Literatura
AIML.com. (January, 2024). What is Undeffitting? https://aiml.com/what-is-underfitting/
Akbaba, D., Wilburn, J., Nance, M. T.,
& Meyer, M. (2021). Manifesto for Putting'Chartjunk'in the
Trash 2021! arXiv preprint arXiv:2109.10132.
Allison, P. D. (2011). Event
history analysis. SAGE. https://doi.org/10.4135/9781412984195
Ariza-Colpas, P. P., Vicario, E.,
Oviedo-Carrascal, A. I., Butt Aziz, S., Pineres-Melo, M. A., Quintero-Linero,
A., & Patara, F. (2022). Human activity recognition data analysis: History,
evolutions, and new trends. Sensors, 22(9), 3401. https://doi.org/10.3390/s22093401
Bayes, T. (1991). An essay towards
solving a problem in the doctrine of chances[Original work published 1763]. MD
computing: computers in medical practice, 8(3), 157-171.
Bernstein, D. M., Aßfalg, A., Kumar, R.,
& Ackerman, R. (2016). Looking Backward and Forward on
Hindsight Bias. Oxford.
Bharati, S., & Batra, R. (2021). How
misuse of statistics can spread misinformation: a study of misrepresentation of
COVID-19 data. arXiv preprint arXiv:2102.07198
Bickel, P. J., Hammel, E. A., &
O'Connell, J. W. (1975). Sex Bias in Graduate Admissions: Data from Berkeley:
Measuring bias is harder than is usually assumed, and the evidence is sometimes
contrary to expectation. Science, 187(4175), 398-404. https://www.science.org/doi/pdf/10.1126/science.187.4175.398
Blaha, M. (n.d). Umělá
inteligence: Historie NN [Studijní materiály]. Portal.matematickabiologie.cz.
Retrieved November 18, 2020, from https://portal.matematickabiologie.cz/index.php?pg=analyza-a-hodnoceni-biologickych-dat--umela-inteligence--neuronove-site-jednotlivy-neuron--uvod-do-neuronovych-siti--historie-nn
Carlin, M. T., Costello,
M. S., Flansburg, M. A., & Darden, A. (2024). Reconsideration of the type I
error rate for psychological science in the era of replication. Psychological methods, 29(2), 379–387. https://doi.org/10.1037/met0000490
Carter, L., & Hardouin, C. (2009).
Use and misuse of quantitative and graphical Information in StatisticsAn
Approach in Teaching.
Cohen, J. (1988). Statistical
Power Anaylsis for the Behavioral Sciences (2nd ed.). Erlbaum.
Cooper, W.W., Seiford, L.M., Zhu, J.
(2011). Data Envelopment Analysis: History, Models, and Interpretations. In:
Cooper, W., Seiford, L., Zhu, J. (eds) Handbook on Data Envelopment Analysis.
International Series in Operations Research & Management Science, vol 164.
Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6151-8_1
Creswell, J. W., & Plano Clark, V. L.
(2007). Designing and conducting mixed methodsresearch. Sage
Domb, B. G., & Sabetian, P. W.
(2021). The blight of the Type II error: When no difference does not mean no
difference. Arthroscopy: The Journal of Arthroscopic &
Related Surgery, 37(4), 1353-1356. https://doi.org/10.1016/j.arthro.2021.01.057
Field, A. (2016). Mixed
Factorial ANOVA. Discovering statistics. https://discoveringstatistics.com/repository/mixed_2020.pdf
Fisher, R. A. (1935). The
design of experiments. Oliver & Boyd.
Foken, T., & Wichura, B. (1996).
Tools for quality assessment of surface-based flux measurements. Agricultural
and forest meteorology, 78(1-2), 83-105. https://doi.org/10.1016/0168-1923(95)02248-1
Hanna, M., Pantanowitz, L., Jackson, B.,
Palmer, O., Visweswaran, S., Pantanowitz, J., ... & Rashidi, H. (2024).
Ethical and Bias Considerations in Artificial Intelligence (AI)/Machine
Learning. Modern Pathology, 100686.
Hardouin, C., & Carter, L. (2009).
Use and misuse of quantitative and graphical Information in Statistics. An
Approach in Teaching. In 10th Int. Conf. Mathematics Education into the
21st Century Project. Models in Developing Mathematics Education (p.
Carter). https://hal.science/hal-00382120/
Head, M. L., Holman, L., Lanfear, R.,
Kahn, A. T., & Jennions, M. D. (2015). The extent and consequences of
p-hacking in science. PLoS biology, 13(3), e1002106.
Heeringa, S.G., West B.T., &
Berglund, P.A. (2017). Applied survey data analysis.
Chapman and Hall/CRC.
Hejtmánek, L (n.d.). Experiment
a testování hypotéz [studijní materiály]. Karlova univerzita, Fakulta
humanitních studií. https://dl1.cuni.cz/pluginfile.php/1379266/mod_resource/content/1/Experiment.pdf
Hicks, S. C., & Peng, R. D. (2019a).
Evaluating the success of a data analysis. arXiv preprint arXiv:1904.11907
Hicks, S. C., & Peng, R. D. (2019b).
Elements and principles for characterizing variation between data analyses. arXiv
preprint arXiv:1903.07639
History of Data Science. (2024, Auguste
27). ImageNet: A Pioneering Vision for Computers. November 18., 2020, from https://www.historyofdatascience.com/imagenet-a-pioneering-vision-for-computers/
Huesch, M., Ong, M., & Richman, B. D.
(2015). Could data broker information threaten physician prescribing and
professional behavior? CESR-Schaeffer Working Paper No.
2015-009, Duke Law School Public Law & Legal Theory Series No. 2015-28. https://ssrn.com/abstract=2623186
or http://dx.doi.org/10.2139/ssrn.2623186
Charamba, V., Lutaaya, E., & Shihepo,
S. (2023). Common mistakes and misuse of statistics in agricultural experiments
and guidelines on how to avoid them – A commentary. Makerere University Journal of
Agricultural and Environmental Sciences, 12(1), 23-38.
Chatterjee, S., & Zielinski, P.
(2022). On the generalization mystery in deep learning. arXiv
preprint. https://doi.org/10.48550/arXiv.2203.10036
Jaro Education. (2024). 30+ Advanced Data
Science Concepts for Business Professionals. https://www.jaroeducation.com/blog/data-science-concepts-for-business-professionals/
Johannssen, A., Chukhrova, N., Schmal,
F., & Stabenow, K. (2021). Statistical literacy – Misuse of statistics and
its consequences. Journal of Statistics and Data Science Education, 29(1),
54–62. https://doi.org/10.1080/10691898.2020.1860727
Jørgensen, M., & Papatheocharous, E.
(2015, August). Believing is seeing: Confirmation bias studies in software
engineering. In 2015 41st Euromicro Conference on Software Engineering
and Advanced Applications (pp. 92-95). IEEE. https://web-backend.simula.no/sites/default/files/publications/files/confbiasinse_15_feb_to_submit.pdf
Kämpfen, F., & Mosca, I. (2024).
Heterogeneous Effects of Blood Pressure Screening [Discussion paper series]. IZA
institute of Labor Economic. RePEc:may:mayecw:n319-24.pdf
Laerd Statistics (n.d.-a). Binomial
Logistic Regression using SPSS Statistics. https://statistics.laerd.com/spss-tutorials/binomial-logistic-regression-using-spss-statistics.php
Laerd Statistics (n.d.-b). Multinomial
Logistic Regression using SPSS Statistics. https://statistics.laerd.com/spss-tutorials/multinomial-logistic-regression-using-spss-statistics.php
Laerd Statistics (n.d.-c). Mixed
ANOVA using SPSS Statistics. https://statistics.laerd.com/spss-tutorials/mixed-anova-using-spss-statistics.php
Lane, D. H. (1993). Can flawed statistics
be a substitute for real biology? New Zealand journal of zoology, 20(1),
51-59.
Lee, M.D. & Wagenmaker, E-J. (2014). Bayesian
Cognitive Modeling: A Practical Course.
Leu, K. (2020). Data for students:
The potential of data and analytics for student success. RTI
Press. RTI Press Research Brief No. RB-0023-2003
https://doi.org/10.3768/rtipress.2020.rb.0023.2003
MacKay, David J. C. (1992). Bayesian
interpolation. Neural computation, 4(3), pp. 415–447.
Macháčková, H. (2019). Experiment
v mediálním výzkumu [studijní materiály]. Masarykova univerzita, Fakulta
sociálních studií. https://is.muni.cz/el/fss/podzim2019/ZUR434/um/Prednaska_7-Prezentace-Experiment_2019.pdf
Mavrogiorgos, K., Kiourtis, A.,
Mavrogiorgou, A., Menychtas, A., & Kyriazis, D. (2024). Bias in Machine
Learning: A Literature Review. Applied Sciences, 14(19),
8860.
Menti, A., Kalpourtzi, N., Gavana, M.,
Vantarakis, A., Voulgari, P. V., Hadjichristodoulou, C., ... & Stergiou, G.
S. (2022). Opportunistic screening for hypertension: what does it say about the
true epidemiology? Journal of Human Hypertension, 36(4),
364-369.
Misra, P., Upadhyay, R. P., Krishnan, A.,
Vikram, N. K., & Sinha, S. (2011). A community-based study of metabolic
syndrome and its components among women of rural community in Ballabgarh,
Haryana. Metabolic syndrome and related disorders, 9(6),
461–467. https://doi.org/10.1089/met.2011.0033
Müller, H. G. (2016). Peter Hall,
functional data analysis and random objects. The Annals of Statistics, 44(5),
1867-1887. https://doi.org/10.1214/16-AOS1492
Nguyen, A., Gardner, L., & Sheridan,
D. (2020). Data Analytics in Higher Education: An Integrated View. Journal
of Information Systems Education, 31(1), 61-71.
http://jise.org/Volume31/n1/JISEv31n1p61.html
Parsons, P., & Shukla, P. (2020,
October). Data visualization practitioners’ perspectives on chartjunk. In 2020
IEEE Visualization Conference (VIS) (pp. 211-215). IEEE.
Pasquetto, I. V., Cullen, Z., Thomer, A.,
& Wofford, M. (2024). What is research data “misuse”? And how can it be
prevented or mitigated? Journal of the Association for
Information Science and Technology, 75(12), 1413-1429.
https://doi.org/10.1002/asi.24944
Patel, H. C., Hayward, C., Ozdemir, B.
A., Rosen, S. D., Krum, H., Lyon, A. R., ... & Di Mario, C. (2015).
Magnitude of blood pressure reduction in the placebo arms of modern
hypertension trials: implications for trials of renal denervation. Hypertension, 65(2),
401-406.
Plano Clark, V. L., Huddleston-Casas, C.
A., Churchill, S. L., O'Neil Green, D., & Garrett, A. L. (2008). Mixed
methods approaches in family science research. Journal of Family Issues, 29(11),
1543-1566. https://journals.sagepub.com/doi/epdf/10.1177/0192513X08318251
Popper, K. (2005). The
logic of scientific discovery. Routledge.
Project Management, Team. (2024). Data
Analytics vs Data Science. Data Science PM. https://www.datascience-pm.com/data-analytics-vs-data-science/
Pullinger, J. (2021). Misuse of
statistics: time to speak out. Statistical Journal of the IAOS, 37(1),
79-84. https://doi.org/10.3233/SJI-210783
Rautenhaus, M., Böttinger, M., Siemen,
S., Hoffman, R., Kirby, R. M., Mirzargar, M., ... & Westermann, R. (2017).
Visualization in meteorology—a survey of techniques and tools for data analysis
tasks. IEEE Transactions on Visualization and Computer Graphics, 24(12),
3268-3296. https:// doi.org/10.1109/TVCG.2017.2779501
Resnik, D. B., Elliott, K. C., Soranno,
P. A., & Smith, E. M. (2017). Data-intensive science and research
integrity. Accountability in Research, 24(6), 344-358.
Rosentahl, J. S. (2008). Zasažen
bleskem: podivuhodný svět pravděpodobnosti, Academia.
Rossman, A. J. (1994). Televisions,
physicians, and life expectancy. Journal of Statistics Education, 2(2). https://doi.org/10.1080/10691898.1994.11910476
Russakovsky, O., Deng, J., Su, H.,
Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,
Bernstein, M., Berg, A.C., Fei-Fei, L., 2015. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision 115, 211–252. https://doi.org/10.1007/s11263-015-0816-y
Shokouhi, M., White, R., & Yilmaz, E.
(2015, August). Anchoring and adjustment in relevance estimation. In Proceedings
of the 38th International ACM SIGIR Conference on research and development in
information retrieval (pp. 963-966).
https://doi.org/10.1145/2766462.2767841
Schatz, P., Jay, K. A., McComb, J., &
McLaughlin, J. R. (2005). Misuse of statistical tests in Archives of Clinical
Neuropsychology publications. Archives of Clinical Neuropsychology, 20(8),
1053-1059. https://doi.org/10.1016/j.acn.2005.06.006
Skansi, S. (2020). Guide to Deep Learning
Basics: Logical, Historical and Philosophical Perspectives. Springer.
Tufte, E. R. (1983). The
visual display of quantitative information (2nd ed). Graphics press.
Vaculík, M. (n.d.). Experiment,
kvaziexperiment a ex-post facto design [studijní materiály].
Masarykova univerzita, Fakulta sociálních studií, Katedra psychologie. https://is.muni.cz/el/fss/podzim2018/PSY112/um/Prednaska_2._Designy_2018.pdf
van Wilgenburg, E., & Elgar, M. A.
(2013). Confirmation bias in studies of nestmate recognition: a cautionary note
for research into the behaviour of animals. PloS one, 8(1), e53548. https://doi.org/10.1371/journal.pone.0053548
Vasconcelos, M., Cardonha, C., &
Gonçalves, B. (2018, December). Modeling epistemological principles for bias
mitigation in AI systems: an illustration in hiring decisions. In Proceedings
of the 2018 AAAI/ACM Conference on AI, Ethics, and Society (pp.
323-329).
Veen van F. (2016, September 14). The
Neural Network Zoo. The Asimov Institute. Retrieved November 18., 2020, from
https://www.asimovinstitute.org/neural-network-zoo/
Vlčková, K. (2010). Kombinace
kvantitativního a kvalitativního přístupu, metod sběru a analýzy dat [studijní
materiály]. Masarykova univerzita, Pedagogická fakulta, Institut výzkumu
školního vzdělávání. https://is.muni.cz/el/1441/podzim2013/DCJDR_IMV1/um/44614898/ol_smiseny_design_pro_PdF_studenti.pdf
Vlčková, K. (2015). Základy
pedagogické metodologie [studijní materiály]. Masarykova univerzita,
Pedagogická fakulta, Katedra pedagogiky. https://is.muni.cz/auth/predmet/ped/podzim2019/SZ7BP_MET1
Vojáček, J. (2024). Statistika
pro nematematiky: Pravděpodobnostní myšlení a základy statistiky nejen v
moderní medicíně. Maxdorf.
https://eshop.maxdorf.cz/user/documents/upload/data/dl/Statistika%20pro%20nematematiky.pdf
Wakefield, A. J., Murch, S. H., Anthony,
A., Linnell, J., Casson, D. M., Malik, M., ... & Walker-Smith, J. A.
(1998). RETRACTED: Ileal-lymphoid-nodular hyperplasia, non-specific colitis,
and pervasive developmental disorder in children. The lancet, 351(9103),
637-641
Weijters, T., van den Bosch, A., &
van den Herik, H. J. (1997). Intelligible neural networks with BP-SOM. In NAIC-97:
Proceedings of the Ninth Dutch Conference on Artificial Intelligence,
University of Antwerp, 12-13 november, 1997 (pp. 27-36), https://pure.uvt.nl/ws/portalfiles/portal/754525/intelligible.pdf
Yannopoulos, S.; Lyberatos, G.;
Theodossiou, N.; Li, W.; Valipour, M.; Tamburrino, A.; Angelakis, A. Evolution
of water lifting devices (pumps) through the centuries worldwide. Water 2015,
7, 5031–5060.
Zakharova, A.A, Podvesovskii, A.G.,
Shklyar, A.V, & Shklyar, A.V. (2019). Visual and cognitive interpretation
of heterogeneous data. ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, 4212, 243-247. https://doi.org/10.5194/ISPRS-ARCHIVES-XLII-2-W12-243-2019