
Software Architectures
Domain Driven Design II



Content
1. Terminology Refresher
2. Strategic Design with Context Mapping



Terminology



Ubiquitous Language
a common, rigorous language between developers and users
our domain model is based on this language



Bounded Context
context related to one specific area (product in warehouse vs in basket)



Context Map
diagram that shows different bounded contexts and their connections



Aggregate
Aggregate is a cluster of domain objects that can be treated as a single unit.
Transactions should not cross aggregate boundaries.



Domain Event
An event is something that has happened in the past.



Command
Command is a instuction to perform an operation between aggregates.



Strategic Design with Context Mapping



Partnership



Partnership
align the two teams with a dependent set of goals
he two teams will succeed or fail together
they will meet frequently to synchronize schedules and dependent work
synchronization is represented by the thick mapping line between the two teams
challenging to maintain a Partnership over the long term
should last only as long as it provides an advantage
should be remapped to a different relationship when the advantage is gone



Shared Kernel



Shared Kernel
intersection of the two Bounded Contexts
describes the relationship between two (or more) teams that share a small but
common model
possible that only one of the teams will maintain the code, build, and test for what is
shared
often very difficult to conceive, and difficult to maintain
must have open communication between teams and constant agreement



Customer-Supplier



Customer-Supplier
very typical and practical relationship between teams
Supplier is upstream (the U in the diagram) and the Customer is downstream (the D
in the diagram)
It’s up to the Customer to plan with the Supplier to meet various expectations
in the end the Supplier determines what the Customer will get and when
works as long as corporate culture does not allow the Supplier to be completely
autonomous and unresponsive to the real needs of Customers



Conformist



Conformist
the upstream team has no motivation to support the specific needs of the downstream
team
downstream team cannot sustain an effort to translate the Ubiquitous Language of the
upstream model to fit its specific needs
so the team conforms to the upstream model as is
for example, when integrating with a very large and complex model that is well
established



Anticorruption Layer



Anticorruption Layer
the most defensive Context Mapping relationship
the downstream team creates a translation layer between its Ubiquitous Language
(model) and the Ubiquitous Language (model) that is upstream to it
this is also an approach to integration
Whenever possible, you should try to create an Anticorruption Layer between your
downstream model and an upstream integration model
keep you completely isolated from foreign concepts



Open Host Service



Open Host Service
Open Host Service defines a protocol or interface that gives access to your Bounded
Context as a set of services
the protocol is “open” so that all who need to integrate with your Bounded Context
can use it with relative ease
services offered by the application programming interface (API) are well documented
and a pleasure to use
it would be much more tolerable to be a Conformist to this model



Published Language



Published Language
well-documented information exchange language enabling simple consumption and
translation
can be defined with (XML Schema,) JSON Schema, Swagger, or a more optimal wire
format, such as Protobuf or Avro



Separate Ways



Separate Ways
where integration will not produce significant payoff



Integration with Big Ball of Mud



Differents architectures using Bounded Context





Modern microservices using DDD



Messaging architecture





Questions?



That's it for today.

Speaker notes


