2 Metabolismus Metabolismus je souhrn veškerých dějů, které probíhají uvnitř organismu a které slouží k tvorbě využitelné energie a látek potřebných pro činnost organismu. Trvale probíhají pochody katabolické a anabolické v různé intenzitě. Katabolismus je rozklad látek za současného uvolnění energie. Je charakterizován chyběním rezerv glykogenu a mobilizací nesacharidových zdrojů energie – tuků a bílkovin. Souvisí s vyšší aktivitou sympatiku. Probíhá při zvýšení tělesné pohybové aktivity a při udržování životních funkcí. Anabolismus je tvorba látek, při které se energie spotřebovává, nabídka substrátů je vyšší než jejich okamžitá potřeba. Vytvářejí se energetické rezervy, dochází k obnově a novotvorbě tkání. Anabolické děje převažují v situacích, kdy je tělesná aktivita omezena. Intenzitu metabolických dějů v organismu charakterizovanou výdejem energie v klidu za přesně stanovených podmínek (ráno vleže před opuštěním lůžka, na lačno, při fyziologické teplotě těla a neutrální teplotě okolí) označujeme termínem „bazální metabolismus“ (Wilhelm, 2003). Jeho hodnota závisí na věku, pohlaví a velikosti těla. Zdrojem energie jsou živiny obsažené v potravě, které jsou enzymaticky rozkládány a vstřebávány v trávicí soustavě. Sacharidy se štěpí na jednoduché cukry (monosacharidy). Nejvýznamnější je glukóza. Tuky (lipidy) jsou rozloženy na mastné kyseliny a glycerol, bílkoviny (proteiny) na aminokyseliny. Tyto jednoduché látky pak vstupují do složitých transformačních procesů intermediárního metabolismu, kde je energie vázaná v různých součástech potravy měněna v jeden společný využitelný zdroj – adenozintrifosfát – ATP. Základním procesem, který vede k zisku energie (produkci ATP), je postupné štěpení molekul glukózy – glykolýza. Glykolýza zpočátku nevyžaduje přísun kyslíku, ale jeho přítomnost určuje další osud vznikající kyseliny pyrohroznové (pyruvát). Při nedostatku kyslíku (anaerobní glykolýza) je kyselina pyrohroznová konvertována na kyselinu mléčnou a ta se rychle mění na sůl kyseliny mléčné – laktát. Tento energetický systém produkuje 2 molekuly ATP. Za přítomnosti kyslíku se kyselina pyrohroznová mění na acetylkoenzym A, který vstupuje do cyklu kyseliny citrónové (Krebsův cyklus). Krebsův cyklus je série chemických reakcí, které dovolují kompletní oxidaci molekuly acetylkoenzymu A. Výsledkem využití jedné molekuly glukózy je energie deponovaná do 36 molekul ATP. Jako vedlejší produkt vzniká CO[2] a voda. Kyslík je do tkání přenášen transportním systémem. Energetické rezervy tvoří cukry v podobě omezených zásob glykogenu v cytoplazmě svalových a jaterních buněk a tuková tkáň. Také bílkoviny mohou být výjimečně po předchozí přeměně na glukózu (glukoneogeneze) využity jako zdroj energie. Obr.č. 2 Zjednodušené schéma intermediárního metabolismu 2.1 Reakce na fyzickou zátěž Štěpením ATP získáváme energii nutnou pro svalovou kontrakci. Energie chemická se mění v energii mechanickou. Zásoby ATP v organismu jsou minimální, proto se musí neustále obnovovat (dochází k resyntéze). Buňky tvoří ATP několika vzájemně spolu souvisejícími systémy. 2.2 Způsoby získávání energie 2.2.1 Anaerobní způsob získávání energie Je charakterizován možností svalových buněk vykonávat mechanickou práci při využívání energie uvolněné bez účasti kyslíku. Anaerobní zdroje energie využívá organismus v situacích, kdy není schopen zabezpečit dostatek energie efektivnějším aerobním způsobem. Aktuální potřeba energie přesahuje rychlost mobilizace aerobních procesů (daných především funkcí transportního systému) na začátku zátěže, při náhlém zvýšení intenzity svalové práce nebo při vysoké intenzitě svalové práce po překročení maximálního množství kyslíku, které je systém schopný využít (Meško, 2005). Podle převažujícího zdroje energie se anaerobní systém získávání energie dělí na způsob anaerobní alaktátový – energie je uvolněna z ATP a CP (kreatinfosfát) bez účasti anaerobní glykolýzy a tvorby laktátu (ATP-CP systém) a způsob anaerobně laktátový, kdy je energie získána z anaerobní glykolýzy s tvorbou laktátu. Biochemické reakce : ATP ADP + energie pro svalový stah CP + ADP ATP + C Glukóza ATP + 2 LA 2.2.2 Aerobní systém získávání energie Tento způsob získávání ATP je dominantní při tělesných aktivitách vytrvalostního charakteru trvajícího déle než 2–3 minuty (Meško, 2005). Úroveň aerobních schopností je ovlivněna dědičností (80%). Aerobní schopnosti jsou limitujícím faktorem výkonnosti ve vytrvalostních disciplínách a o její úrovni nás informuje vrcholová spotřeba kyslíku (VO[2 peak]) – maximální množství kyslíku přijaté organismem při zátěžovém testu se zátěží do subjektivního maxima spojeném s analýzou vydechovaných plynů při spiroergometrii. Biochemická reakce: glukóza + 6 O[2 ] 36 ATP + 6 H [2] O + 6 CO[2 ] Obr.č 3 Podíl zdrojů energie na její celkové úhradě v závislosti na čase při maximálních výkonech různého trvání Rychlostní zatížení s dobou trvání výkonu přibližně 15 s využívá jako hlavní energetický zdroj systém makroergních (na energii bohatých) fosfátů ATP a CP (ATP – CP systém) s nepatrnou tvorbou laktátu. Rychlostně vytrvalostní zatížení od 15 – 50 s využívá ATP a CP, navíc anaerobní glykolýzu s tvorbou laktátu. Zdrojem energie při vytrvalostním krátkodobém zatížení do 2 min je anaerobní glykolýza s velmi vysokou tvorbou laktátu (glykolytická fosforylace). Vytrvalostní zatížení střední 2 – 11 min využívá především glycidy se střední tvorbou laktátu, dlouhé vytrvalostní zatížení 11 – 60 min využívá glycidy a lipidy, tvorba laktátu je malá. Velmi dlouhá doba zatížení delší než 60 min využívá jako energetický zdroj převážně lipidy a glycidy, laktát se tvoří v malé míře (Havlíčková, 2004). 2.2.3 Kyslíkový deficit a kyslíkový dluh Bezprostředně po zahájení práce není schopen transportní systém dodat dostatečné množství kyslíku pracujícím tkáním. Existuje nepoměr mezi jeho nabídkou a poptávkou, rozvíjí se kyslíkový deficit, který se splácí po ukončení zátěže formou kyslíkového dluhu. Kyslíkový dluh (pozátěžový kyslík) představuje veškerou nadspotřebu kyslíku nad klidovou hodnotu po ukončení zátěže a je považován za kvantitativní měřítko anaerobního metabolismu. Skládá se ze 3 složek. První rychlá alaktátová slouží k obnově ATP a CP během prvních 2 – 3 minut po ukončení zátěže. Druhá složka je pomalá laktátová a vede k resyntéze glykogenu, třetí pomalá alaktátová obnovuje „dolaďuje“ klidové funkčně metabolické podmínky. Obr.č. 4 Kyslíkový dluh a kyslíkový deficit 2.2.4 Anaerobní práh Je taková intenzita zátěže (rychlost běhu, výkon na ergometru), kdy se k převážně aerobnímu způsobu krytí energetických požadavků organismu přidává a dále narůstá způsob anaerobní. Důsledkem je zvýšená tvorba a kumulace kyseliny mléčné se zvýšením koncentrace vodíkových iontů. Stálá hladina vodíkových iontů je nezbytnou podmínkou, nutnou k funkci buněk organizmu. Proto dochází k aktivaci kompenzačních mechanismů, které udržují stálost vnitřního prostředí (homeostázu). Nejdůležitější je nárazníkový bikarbonátový systém. Slabá kyselina uhličitá disociuje na vodíkový iont a hydrouhličitan sodný (bikarbonát), současně je však v dynamické rovnováze s rozpuštěným kysličníkem uhličitým: H^++HCO[3 ] CO[2] +H[2]O Složky systému jsou bezprostředně regulovatelné prostřednictvím respiračního systému. Zvýšení hladiny vodíkových iontů vede k jejich vyššímu slučování s bikarbonátem, a tím k jeho poklesu. Zvyšuje se produkce CO[2] (rovnice se „posunuje doprava“), dochází k podráždění dýchacího centra, a tím k hyperventilaci, při které je zvýšeně produkovaný oxid uhličitý z organismu eliminován. Stanovení anaerobního prahu lze provést buď neinvazivně (bez zásahu do organizmu) z ventilačně respiračních hodnot získaných při spiroergometrickém vyšetření jako ventilační práh (ventilatory threshold – VT), nebo invazivně z hodnot laktátu či úbytku bází (bikarbonátů) získaných odběrem krve při zátěži. Anaerobní práh je určen přechodem k strmějšímu vzrůstu („zlomem křivky“) vývoje sledovaných hodnot. : Obr.č. 5 Příklad určení „ventilačního“ prahu při spiroergometrickém vyšetření z křivky vývoje výdeje CO[2] a ostatních respiračně ventilačních parametrů Při vytrvalostním tréninku by intenzita cvičení měla vzhledem k hodnotě VO[2max] být co nejvyšší, ale neměla by vést k výraznější produkci kyseliny mléčné, a tím k ovlivnění vnitřního prostředí. Těmto požadavkům odpovídá intenzita zátěže blízká úrovni anaerobního prahu jako nejvyšší možná úroveň pracovní činnosti, při níž k úhradě energie slouží především aerobní procesy. Produkce kyseliny mléčné odpovídá její spotřebě. Z těchto důvodů je také úroveň anaerobního prahu považována za relativně bezpečný limit intenzity zátěže i při doporučení fyzické aktivity nemocným. Při překročení ANP by mohlo dojít k prudkému zvýšení koncentrace vodíkových iontů (rozvoji metabolické acidózy) a poškození zdraví. 2.3 Adaptace metabolismu 2.3.1 Adaptace anaerobního systému získáváni energie Spočívá především ve zvýšení obsahu ATP a CP ve svalové tkáni. Tyto makroergní fosfáty jsou hlavními zdroji energie pro svalovou činnost v prvních zhruba 20 sekundách svalové činnosti. Rychlost spotřeby ATP a CP je větší v rychlých svalových vláknech. Tyto adaptační mechanismy se uplatňují zejména při rozvoji rychlostních pohybových schopností. Po silovém tréninku (rozvoji silových pohybových schopností) je přizpůsobení spojeno s hypertrofií svalových vláken, především rychlého typu. Současně byla pozorována zvýšená aktivita některých enzymů regulujících tvorbu ATP. Trénovaní jedinci mají vyšší hodnoty kyslíkového dluhu a při větší kapacitě anaerobní glykolýzy mohou být pozorovány vyšší koncentrace laktátu při maximální zátěži. 2.3.2 Adaptace aerobního systému získávání energie Vede k podstatnému zvýšení aerobního výkonu (vyjádřeného spotřebou kyslíku), a to jak na úrovni transportního systému pro kyslík (o adaptaci jeho jednotlivých součástí bude pojednáno později), tak i na úrovni svalových buněk. Ve svalových vláknech dochází ke zvýšení obsahu mitochondrií, zvýšení počtu krevních kapilár. Vytrvalostní trénink vede k výraznému snížení podílu rychlých glykolytických vláken, lze prokázat zvýšení aktivit enzymů v mitochondriích, zvyšuje se hladina buněčných energetických zásob ve formě svalového glykogenu. U trénovaných osob se urychluje mobilizace tuků z tukové tkáně. Předpoklady pro aerobní činnost jedince jsou zřejmě méně geneticky podmíněny než schopnosti anaerobního způsobu získávání energie.