1D descriptors

1. Fill the Table 1:

Table 1	Pubchem ID	Summary formula	Molecular weight	Dissociation constant (pKa)
2,4,6-trinitrophenol				
2,3-dinitrophenol				
3-hydroxybenzaldehyde				
2,4,6-trimethylphenol				

Note: If you can't find something in PubChem, look elsewhere on the Internet.

2. What other 1D descriptors are you able to find in PubChem? Write them here: What others can you find in DrugBank and LigandExpo? Write them here:

2D descriptors

3. Fill Table 2 with 2D structures:

Table 2:

2,4,6-trinitrophenol	2,3-dinitrophenol				
3-hydroxybenzaldehyde	2,4,6-trimethylphenol				

4. Fill Table 3 with fingerprints:

Table 3		ZI	-OH	-Cl	-NO2	-CH₃	-соон
2,4,6-trinitrophenol	1	0					
2,3-dinitrophenol							
3-hydroxybenzaldehyde							
2,4,6-trimethylphenol							

5. Fill Table 4, for each pair of atoms in the glycine molecule (see picture), write the smallest number of bonds separating them.

Table 4	HN2	Н	N	HA1	CA	HA2	С	0	OXT	HXT
HN2	0	2	1							
Н										
Ν										
HA1										
CA										
HA2										
С										
0										
OXT										
HXT										

6. Count the Wiener index for the glycine molecule. Use the formula:

where N is the number of atoms and Dij is the distance between atoms i and j.

3D descriptors

7. Use MolView (molview.org) to view the molecules from Table 1 one by one. (It is best to trace them using the English name.) Add the column "Distance between O and H atoms" in Table 5 - measure this distance using (in MolView it is the Jmol tab and the "Distance" command, you have to click on the pair of atoms where you measure the distance).

Table 5	Dissociation constant (pKa)	Distance between atoms O and H	Charge on O (from OH group)	Charge on H (from OH group)
2,4,6-trinitrophenol				
2,3-dinitrophenol				
3-hydroxybenzaldehyde				
2,4,6-trimethylphenol				

- 8. In what unit are the measured distances?
- 9. In the first column of the table, copy the values from Table 1 then. Is there any relationship between the bond lengths O and H and the value of pKa? If so, what is it?
- 10. Download the 3D structures of the molecules listed in Table 1 from PubChem. Use the Atomic Charge calculator II tool (<u>https://acc2.ncbr.muni.cz/</u>) to calculate the charges on them and fill in the table.
- 11. Is there any relationship between the charges on O and H and the value of pKa? If so, what is it?