Lipids, fat and exercise

Fats

- a wide group of compounds that are generally soluble in organic solvents and largely insoluble in water
- solid (fats) or liquid (oils)
- Subset of the class of lipids
 - Simple lipids fats (triglycerides) and wax
 - Complex lipids phospholipids, glycolipids, lipoproteins
- Source of energy
 - 1 g fat = 9 kcal = 38 kJ

Chemical structure

- Triglycerides 1 molecule of glycerol and 3 molecule of fatty acid
- Fatty acids (FA)
 - 4 24 C long
 - Organic acid a chain of carbon atoms with hydrogens attached- that has an acid group (COOH) at one end and methyl group (CH₃) at the other end

Fatty acids -classification

- The length of the carbon chain
 - SCFA (< 6C) butter
 - MCFA (6-10 C) butter, coconut and palm oil
 - LCFA (12-24C) meat, fish, oil, seeds, nuts
- **The degree of unsaturation**
 - Saturated (SFA)
 - fully loaded with hydrogen atoms, only single bonds
 - Unsaturated
 - Monounsaturated (MUFA) 1 double bond
 - Polyunsaturated (PUFA) -> 1 double bond

Saturated FA — Stearic acid

long hydrocarbon chain

carboxylic acid group

Essential features of a fatty acid

Monounsaturated FA

Oleic acid, a monounsaturated fatty acid. Note that the double bond is *cis*; this is the common natural configuration,

Polyunsaturated FA

Linoleic acid, a polyunsaturated fatty acid.
Both double bonds are ais.

Fatty acids -classification

- The location of double bonds (only PUFA)
 - According the position of the double bond nearest the methyl end of the carbon chain
 - Omega-3 fatty acids
 - Omega-6 fatty acids

■ Omega-6

Omega-3

Trans-fatty acids

Cholesterol

- Sterols
 - Plant
 - Animal contain cholesterol (animal fat)
- Roles of sterols
 - Vitally important body compounds bile acids, sex hormones (testosterone), sdrenal hormone (cortisol), vitamin D, cholesterol
- Cholesterol function
 - Starting material for the synthesis of these compounds
 - Structural compounds of cell membranes
- Cholesterol sources
 - Endogenous made in the body 0.8 1.5 mg per day
 - Exogenous form outside of the body (from food) 0,3 mg per day
- Harmful effects of cholesterol
 - It can form deposite in the artery walls (atherosclerosis => heart attacks, strokes)

Roles of triglycerides

- Fat store store of energy (50 000 kcal)
- Insulate of body, maintaining body temperature
- Cover inner organs
- Help body use carbohydrate and protein efficiently
- Help absorption of fat soluble vitamins (A,D,E,K)
- Source of essential fatty acids linoleic and linolenic acid
- Importance role in healthy skin and hair
- Source of energy FA and glycerol

Digestion of triglycerides

- Mouth and salivary glands
 - lingual lipase
- Stomach
 - lipid digestion by lingual lipase
- Small intestine
 - Fat by bile => emulsified fat
 - Emulsified fat by pancreatic and intestinal lipase => monoglycerides, glycerol, fatty acids

Glycerol and small lipids such as short- and medium-chain fatty acids can move directly into the bloodstream.

Lipid transport

- Lipoproteins
 - Chylomicrons (CL)
 - transport vehicles for fat from the intestine to the rest of body
 - VLDL (very low density lipoproteins)
 - Make from CL
 - Transport TG to other part of the body
 - LDL (low density lipoproteins)
 - Transport cholesterol to the cells of all tissue
 - Bad cholesterol is linked to heart disease
 - HDL (high density lipoproteins)
 - Transport cholesterol from the cells back to the liver
 - Good cholesterol a protective effect

Metabolism of fat

- Storing fat as fat
 - In adipose tissue
- Making fat form carbohydrates or protein
 - FA can be made form 2C fragments derived from carbohydrates or protein
- Making fat from fat
- Using fat for energy 60 %
 - During prolonged light to moderate intense exercise

Health effects of lipid

- Heart disease ↑ chol major risk factor
- Risks from saturated fat ↑ LDL chol
- Risks from trans-fats => ↑ chol
- Benefits from MUFA ↓ risk for heart disease
- Benefits from ∞-3 PUFA ↓ chol and prevent heart disease
- Cancer total fat intake (saturated) is associated with c.
- Obesity high-fat diets

Recommended intakes of fat

- Total fat < 30 % of energy intake
- SFA < 10 % of energy intake
- Cholesterol < 300 mg daily
- Example
 - A person 2000 kcal a day, 600 kcal and less form fat (65 g), 200 kcal and less form SFA (20 g)
- Select lean meats and nonfat milk
- Eat plenty of vegetable, fruits and grains
- Use fat and oils sparingly
- Look for invisible fat
- Read food labels

Fat metabolism and exercise

- Source of energy
 - FA oxidation in several types of tissue
 - Glycerol for glycolysis, gluconeogenesis
- Fat mobilization
 - Adipose tissue
 - ↑ glucagon, epinephrine, cortisol
 - => hormone sensitive lipase (HSL) $TG \rightarrow FA$
 - ↑ FFA in the blood => ↑ oxidation FFA in the muscle (during exercise and fasting)

Fat metabolism during exercise

Sources of FA for muscle

- FA inside a muscle fiber
- FA outside a muscle fiber addipose tissue in muscle, in the body, circulatin lipoproteins

Hormonal influence

- Glucagon, kortisol => ↑ HSL (hormone sensitive lipase) => lipolysis
- Insulin => \ HSL => inhibition of lipolysis
- Concentration of glucose in the blood
 - ↑ => ↓ HSL
 - **↓** => ↑ HSL

Time of oxidation

■ 15 - 30 min. after start

Intensity of exercise and fat utilization

Fat energy expended per hour and intensity of exercise

