Tanimoto coefficient

$$S_{AB} = \frac{c}{a+b-c}$$

- a: A count of "1" in a fingerprint of a molecule A
- b: A count of "1" in a fingerprint of a molecule B
- c: A count of "1", which have both fingerprints in the same positions

$$S_{AB} = \frac{5}{8+6-5} = 0.56$$

Next binary similarity coefficients

Name	Formula for binary
	(dichotomous) variables

Tanimoto
$$S_{AB} = \frac{c}{a+b-c}$$
 (Jaccard) Range: 0 to 1 coefficient)

Dice coefficient
$$S_{AB} = \frac{2c}{a+b}$$
 (Hodgkin index) Range: 0 to 1

Cosine similarity
$$S_{AB} = \frac{c}{\sqrt{ab}}$$
 (Carbó index) Range: 0 to 1

Euclidean
$$D_{AB} = \sqrt{a+b-2c}$$
 distance Range: 0 to N

Hamming
$$D_{AB} = a + b - 2c$$

(Manhattan Range: 0 to N

Soergel distance
$$D_{AB} = \frac{a+b-2c}{a+b-c}$$

Range: 0 to 1

distance

Similarity coefficients – binary and real numbers

Name	Formula for binary (dichotomous) variables	Formula for continuous variables
Tanimoto (Jaccard) coefficient)	$S_{AB} = \frac{c}{a+b-c}$ Range: 0 to 1	$S_{AB} = \frac{\sum_{i=1}^{N} x_{iA} x_{iB}}{\sum_{i=1}^{N} (x_{iA})^2 + \sum_{i=1}^{N} (x_{iB})^2 - \sum_{i=1}^{N} x_{iA} x_{iB}}$ Range: -0.333 to +1
Dice coefficient (Hodgkin index)	$S_{AB} = \frac{2c}{a+b}$ Range: 0 to 1	$S_{AB} = \frac{2\sum_{i=1}^{N} x_{iA}x_{iB}}{\sum_{i=1}^{N} (x_{iA})^{2} + \sum_{i=1}^{N} (x_{iB})^{2}}$ Range: -1 to +1
Cosine similarity (Carbó index)	$S_{AB} = \frac{c}{\sqrt{ab}}$ Range: 0 to 1	$S_{AB} = \frac{\sum_{i=1}^{N} x_{iA} x_{iB}}{\left[\sum_{i=1}^{N} (x_{iA})^2 \sum_{i=1}^{N} (x_{iB})^2\right]^{1/2}}$ Range: -1 to +1
Euclidean distance	$D_{AB} = \sqrt{a + b - 2c}$ Range: 0 to N	$D_{AB} = \left[\sum_{i=1}^{N} (x_{iA} - x_{iB})^2\right]^{1/2}$ Range: 0 to ∞
Hamming (Manhattan or City-block) distance	$D_{AB} = a + b - 2c$ Range: 0 to N	$D_{AB} = \sum_{i=1}^{N} x_{iA} - x_{iB} $ Range: 0 to ∞
Soergel distance	$D_{AB} = \frac{a+b-2c}{a+b-c}$ Range: 0 to 1	$D_{AB} = \frac{\sum_{i=1}^{N} x_{iA} - x_{iB} }{\sum_{i=1}^{N} \max(x_{iA}, x_{iB})}$ Range: 0 to 1