1. Cryptography

A. Most modern digital computers and related software include a linear congruential pseudorandom number generator of the recursive form

(2.1)
$$X_{n+1} = [a.X_n + b] \pmod{c}$$

where a and c are positive integers and b is a nonnegative integer. For an integer initial value or seed X_c , the algorithm (2.1) generates a sequence taking integer values from 0 to c -1, the remainders when the aX_n + b are divided by c.

Generate a sequence of 10 pseudo-random numbers by the linear congruential generator (2.1) with a = 1229, b = 1 and c = 2048.

Mod - Remainder after division (modulo operation)

```
23 mod 5 = 3. 23 / 5 = 4 and rest is 3
```

 $12 \mod 8 = 4$

 $65 \mod 9 = 2$

 $4 \mod 2 = 0$

2. RSA (cryptosystem), https://en.wikipedia.org/wiki/RSA (cryptosystem) Example

```
Here is an example of RSA encryption and decryption. The parameters used here are artificially small,
    1. Choose two distinct prime numbers, such as
          p=61 and q=53
    2. Compute n = pq giving
          n = 61 \times 53 = 3233
    3. Compute the Carmichael's totient function of the product as \lambda(n) = \text{lcm}(p-1, q-1) giving
           \lambda(3233) = \text{lcm}(60, 52) = 780
    4. Choose any number 1 < e < 780 that is coprime to 780. Choosing a prime number for e leaves us only to check that e is not a divisor of 780.
          Let e = 17
    5. Compute d, the modular multiplicative inverse of e (mod \lambda(n)) yielding,
          Worked example for the modular multiplicative inverse:
          d 	imes e mod \lambda(n) = 1
          413\times17\bmod780=1
The public key is (n = 3233, e = 17). For a padded plaintext message m, the encryption function is
   c(m) = m^{17} \mod 3233
The private key is (n = 3233, d = 413). For an encrypted ciphertext c, the decryption function is
   m(c) = c^{413} \mod 3233
For instance, in order to encrypt m = 65, we calculate
    c = 65^{17} \mod 3233 = 2790
To decrypt c = 2790, we calculate
    m = 2790^{413} \mod 3233 = 65
```

New prime numbers p=5, q=11. Encrypt m=65

There is any mistake \odot : n=55; e=7; d=3; lambda=20; c=10.

3. Password in Windows users

User lost password to windows account. Do boot flash disk and find password ©. Use only free sw..., for example http://ophcrack.sourceforge.net/

4. Password hidden behind asterisks

How To Reveal The Password Hidden Behind Asterisks

1. Super Team

3 + 4

2. Supreme

2 + 4

3. Google team

1 + 4