions:

For a molecular graph MG, indexing I can be generated algorithmically (using some alg_CI algorithm)

Consider arbitrary indexings I_1 and I_2 . For the canonical indexings $CI_1 = alg_CI(MG, I_1)$ and $CI_2 = alg_CI(MG, I_2)$ must hold: $i(Cl_1) = i(Cl_2)$ \iff atom having index i(Cl₁) is topologically equivalent with atom having index i(Cl₂)

Number of possible indexing

A molecular graph has n nodes => there are n! different ways of indexing this graph.

If |Aut| > 1 (there exist an automorphism other than identity), then exit only n! / |Aut| possible indexing

Example - formaldehyde: number of atoms: 4 number of authomorphisms: 2 number of indexing: $4! / 2 = 12$

Canonical indexing and neighborhood matrix

For two canonically indexed molecular graphs $G = (V, A, \varphi, \beta)$ and $G' = (V', A', \varphi', \beta)$ hold:

 $A = A' \leq z$

graphs represent the same molecule <=> graphs are isomorphic

Canonical indexing - application

Searching databases of molecules

Database: contains canonically indexed molecules

Input: canonically indexed molecule

- **Procedure:** compares the adjacency matrices of the input molecule and the molecules in the database
	- (Comparing matrices of size N has complexity O(N²).)
- **Advantage:** Significantly less time complexity than if we search for isomorphism for each pair (input molecule, database molecule)

Finding a molecule of size N in a database with M molecules:

- Using isomorphism: $O(M.N!)$
- Using canonical indexing: O(M.N²)

Canonical indexing - algorithms

The "brute force" solution:

- a large number of such algorithms can be created
- For example: for each indexing, determine the numerical value that the linear notation of the neighborhood matrix takes.
- Then choose the indexing with the highest numerical value.
- advantage: no error cases
- disadvantage: complexity $O(n!) \Rightarrow$ not used in practice

Canonical indexing - Morgan's algorithm

- First algorithm for canonical indexing (1965)
- Most of the others work on a similar principle
- Notes:
	- Morgan's algorithm is based only on the topology of the molecule, ignoring multiple bonds, loops, and the evaluation of vertices with chemical tags.
	- This is not real limitation:
		- We can determine these data from the topology.
		- For example: degree of node (atom) + atom bonding => number of multiple edges

- Grade each node by its degree
- Determine the number of distinct values

- Grade the node by the sum of the scores of the neighbouring nodes
- Determine the number of different values
- Repeat the above two points until the number of distinct values changes

- Grade the node by the sum of the scores of the neighbouring nodes
- Determine the number of different values
- Repeat the above two points until the number of distinct values changes

- Grade the node by the sum of the scores of the neighbouring nodes
- Determine the number of different values
- Repeat the above two points until the number of distinct values changes

- Grade the node by the sum of the scores of the neighbouring nodes
- Determine the number of different values
- Repeat the above two points until the number of distinct values changes

- Grade the node by the sum of the scores of the neighbouring nodes
- Determine the number of different values
- Repeat the above two points until the number of distinct values changes

- Grade the node by the sum of the scores of the neighbouring nodes
- Determine the number of different values
- Repeat the above two points until the number of distinct values changes

- Most nodes have a different score
- Mark as 1 the node with the highest score
- Mark its neighbours in order of their scores

The remaining neighbours of node 2 have the same score

- choose the one that is connected by multiple edges (C=C is green)
- it is also possible to consider the mass of the atoms (for different ones)
- when the atoms are equivalent, choose any

Continue until all atoms are marked

The remaining neighbours of node 2 have the same score

- choose the one that is connected by multiple edges (C=C is green)
- it is also possible to consider the mass of the atoms (for different ones)
- when the atoms are equivalent, choose any

Continue until all atoms are marked

After finishing of the algorithm:

Canonically indexed graph.

Morgan's algorithm - evaluation

Advantages of the algorithm:

• Low complexity of the algorithm: $O(n^2)$.

Disadvantages of the algorithm:

• The algorithm may in some cases index incorrectly (assign the same index to atoms that are not chemically equivalent)

Canonical indexing – example of other algorithms

Shelley-Munk algorithm:

- An extension of Morgan's original idea
- takes into account the properties of the neighbors of the atom being evaluated
- complexity: O(n2)

Thank you for your attention

