DATA-A: Datová analýza pro každého

Literatura

AIML.com. (January, 2024). What is Undeffitting? https://aiml.com/what-is-underfitting/

Akbaba, D., Wilburn, J., Nance, M. T., & Meyer, M. (2021). Manifesto for Putting'Chartjunk'in the Trash 2021! arXiv preprint arXiv:2109.10132.

Allison, P. D. (2011). Event history analysis. SAGE. https://doi.org/10.4135/9781412984195

Ariza-Colpas, P. P., Vicario, E., Oviedo-Carrascal, A. I., Butt Aziz, S., Pineres-Melo, M. A., Quintero-Linero, A., & Patara, F. (2022). Human activity recognition data analysis: History, evolutions, and new trends. Sensors22(9), 3401. https://doi.org/10.3390/s22093401

Bayes, T. (1991). An essay towards solving a problem in the doctrine of chances[Original work published 1763]. MD computing: computers in medical practice8(3), 157-171. 

Bernstein, D. M., Aßfalg, A., Kumar, R., & Ackerman, R. (2016). Looking Backward and Forward on Hindsight Bias. Oxford.

Bharati, S., & Batra, R. (2021). How misuse of statistics can spread misinformation: a study of misrepresentation of COVID-19 data. arXiv preprint arXiv:2102.07198

Bickel, P. J., Hammel, E. A., & O'Connell, J. W. (1975). Sex Bias in Graduate Admissions: Data from Berkeley: Measuring bias is harder than is usually assumed, and the evidence is sometimes contrary to expectation. Science, 187(4175), 398-404. https://www.science.org/doi/pdf/10.1126/science.187.4175.398

Blaha, M. (n.d). Umělá inteligence: Historie NN [Studijní materiály]. Portal.matematickabiologie.cz. Retrieved November 18, 2020, from https://portal.matematickabiologie.cz/index.php?pg=analyza-a-hodnoceni-biologickych-dat--umela-inteligence--neuronove-site-jednotlivy-neuron--uvod-do-neuronovych-siti--historie-nn

Carlin, M. T., Costello, M. S., Flansburg, M. A., & Darden, A. (2024). Reconsideration of the type I error rate for psychological science in the era of replication. Psychological methods, 29(2), 379–387. https://doi.org/10.1037/met0000490

Carter, L., & Hardouin, C. (2009). Use and misuse of quantitative and graphical Information in StatisticsAn Approach in Teaching.

Cohen, J. (1988). Statistical Power Anaylsis for the Behavioral Sciences (2nd ed.). Erlbaum.

Cooper, W.W., Seiford, L.M., Zhu, J. (2011). Data Envelopment Analysis: History, Models, and Interpretations. In: Cooper, W., Seiford, L., Zhu, J. (eds) Handbook on Data Envelopment Analysis. International Series in Operations Research & Management Science, vol 164. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6151-8_1

Creswell, J. W., & Plano Clark, V. L. (2007). Designing and conducting mixed methodsresearch. Sage

Domb, B. G., & Sabetian, P. W. (2021). The blight of the Type II error: When no difference does not mean no difference. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 37(4), 1353-1356. https://doi.org/10.1016/j.arthro.2021.01.057

Field, A. (2016). Mixed Factorial ANOVA. Discovering statistics. https://discoveringstatistics.com/repository/mixed_2020.pdf

Fisher, R. A. (1935). The design of experiments. Oliver & Boyd.

Foken, T., & Wichura, B. (1996). Tools for quality assessment of surface-based flux measurements. Agricultural and forest meteorology78(1-2), 83-105. https://doi.org/10.1016/0168-1923(95)02248-1

Hanna, M., Pantanowitz, L., Jackson, B., Palmer, O., Visweswaran, S., Pantanowitz, J., ... & Rashidi, H. (2024). Ethical and Bias Considerations in Artificial Intelligence (AI)/Machine Learning. Modern Pathology, 100686.

Hardouin, C., & Carter, L. (2009). Use and misuse of quantitative and graphical Information in Statistics. An Approach in Teaching. In 10th Int. Conf. Mathematics Education into the 21st Century Project. Models in Developing Mathematics Education (p. Carter). https://hal.science/hal-00382120/

Head, M. L., Holman, L., Lanfear, R., Kahn, A. T., & Jennions, M. D. (2015). The extent and consequences of p-hacking in science. PLoS biology, 13(3), e1002106.

Heeringa, S.G., West B.T., & Berglund, P.A. (2017). Applied survey data analysis. Chapman and Hall/CRC.

Hejtmánek, L (n.d.). Experiment a testování hypotéz [studijní materiály]. Karlova univerzita, Fakulta humanitních studií. https://dl1.cuni.cz/pluginfile.php/1379266/mod_resource/content/1/Experiment.pdf

Hicks, S. C., & Peng, R. D. (2019a). Evaluating the success of a data analysis. arXiv preprint arXiv:1904.11907

Hicks, S. C., & Peng, R. D. (2019b). Elements and principles for characterizing variation between data analyses. arXiv preprint arXiv:1903.07639

History of Data Science. (2024, Auguste 27). ImageNet: A Pioneering Vision for Computers. November 18., 2020, from https://www.historyofdatascience.com/imagenet-a-pioneering-vision-for-computers/

Huesch, M., Ong, M., & Richman, B. D. (2015). Could data broker information threaten physician prescribing and professional behavior? CESR-Schaeffer Working Paper No. 2015-009, Duke Law School Public Law & Legal Theory Series No. 2015-28. https://ssrn.com/abstract=2623186 or http://dx.doi.org/10.2139/ssrn.2623186

Charamba, V., Lutaaya, E., & Shihepo, S. (2023). Common mistakes and misuse of statistics in agricultural experiments and guidelines on how to avoid them – A commentary. Makerere University Journal of Agricultural and Environmental Sciences, 12(1), 23-38.

Chatterjee, S., & Zielinski, P. (2022). On the generalization mystery in deep learning. arXiv preprint. https://doi.org/10.48550/arXiv.2203.10036

Jaro Education. (2024). 30+ Advanced Data Science Concepts for Business Professionals. https://www.jaroeducation.com/blog/data-science-concepts-for-business-professionals/

Johannssen, A., Chukhrova, N., Schmal, F., & Stabenow, K. (2021). Statistical literacy – Misuse of statistics and its consequences. Journal of Statistics and Data Science Education, 29(1), 54–62. https://doi.org/10.1080/10691898.2020.1860727

Jørgensen, M., & Papatheocharous, E. (2015, August). Believing is seeing: Confirmation bias studies in software engineering. In 2015 41st Euromicro Conference on Software Engineering and Advanced Applications (pp. 92-95). IEEE. https://web-backend.simula.no/sites/default/files/publications/files/confbiasinse_15_feb_to_submit.pdf

Kämpfen, F., & Mosca, I. (2024). Heterogeneous Effects of Blood Pressure Screening [Discussion paper series]. IZA institute of Labor Economic. RePEc:may:mayecw:n319-24.pdf

Laerd Statistics (n.d.-a). Binomial Logistic Regression using SPSS Statisticshttps://statistics.laerd.com/spss-tutorials/binomial-logistic-regression-using-spss-statistics.php

Laerd Statistics (n.d.-b). Multinomial Logistic Regression using SPSS Statisticshttps://statistics.laerd.com/spss-tutorials/multinomial-logistic-regression-using-spss-statistics.php

Laerd Statistics (n.d.-c). Mixed ANOVA using SPSS Statisticshttps://statistics.laerd.com/spss-tutorials/mixed-anova-using-spss-statistics.php

Lambert J. (2011). Statistics in brief: how to assess bias in clinical studies? Clinical orthopaedics and related research, 469(6), 1794–1796. https://doi.org/10.1007/s11999-010-1538-7

Lane, D. H. (1993). Can flawed statistics be a substitute for real biology? New Zealand journal of zoology, 20(1), 51-59.

Lee, M.D. & Wagenmaker, E-J. (2014). Bayesian Cognitive Modeling: A Practical CourseCambridge University Press. https://doi.org/10.1017/CBO9781139087759

 Leu, K. (2020). Data for students: The potential of data and analytics for student success. RTI Press.  RTI Press Research Brief No. RB-0023-2003 https://doi.org/10.3768/rtipress.2020.rb.0023.2003

MacKay, David J. C. (1992). Bayesian interpolation. Neural computation, 4(3), pp. 415–447.

Macháčková, H. (2019). Experiment v mediálním výzkumu [studijní materiály]. Masarykova univerzita, Fakulta sociálních studií. https://is.muni.cz/el/fss/podzim2019/ZUR434/um/Prednaska_7-Prezentace-Experiment_2019.pdf

Mavrogiorgos, K., Kiourtis, A., Mavrogiorgou, A., Menychtas, A., & Kyriazis, D. (2024). Bias in Machine Learning: A Literature Review. Applied Sciences14(19), 8860.

Menti, A., Kalpourtzi, N., Gavana, M., Vantarakis, A., Voulgari, P. V., Hadjichristodoulou, C., ... & Stergiou, G. S. (2022). Opportunistic screening for hypertension: what does it say about the true epidemiology? Journal of Human Hypertension36(4), 364-369.

Misra, P., Upadhyay, R. P., Krishnan, A., Vikram, N. K., & Sinha, S. (2011). A community-based study of metabolic syndrome and its components among women of rural community in Ballabgarh, Haryana. Metabolic syndrome and related disorders, 9(6), 461–467. https://doi.org/10.1089/met.2011.0033

Müller, H. G. (2016). Peter Hall, functional data analysis and random objects. The Annals of Statistics, 44(5), 1867-1887. https://doi.org/10.1214/16-AOS1492

Nguyen, A., Gardner, L., & Sheridan, D. (2020). Data Analytics in Higher Education: An Integrated View. Journal of Information Systems Education, 31(1), 61-71. http://jise.org/Volume31/n1/JISEv31n1p61.html

Parsons, P., & Shukla, P. (2020, October). Data visualization practitioners’ perspectives on chartjunk. In 2020 IEEE Visualization Conference (VIS) (pp. 211-215). IEEE.

Pasquetto, I. V., Cullen, Z., Thomer, A., & Wofford, M. (2024). What is research data “misuse”? And how can it be prevented or mitigated? Journal of the Association for Information Science and Technology, 75(12), 1413-1429. https://doi.org/10.1002/asi.24944

Patel, H. C., Hayward, C., Ozdemir, B. A., Rosen, S. D., Krum, H., Lyon, A. R., ... & Di Mario, C. (2015). Magnitude of blood pressure reduction in the placebo arms of modern hypertension trials: implications for trials of renal denervation. Hypertension65(2), 401-406.

Plano Clark, V. L., Huddleston-Casas, C. A., Churchill, S. L., O'Neil Green, D., & Garrett, A. L. (2008). Mixed methods approaches in family science research. Journal of Family Issues29(11), 1543-1566. https://journals.sagepub.com/doi/epdf/10.1177/0192513X08318251

Popper, K. (2005). The logic of scientific discovery. Routledge.

Project Management, Team. (2024). Data Analytics vs Data Science. Data Science PMhttps://www.datascience-pm.com/data-analytics-vs-data-science/

Pullinger, J. (2021). Misuse of statistics: time to speak out. Statistical Journal of the IAOS37(1), 79-84. https://doi.org/10.3233/SJI-210783

Rautenhaus, M., Böttinger, M., Siemen, S., Hoffman, R., Kirby, R. M., Mirzargar, M., ... & Westermann, R. (2017). Visualization in meteorology—a survey of techniques and tools for data analysis tasks. IEEE Transactions on Visualization and Computer Graphics24(12), 3268-3296. https:// doi.org/10.1109/TVCG.2017.2779501

Resnik, D. B., Elliott, K. C., Soranno, P. A., & Smith, E. M. (2017). Data-intensive science and research integrity. Accountability in Research24(6), 344-358.

Rosentahl, J. S. (2008). Zasažen bleskem: podivuhodný svět pravděpodobnosti, Academia.

Rossman, A. J. (1994). Televisions, physicians, and life expectancy. Journal of Statistics Education, 2(2). https://doi.org/10.1080/10691898.1994.11910476

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L., 2015. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision 115, 211–252. https://doi.org/10.1007/s11263-015-0816-y

Shokouhi, M., White, R., & Yilmaz, E. (2015, August). Anchoring and adjustment in relevance estimation. In Proceedings of the 38th International ACM SIGIR Conference on research and development in information retrieval (pp. 963-966). https://doi.org/10.1145/2766462.2767841

Schatz, P., Jay, K. A., McComb, J., & McLaughlin, J. R. (2005). Misuse of statistical tests in Archives of Clinical Neuropsychology publications. Archives of Clinical Neuropsychology, 20(8), 1053-1059. https://doi.org/10.1016/j.acn.2005.06.006

Skansi, S. (2020). Guide to Deep Learning Basics: Logical, Historical and Philosophical Perspectives. Springer.

Tufte, E. R. (1983). The visual display of quantitative information (2nd ed). Graphics press.

Vaculík, M. (n.d.). Experiment, kvaziexperiment a ex-post facto design [studijní materiály]. Masarykova univerzita, Fakulta sociálních studií, Katedra psychologie. https://is.muni.cz/el/fss/podzim2018/PSY112/um/Prednaska_2._Designy_2018.pdf

van Wilgenburg, E., & Elgar, M. A. (2013). Confirmation bias in studies of nestmate recognition: a cautionary note for research into the behaviour of animals. PloS one, 8(1), e53548.  https://doi.org/10.1371/journal.pone.0053548

Vasconcelos, M., Cardonha, C., & Gonçalves, B. (2018, December). Modeling epistemological principles for bias mitigation in AI systems: an illustration in hiring decisions. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society (pp. 323-329).

Veen van F. (2016, September 14). The Neural Network Zoo. The Asimov Institute. Retrieved November 18., 2020, from https://www.asimovinstitute.org/neural-network-zoo/

Vlčková, K. (2010). Kombinace kvantitativního a kvalitativního přístupu, metod sběru a analýzy dat [studijní materiály]. Masarykova univerzita, Pedagogická fakulta, Institut výzkumu školního vzdělávání. https://is.muni.cz/el/1441/podzim2013/DCJDR_IMV1/um/44614898/ol_smiseny_design_pro_PdF_studenti.pdf

Vlčková, K. (2015). Základy pedagogické metodologie [studijní materiály]. Masarykova univerzita, Pedagogická fakulta, Katedra pedagogiky. https://is.muni.cz/auth/predmet/ped/podzim2019/SZ7BP_MET1

Vojáček, J. (2024). Statistika pro nematematiky: Pravděpodobnostní myšlení a základy statistiky nejen v moderní medicíně. Maxdorf. https://eshop.maxdorf.cz/user/documents/upload/data/dl/Statistika%20pro%20nematematiky.pdf

Wakefield, A. J., Murch, S. H., Anthony, A., Linnell, J., Casson, D. M., Malik, M., ... & Walker-Smith, J. A. (1998). RETRACTED: Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. The lancet, 351(9103), 637-641

Weijters, T., van den Bosch, A., & van den Herik, H. J. (1997). Intelligible neural networks with BP-SOM. In NAIC-97: Proceedings of the Ninth Dutch Conference on Artificial Intelligence, University of Antwerp, 12-13 november, 1997 (pp. 27-36), https://pure.uvt.nl/ws/portalfiles/portal/754525/intelligible.pdf

Yannopoulos, S.; Lyberatos, G.; Theodossiou, N.; Li, W.; Valipour, M.; Tamburrino, A.; Angelakis, A. Evolution of water lifting devices (pumps) through the centuries worldwide. Water 2015, 7, 5031–5060.

Zakharova, A.A, Podvesovskii, A.G., Shklyar, A.V, & Shklyar, A.V. (2019). Visual and cognitive interpretation of heterogeneous data. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4212, 243-247. https://doi.org/10.5194/ISPRS-ARCHIVES-XLII-2-W12-243-2019

Následující