
Software Architectures
Domain Driven Design



Content
1. Tactical Design with Aggregates
2. Tactical Design with Events



Tactical Design with Aggregates





Aggregates

each bounded context in an aggregate
discussion is value object



Entity
An Entity models an individual thing.
Each Entity has a unique identity in that you can distinguish its individuality from
among all other Entities of the same or a different type.
Most of the times an Entity will be mutable = state will change in time



Aggregate

Each Aggregate is composed of one or more Entities
One Entity is called the Aggregate Root
Aggregates may also have Value Objects composed on them



Value Object
models an immutable conceptual whole.
does not have a unique identity, and equivalence is determined by comparing the
attributes encapsulated by the Value type.
often used to describe, quantify, or measure an Entity.



Value Object vs Entity
Identity:
Entity:
have a distinct identity that is usually represented by a unique identifier (ID)
are defined by their identity, and two entities with the same attributes but different
IDs are considered different entities.
Value Object:
do not have a distinct identity.
they are defined solely by their attributes



Value Object vs Entity
Mutability:
Entity:
entities are mutable, their state can change over time while maintaining the same
identity.
Value Object:
value Objects are immutable, meaning their state cannot change once they are
created. If you need to modify a Value Object, you create a new one with the desired
state.



Value Object vs Entity
Equality:
Entity: Equality for entities is based on their identity. If two entities have the same
ID, they are considered equal.
Value Object: Equality for Value Objects is based on the equality of their attributes.



Value Object vs Entity
Lifecycle:
Entity: Entities have a longer lifecycle and represent concepts that persist over time.
They are typically stored in a database and can be retrieved and updated as needed.
Value Object: Value Objects have a shorter lifecycle and are often used to represent
immutable values that are part of an Entity's state. They are not typically stored in a
database as separate entities.



Four Rules of Thumb
1. Protect business invariants inside Aggregate boundaries.
2. Design small Aggregates.
3. Reference other Aggregates by identity only.
4. Update other Aggregates using eventual consistency.



Rule 1: Protect Business Invariants





There is a business rule that states, “When all Task instances have hoursRemaining of
zero, the BacklogItem status must be set to DONE.” Thus, at the end of a transaction
this very specific business invariant must be met. The business requires it.



Rule 2: Design Small Aggregates



In the preceding diagram the Aggregate that is represented is not small.
Product literally contains a potentially very large collection of BacklogItem instances,
a large collection of Release instances, and a large collection of Sprint instances.
Over time, these collections could grow to be quite large, with thousands of
BacklogItem instances and probably hundreds of Release and Sprint instances.
This design approach is generally a very poor choice.



Small aggregates
load quickly, take less memory, and are faster to garbage collect





Rule 3: Reference Other Aggregates by Identity Only



Rule 4: Update Other Aggregates Using Eventual
Consistency













Core Domain: Scrum Project Management
Ubiquitous Language
Product
BacklogItem
Release
Sprint



Problems with Wrong Abstractions
Ignores Ubiquitous Language
Hard to model details of specific types
Special cases and complex class hierarchy
More code than necessary if modeling explicitly
Will influence the user interface negatively
Waste time and money pursuing wrong design
Imagined future proofing your design will meet with failure when future concepts
realized



Model Explicitly Per Ubiquitous Language
Adheres to the mental model of Domain Experts
Creates an understandable model
Protects the organization's software investment
Saves time and money



Modeling Steps
1. Start with Rule 2, Design Small Aggregates
2. Next use Rule 1, Protect Business Invariants. Make a chart with Aggregate names and

list dependents under each
3. Ask Domain Experts for an acceptable time frame for updates to each dependent, for

(a) immediate, (b) eventually (e.g. N seconds)
4. House all 3a components under one Aggregate
5. Plan to update all 3b dependents eventually



Unit Test Aggregates
1. Using Rule 2, Design Small Aggregates, will help make Aggregates testable
2. Unit tests are different from acceptance tests
3. Test for correctness and robustness of each Component



Tactical Design with Domain Events



Causal Consistency: An Example
1. Sue posts a message saying, "I lost my wallet!"
2. Gary says in reply, "That's terrible!"
3. Sue posts a message saying, "Don't worry, I found my wallet!"
4. Gary replies, "That's great!"



Designing, Implementing, and Using Domain Events





Command vs event



Scrum domain events





Save to DB
both aggregate and the event (event log)



Domain Events Are Facts
May be caused by a non-command source
Example: time-based
End of day/week/year
Fiscal year ended
Markets closed





Command





Command
can be rejected by availability or by some kind of business validation
need to generate one or more commands to carry a set of actions



Event Sourcing
Can be described as persisting all Domain Events that have occurred for an Aggregate
instance as a record of what changed about that Aggregate instance
Rather than persisting the Aggregate state as a whole, you store all the individual
Domain Events that have happened to it.





Projection
A projection refers to a read-only, denormalized view of the data that is derived from
the events stored in the event store.
We can implement it as a view by aggregating all events (processing event stream
from start to end). This view can is usually cached or precomputed.
There can be multiple projections based on event stream.



PERFORMANCE CONSCIOUS
highest-performing Aggregates will be those that are cached in memory
Using the Actor model with actors as Aggregates is one of the easier ways to keep
your Aggregates’ state cached.
Using snapshot, the load time of your Aggregates, that have been evicted from
memory, can be reconstituted optimally without reloading every Domain Event from
an event stream



Question: how would you implement snapshot?



Modeling within Time Constraints
Our goal is to learn about a business domain and refine a model
Knowledge crunching takes time
If we don't learn and model quickly, we will seem to fail even if we deliver
We must timebox our modeling efforts
We must not try to eliminate design



Questions?



That's it for today.

Speaker notes


