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ABSTRACT
Machine learning has been used to accurately classify musical genre using features derived from
audio signals. Musical genre, as well as lower-level audio features of music, have also been shown
to influence music-induced movement, however, the degree to which such movements are genre-
specific has not been explored. The current paper addresses this using motion capture data from
participants dancing freely to eight genres. Using a Support Vector Machine model, data were clas-
sified by genre and by individual dancer. Against expectations, individual classification was notably
more accurate than genre classification. Results are discussed in terms of embodied cognition and
culture.
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1. Introduction

The universality of music has almost certainly been over-
stated by well-intended optimists and poets, as well as
by researchers who have focused exclusively on phenom-
ena arising fromWestern musical traditions (Cross et al.,
2001). Still, something that can be qualified as music
appears to be engaged in by all cultures, and inmany cases
that something is the use of a regular or isochronous beat
that affords synchronisation (Nettl, 2000), making it pos-
sible that one of the most universal things about music is
dance (Richter & Ostovar, 2016). One of the most salient
features is its tendency to make us move; the majority
of people respond to hearing music with some kind of
movement, from simply clapping to a beat to engaging in
complex dance movement (Lesaffre et al., 2008).

It seems reasonable to expect that suchmusic-induced
movement should be affected by the particular qualities
of the music which is influencing the movement—surely
one does not move the same way in response to a song by
Rage Against the Machine as to one by Bob Dylan—and
research has indeed shown that audio features extracted
from the acoustic signal of music influence the qual-
ity of dancers’ movements. Van Dyck, Moelants, et al.
(2013) showed that participants modified and increased
their dance movements relative to volume of the bass
drum. Burger, Thompson, Luck, Saarikallio, and Toivi-
ainen (2013) extracted spectral features and rhythmic

CONTACT Emily Carlson emily.j.carlson@jyu.fi Department of Music, Arts and Culture, University of Jyväskylä, P.O. Box 35, Jyväskylä, FI 40014, Finland

features from musical stimuli and compared them with
kinematic features extracted from recorded movements
of participants dancing to these stimuli. They found
that low frequency activity, associated with the presence
of kick drum and bass guitar, uniquely related to the
speed of head movement, while high frequency activity
and beat clarity were associated with a wider variety of
movement features including hand distance, hand speed,
shoulder wiggle and hip wiggle. These results can be
compared to those earlier found by Luck, Saarikallio,
Burger, Thompson, and Toiviainen (2010), who noted
that Rock music was associated with greater head speed
during dance while Jazz was associated with lesser head
speed, while Techno, Latin and Metal music were all
associated with specific movement patterns. Such stereo-
typical movement patterns likely reflect not only audio
features of the music, but cultural norms associated with
specific genres; for example, there is a close association
between Jazz music and swing dancing (Spring, 1997),
and between Metal and headbanging (Hudson, 2015).
However, such influence may be subject to dancers’
familiarity and degree of engagement with the musical
culture in question.

Not only is movement a common response to music,
some suggest that movement is even necessary to under-
standing and parsing musical sounds. Godøy, Song,
Nymoen, Haugen, and Jensenius (2016) take evidence
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from studies of music performance, sound-tracing stud-
ies inwhich listeners are asked to ‘draw’ their impressions
of audio stimuli, and dance movement studies, and pro-
pose that ‘any sound event entails an image and context
of a body-motion event’ and that sound and motion can
be considered two aspects of ‘the same phenomenon’
(p. 214). While this is a bold statement, it does conform
with the growing interest among psychology researchers
in embodied cognition; that is, the idea that human cog-
nition is not only dependent on the perceptual informa-
tion gained through the body’s sensing of the outside
world and of itself, but that cognition and bodily expe-
riences are essentially inseparable (Shapiro, 2007;Wilson
& Golonka, 2013).

Embodied cognition, from which embodied music
cognition is derived, is a debated idea not so much
regarding its validity but regarding how it should be
defined, what it means, and how we can best understand
and use it in our attempts to understand human nature.
To put it in deceptively simple terms, embodied cognition
refers to the idea that invisible aspects of human experi-
ence, namely cognition and emotion, arise from and are
characterised by the forms and functions of the human
body. Leman (2008) has defined embodied music cogni-
tion as direct, rather than symbolic, musical experience,
where music is considered to be comprised of moving
sonic formswhich the listener parses through a process of
corporeal imitation, either internally or externally. Lakoff
and Johnson (1999) provide examples of how our bod-
ily experiences of spatial relationships form understand-
ing, such as the idea that up equates with ‘more’ and
down equates with ‘less’, which we experience as part of
our sensorimotor reality. Bodily experiences pervade our
ability to understand and communicate everything from
these most basic concepts to our common metaphors for
making sense of our lives as well as, notably in this con-
text, our experiences of music. We rise to the occasion;
music rises in pitch or volume; we fall off the bandwagon;
the melody drops to the bass; life is a journey; that song
takes us back; and we dance to the beat of our own drum.
For Leman and others, such embodied processes define
our responses to and ability to understand the acoustic
signals which we can imitate with our bodies and thereby
experience and understand.

All of this does seem to support the idea that different
music should elicit different movement patterns from lis-
teners. However, testing this idea is more complex than it
appears on the surface, in part because the idea of what
constitutes ‘similar’ and ‘different’ in contemporaryWest-
ernmusic is a questionwith no clear-cut answer.With the
rise of recording technology, which transformed music
in the Western world from an activity into purchasable
commodity, came the need to label music effectively so

that listeners would know what to buy, a task for which
the notion of genre is often employed. Mace, Wagoner,
Teachout, and Hodges (2011) have shown that individ-
uals can distinguish between Classical, Jazz, Country,
Metal and HipHop with more than 50% accuracy from
clips as short as 125 milliseconds. However, while genre
labels such as ‘Pop’ or ‘Rock’ are commonly used to cate-
gorise music, exact boundaries between these categories
are unclear, and used inconsistently across listening plat-
forms (Aucouturier & Pachet, 2003; Pachet & Cazaly,
2000). With the advent of the digital age, access to vast
libraries of recordedmusic as both eased and complicated
music consumption, as the need for ameaningfulmethod
of organising and labelling millions of digital recordings
has increased exponentially. It can be noted here that our
ideas of categorisation are also influenced by embodied
concepts, as we understand and describe categories in
terms of physical containers intowhichwe can put appro-
priate items; Lakoff and Johnson (1999) note this as one of
the fundamental ways in which physical reality underlies
our cognitive experiences.

Some have sought to enlist computational algorithms
in the task of properly categorising a song into a genre
based on information extracted from its audio signal.
Tzanetakis and Cook (2002) were among the first to
introduce this idea, and have provided a clear framework
for the process which many have followed since. First,
relevant features must be extracted from the audio sig-
nal; various spectral features relating to timbre have been
employed in a number of studies (Hartmann, Saari, Toivi-
ainen, & Lartillot, 2013; Holzapfel & Stylianou, 2006),
as well as rhythmic features (Genussov & Cohen, 2010;
Tzanetakis & Cook, 2002), and pitch features (Tolonen,
Member, & Karjalainen, 2000). Once features have been
chosen and computed, a method of evaluation should
be chosen, such as methods of statistical pattern recog-
nition, linear classifiers, and non-parametric classifiers
based on data clustering and nearest neighbours (Tzane-
takis & Cook, 2002).

Computational classification of genre based on audio
signal is an attractive method for managing the large
databases of recorded music. However, the factors that
differentiate one genre from another are composed of
more than acoustic features; Tzanetakis and Cook (2002)
note that genres ‘arise through complex interaction
between the public, marketing, historical and cultural
factors’, (p. 293). Evidence from attempts to classify
genre based on acoustic signals, exploration of genre as a
socially determined phenomenon via analysis of social-
tagging data, and manual attempts at creating genre
taxonomies suggest that some genres are more acousti-
cally distinctive than others (Aucouturier & Pachet, 2003;
Carlson, Saari, Burger, & Toiviainen, 2017; Hartmann
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et al., 2013; Holzapfel & Stylianou, 2006; Scaringella,
Zoia, & Mlynek, 2006; Sordo, Celma, Blech, & Guaus,
2008). What this means in terms of embodied responses
to the music of different genres is still an open ques-
tion. Although there is, as described above, evidence of
some commonality between individuals in response to
acoustic signals (e.g. Burger et al., 2013; Godøy et al.,
2016), there is also evidence that human individual differ-
ences, as in differences in personality, influence the char-
acteristics of these embodied responses to music (Carl-
son, Burger, London, Thompson, & Toiviainen, 2016;
Carlson, Burger, & Toiviainen, 2018; Luck et al., 2010).
In fact, individuality of movement patterns was among
the first topics studied after Johansson demonstrated
that humans can perceive human movement from video
in which only lights placed on key joints were visible
(see Figure 1) (Johansson, 1973), Cutting and Kozlowski
(1977) demonstrating that friends could recognise each
other from their walk with only such point-light (or stick
figure) displays of movement, without the need for other
distinguishing features.

Subsequent research has shown that humans have
a surprisingly robust ability for recognising individu-
als based on their movements (as from point-light ani-
mations, see Methods section), absent any informa-
tion about other physical characteristics such as size,

shape, clothing or facial features (Bläsing & Sauzet,
2018; Swedish & Troje, 2007; Troje, Westhoff, & Lavrov,
2005), as well as more abstract characteristics such as
the walker’s mood (Michalak et al., 2009), personality
(Satchell et al., 2017), and even vulnerability to phys-
ical attack (Gunns, Johnston, & Hudson, 2002). Troje
and Chang (2013) explored the underlying mechanisms
of this by manipulating point-light animations of multi-
ple individuals walking such that all size, shape, and gait
frequency informationwas removed, and further decom-
posed stimuli systematically into harmonic components.
They found that, while participants’ accuracy in identify-
ing individuals from thesemanipulated stimuli decreased
as more harmonic information was removed, partici-
pants were still able to correctly identify individuals well
above chance level when the first harmonic was removed,
despite this harmonic accounting for 91% percept of the
variance in walking patterns (p. 246). The individuality
of movement extends to more complex activities than
walking; Sevdalis and Keller (2009) showed that individ-
uals were able to recognise their own motion-captured
movements of not only walking, but also of clapping to
a beat and dancing. Bläsing and Sauzet (2018) expanded
on this idea and found that, when participants were asked
to identify dance movements they had either created
themselves while blindfolded, a learned movement, or

Figure 1. Marker and joint locations (A) Anterior view of themarker locations a stick figure illustration; (B) Anterior view of the locations
of the secondary markers/joints used in animation and analysis of the data.
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movements they had merely watched, participants better
recognised and were more likely to associate themselves
with movements they had created, even in the absence of
visual memory of the movement.

Just as with musical genre, the identification of indi-
viduals is these days the purview of both man and
machine. Readers familiar with large social media sites
will be familiar with the application of face-recognition
technology, which has been successfully used to analyse
relationships between facial features (Guo, Li, & Chan,
2000). Other work has focused on identifying human
actions such as running, kicking, or throwing across
large samples of different recordings (Guo et al., 2000).
However, while humans are able to recognise individuals
from whole body movement without the need for other
information, computer vision approaches often include
analysis of colour and shape, which in turn leads to diffi-
culties re-identifying individuals who may, for example,
be wearing different clothing from one day to the next
(Poppe, 2010).

The above literature review raises some interesting
questions about musical genre and its relationship to
music-induced movement, as well as about the relation-
ship between individuals’ apparently unique movement
patterns and the effects of distinct musical stimuli. While
there is evidence that both audio features and the genre
category of a song can influence how it is embodied by lis-
teners, only a limited number of specific genres has been
studied in this regard. For example, Luck et al. (2010)
examined the influence of Jazz, Techno, Latin, Funk, Pop
and Rock, using only non-vocal excerpts, while Solberg
and Jensenius (2017) focused exclusively on Electronic
Dance Music (EDM), and Burger and Toiviainen (2018)
examined participants’ movements in response to EDM
compared to Latin, Funk and Jazz. The aim of the current
study, therefore, is to explore the distinctions between
common Western musical genres in terms of how they
are embodied by participants within a free dance move-
ment setting, in which participants are allowed to move
as they desire without pre-choreographed constraints.
As a comparatively large body of work exists using
machine learning to differentiate between genres, the
current study will similarly employ machine learning to
explore the degree to which genre can be distinguished
from the bodily movements of participants. As previ-
ous work also highlights bodily moment as a robust
means by which humans can distinguish between oth-
ers based on movement, this study will also explore
the degree to which such individuality of movement
is present in individuals’ movements across multiple
genres.

Within a framework of embodied music cognition,
and in light of previous research has shown both that

audio features and genre influence music-induced move-
ment (Burger, Thompson, Saarikallio, Luck, & Toivi-
ainen, 2010; Luck et al., 2010) and that genre can be
distinguished to a large degree by analysis of audio signals
(Genussov & Cohen, 2010; Tzanetakis & Cook, 2002),
we hypothesised that machine learning analysis of kine-
matic features extracted from music-induced movement
could be used to identify the genre of the heard musi-
cal stimulus. Given strong evidence for the presence
of individually identifiable movement features in both
music and non-music settings (Karkavitsas & Tsihrintzis,
2011; Nanni, Costa, Lumini, Kim, & Baek, 2016), we also
hypothesised that identification of individuals through
machine learning analysis of kinematic features would be
possible. As previous research has shown that some gen-
res are easier than others to distinguish using machine
learning, we further expect that there will be variation
between genres in the accuracy of both genre and indi-
vidual identification.

2. Methods

2.1. Motion capture study

A motion capture study was designed to collect free
dance movement data from participants using naturalis-
tic (commercially available) musical stimuli representing
different genres (see section 2.1.4).

2.1.1. Participants
A total of 73 participants (54 females) completed the
motion capture experiment. Participants ranged in age
from 19 to 40 years (M = 25.74, SD = 4.72). Thirty
held Bachelor’s degrees while 16 held Master’s degrees.
Thirty-three reported having received some formalmusi-
cal training; five reported one to three years, ten reported
seven to ten years, while 16 reported ten or more years of
training. Seventeen participants reported having received
some formal dance training; ten reported one to three
years, five reported four to six years, while two reported
seven to ten. Participants were of 24 different national-
ities, with Finland, the United States and Vietnam being
themost frequently represented. For attending the exper-
iment, participants received two movie ticket vouchers
each. All participants spoke and received instructions in
English.

2.1.2. Apparatus
Participants’ movements were recorded using a twelve-
camera optical motion capture system (Qualisys Oqus
5+), tracking at a frame rate of 120 Hz, the three-
dimensional positions of 21 reflective markers attached
to each participant. Markers were located as follows
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(L = left, R = right, F = front, B = back) 1: LF head;
2: RF head; 3: B head; 4: L shoulder; 5: R shoulder; 6:
sternum; 7: stomach; 8: LB hip; 9: RB hip; 10: L elbow;
11: R elbow; 12: L wrist; 13: R wrist; 14: L middle finger;
15: R middle finger; 16: L knee; 17: R knee; 18: L ankle;
19: R ankle; 20: L toe; 21: R tow, visible in Figure 1(A).
The musical stimuli were played in a random order via
four Genelec 8030A loudspeakers and a sub-woofer. The
direct (line-in) audio signal of the playback and the syn-
chronisation pulse transmitted by the Qualisys cameras
when recording were recorded using ProTools software
so as to synchronise the motion capture data with the
musical stimulus afterwards.

2.1.3. Stimulus selection
The 35-second stimuli for the experiment were selected
using a computational process based on social-tagging
and acoustic data. Social tags are defined as ‘free text
labels that are applied to items such as artists, albums and
songs’ (Lamere, 2008, p. 101), the possibility of which is
provided by music-listening platforms such as Last.fm.
The selection pipeline was designed to select natural-
istic stimuli that were uncontroversially representative
of their respective genres, which would also be appro-
priate to use in a dance setting. A total of 2407 tracks
were collected from Last.fm which also were tagged by
users with one and only one genre label (e.g. ‘Country’
or ‘Jazz’); these labels were derived from the revised ver-
sion of the Short Test of Music Preferences, or STOMP-R
(Bläsing & Sauzet, 2018; Troje & Chang, 2013). Tracks
were also required to have been tagged by Last.fm users
with at least one dance-related term, such as ‘danceable’,
‘dancing’, ‘head banging’, or ‘headbanging’, and were
retained only if they had a non-zero danceability score
according to Echo Nest (which is determined by com-
putational analysis of a given track’s acoustic features
including beat strength, tempo and loudness), and only if
the track’s tempo fell between 118–132 BPM. Four ran-
domly selected excerpts from each genre were checked
for tempo and stylistic consistency by the researchers,
leaving 16 stimuli from 8 genres: Blues, Country, Dance,
Jazz, Metal, Pop, Rap, and Reggae. The details of the
stimuli are given in Table 1.

For a complete description of this stimuli-selection
methodology, see Carlson et al. (2017).

2.1.4. Procedure
Groups of three or four dancers at a time attended the
experiment and were instructed to move freely to the
randomised musical stimuli, as they might in a dance
club or party setting. Theymoved first individually (with-
out seeing any other dancers) and in dyads, although

Table 1. Music stimuli.

Genre Artist Track

Blues The Paul Butterfield Blues Band Mystery Train
Blues Keb’ Mo’ She Just Wants to Dance
Country Dixie Chicks Goodbye Earl
Country Brooks & Dunn My Maria
Dance/Electronica M People Sight For Sore Eyes
Dance/Electronica Lady GaGa LoveGame
Jazz Jimmie Lunceford Lunceford Special
Jazz Sidney Bechet Muskrat Ramble
Metal Lamb of God Redneck
Metal White Zombie Thunder Kiss
Pop Christina Aguilera Come On Over
Pop Duran Duran Want You More!
Rap/Hip-Hop Run-DMC, Jason Nevins It’s Like That
Rap/Hip-Hop DJ Laz Move Shake Drop
Reggae Sean Paul Temperature
Reggae Shaggy Oh Carolina

only individual data is considered in the current analy-
sis. In each condition (individual and all possible dyads),
all 16 stimuli were heard in randomised order. Partici-
pants were asked to listen to the music and move freely
as they desired, staying within the marked capture space.
The aim of these instructions was to create a naturalistic
paradigm, such that participantswould feel free to behave
as they might in the real world. To limit the effects of
fatigue, participants were informed that they were free to
ask for a break or stop the experiment at any time, and
were additionally offered water, juice and biscuits as light
refreshment.

2.1.5. PreprocessingMocap data
Using the Motion Capture (MoCap) Toolbox (Burger &
Toiviainen, 2013) in MATLAB, movement data of the 21
markers were first trimmed to match the duration of the
musical excerpts. Due to small recording errors (i.e. the
mocap recorded being stopped too quickly), several files
were 33-seconds in length while the majority were 35-
seconds. Gaps in the data were linearly filled. Following
this, the data were transformed into a set of 20 secondary
markers – subsequently referred to as joints. The loca-
tions of these 20 joints are depicted in Figure 1(B). The
locations of joints B, C, D, E, F, G, H, I, M, N, O, P, Q, R,
S, and T are identical to the locations of one of the orig-
inal markers, while the locations of the remaining joints
were obtained by averaging the locations of two or more
markers; Joint A: midpoint of the two back hip markers;
J: midpoint the shoulder and hip markers; K: midpoint
of shoulder markers; and L: midpoint of the three head
markers. The instantaneous velocity of each marker in
each direction was calculated Instantaneous velocity was
estimated by time differentiation followed by the appli-
cation of a 2nd-order Butterworth filter with a cutoff
frequency of 24Hz for all participants for all 16 stimuli
(see Burger & Toiviainen, 2013). Subsequently, the data
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were converted into local coordinate system, in which the
rootmarker (Figure 1B,markerA) is defined as the origin
and the line connecting the hip markers the mediolateral
axis, to allow for comparison between individuals who
may have been oriented differently in the capture space.

Full details of the experiment can be found in Carlson,
Burger and Toiviainen (2018).

2.2. Machine learning analysis

A machine learning model involving feature extraction,
feature selection, and classification was employed and
evaluated using cross validation. Two classification tasks
were undertaken: participant classification and genre
classification.

The classification method employed for the current
analysis is that of SupportVectorMachines (SVM),which
has become popular over the early 2000s. This method
is based on the relatively straightforward idea that, given
two classes of data (for example, half the points represent
Mozart StringQuartets and the other half songs byMetal-
lica, see Figure 2) graphed onto some two-dimensional
space based on some of their identifiable features (num-
ber of electric instruments and average amount of head
banging during performances), there are theoretically
infinite lines that could be drawn to divide the data. How-
ever, there is only one line that optimally divides the two
classes such that the introduction of new data is most
likely to be classified correctly. SVM is used to identify the
line that best divides as the one that is maximally distant
from the nearest data point of each classes, providing,
essentially, the largest possible buffer space between the
two classes; this buffer space defines the Optimal Sep-
arating Hyperplane, or OSH. Not only does the OSH
separate the classes of data, but it minimises the risk that
new data would be incorrectly classified (Guo et al., 2000;
Mamonne, Turchi, & Cristianini, 2009).

A small tweak to the above example should easily con-
vince the reader of the importance of feature selection. If

instead of graphing our data based on electronic instru-
ments or crowd head-banging behaviour, the features we
used were number of musicians performing and num-
ber of musicians wearing black, it would be virtually
impossible for our algorithm to distinguish between per-
formances ofMozart string quartets and performances by
Metallica. The problem of classification becomes more
serious and more abstract when the features available
for analysis are limited to the recorded acoustic signals
themselves, or indeed to dancers’ movements. It should
be noted that SVM is not limited to two or even three-
dimensional space, nor to linearly-separable classes, so
real-world attempts to distinguish genres based onmulti-
ple extracted audio features can become highly complex
and more challenging to interpret (for a more formal
overview of SVM, see Estes, 1962; or Mamonne et al.,
2009).

2.2.1. Kinematic feature extraction
The kinematic feature used in this analysis was the
covariances of velocity between all themarker time series
in each direction (X, Y and Z) within each participant
for each stimulus; that is, the degree to which the move-
ment of any two of a participants’ markers covaried with
each other across the entire stimulus in any of the three
dimensions, resulting in a marker by marker covari-
ancematrix for each participant. Such covariance features
have been previously yielded high performance in classi-
fication tasks with reasonable computational complexity
(Ergezer & Leblebicioğlu, 2018; Guo, Ishwar, & Konrad,
2009; Tuzel, Porikli, & Meer, 2008). Furthermore, such
relationships between markers were suggested by Troje
et al. (2005) to play at least some role in human per-
ceptual identification of individuals. In addition to using
linear covariance, however, we also tested a nonlinear
measure of covariance, defined using a Radial Basis
Function (RBF) kernel (that is, a specific mathematical
algorithm used to transform data into the desired form)
in the covariance computation, which was normalised
according to the time-series length (denoted by d) to

Figure 2. Example of Support Vector Machine (SVM) classification; many lines accurately divide the data in this two-dimensional space,
but the line provided by SVM provides maximal distance between the two classes.
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facilitate different lengths of some stimuli. This measure,
also referred to as the correntropy between time series xi
and xj (Liu, Member, Pokharel, & Principe, 2007), was
computed as follows:

K(xi, xj) = e−‖xi−xj‖22/(2σ 2T2)

where ||xi − xj||2 =
√∑T

t=1 |xi(t) − xj(t)|2 is the L2
norm, also referred to as the Euclidian norm as it is cal-
culated as the Euclidian distance from the origin. This
yielded for each participant per stimulus a symmetric
covariance matrix whose lower triangular part was sub-
sequently vectorised to produce a feature vector of length
1596. Correntropy calculated using an RBF kernel pro-
vides an alternate measure of similarity compared to lin-
ear covariance, in which similarity decays as a function of
the distance between two vectors (data vectors in this case
representing marker movement in a given dimension),
in the shape of a bell-curve (e.g. a Gaussian distribution)
rather than a straight line. The degree towhich twomark-
ers covary are quite literally ‘graded on the curve’, with
a steeper curve resulting in highly covarying pairs being
marked as even higher than they would be in a linear
measure, and vice versa for low covarying pairs.

The steepness of the curve in the above computation
is determined by the value of the sigma parameter, as this
affects the distribution of the produced features, where
high values yield negatively skewed feature value distri-
bution, and vise-versa for low values. Thus, the data dis-
criminability with respect to the feature values can be low
if a sigma value that is either too high or too low is used.
Because of this, it was necessary to include RBF-kernel
optimisation within our machine learning model, such
that the features used to discriminate between classes
were useful for the relevant tasks. Our solution for deter-
mining an appropriate value for sigma was to optimise
the sigma value by minimising the skewness of each fea-
ture separately using the downhill simplex algorithm.
Each of these kernel-optimised features were normalised
into zero mean and unit standard deviation. For compar-
ison, data were also analysed using linear covariances.

2.2.2. Feature selection
After the RBV covariance matrix was extracted for
each participant, distinguishing features (that is, pairs of
markers) were further selected for analysis using SVM.
In machine learning, models are regularised through the
use of a penalty term, which is applied in feature selection
to control the model complexity and prevent overfitting
(that is, the creation of a model with so many features
as to be impractical to generalise beyond the current
classification problem). Simply put, regularisation lim-
its the number of features used within a model to those

of sufficient importance such that the model does not
become too specific. In this case, an SVM classifier using
the linear kernel and L1 norm as the penalty was used for
feature selection (also known as LASSO penalty) (Zhu,
Rosset, Hastie, & Tibshirani, 2003). The L1 norm of the
feature weights, that is, the sum of the feature weights,
is used in this model as a regularizer. The difference
between L1 and L2 norms is best imagined visually; given
a point in two-dimensional space, the L2 norm is the
diagonal distance from the origin to that point, while the
L1 norm is the distance from the origin as drawn by two
perpendicular lines two perpendicular lines aligned with
the coordinate axes. For this reason, the L1 norm is some-
times referred to as a Manhattan or Taxicab norm, as a
competent taxi driver would, one hopes, follow straight
roads to a destination rather than barrelling a Euclid-
ian diagonal, (or via any random pair of perpendicular
line) through parks and buildings, no matter how much
shorter that route.

The linear SVM is defined to solve the following opti-
misation problem consisting of the penalty and loss terms
(Zhu et al., 2003):

min
w

1
2
||w||n + C

m∑
i=1

loss(yi, fw(xi))

where w ∈ R
d is the feature weight vector (normal of

the separating hyperplane), || ∗ ||n is the norm used, C
is a cost parameter controlling the effect of the error
term, {xi, yi} ∈ R

d are them training examples and their
binary labels, respectively, and fw(xi) = w · xi is the clas-
sifier that is learnt. In this paper we use the hinge loss,
max (0, 1 − y ∗ f (x))n, as the loss function.

The L1 norm SVM, as opposed to the standard L2
norm SVM, (i.e. using ||w||1 for regularisation in the
above formula) tends to yield sparse features (many fea-
ture weights close to zero), which makes it applicable
for feature selection. The L1 norm SVM is also able to
handle a larger number of irrelevant features than the
L2 norm SVM without overfitting (Ng, 2004). Here we
used a multiclass one-versus-all strategy for classifica-
tion, which yields a feature weight matrix with a value for
each class/feature. Typically, to determine which features
are selected, the L1 norm is computed across the classes,
and features with norm higher than a specified threshold,
are retained. However, instead of using a norm threshold
as a parameter, here we used the number of features to
retain as the parameter to select features having the high-
est norm.The optimal sigma values, when optimised over
all RBF 3D velocity features and samples ranged from
0.41 to 12.1, (mean = 5.05, std = 2.15). The free model
parameters of all stages were optimised based on each
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training fold in the cross-validation, independently from
the respective test folds.

2.2.3. Classification
Linear SVM with L2 (Euclidian norm) penalty was used
to classify the data based on the selected features. The L2
norm SVM, in which the regularizer term is calculated as
the square root of the sum of squares, is generally more
efficient at handling a data where feature redundancy is
not of concern (Ng, 2004).

For participant classification, a leave-one-genre-out
cross validationwas employed. This enables us to see how
well the model learns participant-specific, idiosyncratic
movement patterns that generalise to new musical gen-
res. For genre classification, an 8-fold cross validationwas
employed to have an equal number of folds as in the par-
ticipant classification (as there were eight genres). Here
at each fold, the data was split so that the participants
in the respective training and test sets were not overlap-
ping. This enabled us to see how well the model learns
genre-typical movement patterns that generalise to new
participants

3. Results

3.1. Model classification accuracy

The cost parameter was set to the default value 1.0,
and the number of features retained varied exponen-
tially between 1 and 256. For genres, using the linear
covariance features, the highest accuracy of 23.5% was
reached at 26 features, and adding more features sets into
20% accuracy level. For an 8-class classification problem,
chance level accuracy is 12.5%.While ourmodel did pro-
vide accuracy above chance level, this accuracy is low
compared to classification of genre based on audio sig-
nal (Holzapfel & Stylianou, 2006; Kujala, Aho, & Elomaa,

2009; Tzanetakis & Cook, 2002). For participants, the
highest obtained accuracies are at the 80–85% range, well
above the 1.37% chance accuracy for a 73-class classifica-
tion task.

When using the RBF covariance features the machine
learning pipeline was identical, except for the addition
of the kernel optimisation stage. For genres, results were
the same as for linear covariance. For participants, the
results using Correntropy (RBV) matrixes show that
adding more features improves the results until conver-
gence after 107 features at a notably high 94–95% level.
At 107 features, the accuracy of classification was 94.1%,
approximately 10% higher than the accuracy found for
linear covariance features. It is notable how much better
ourmodel performedwhen classifying individuals rather
than the genres to which they were moving, especially
given the comparatively higher level of chance-accuracy
for the genre problem (12.5% compared to 1.37%). These
results are shown in Figure 3.

3.2. Evaluation ofmodel feature selection by
comparison to PCA

In further analysis only correntropy matrixes were used
due to their better performance over linear features. To
confirm the feasibility of the L1 (Taxicab)-norm SVM-
based feature selection, a cross-validation experiment
was conducted replacing the feature selection stage by
Principal Components Analysis (PCA), where the cor-
rentropy matrixes were projected to its principal compo-
nents. The range of number of components used was the
same as that for the number of selected features in the
experiment above. The results, shown in Figure 4, show
that the PCA projection yields lower or similar accura-
cies than feature selection. Themain benefit of the feature
selection is the easier interpretability of classifier model
features.

Figure 3. Accuracy compared to number of features used, for both linear covariance (right) and Correntropy (RBV) (left).
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Figure 4. Comparison of 11-norm SVM-based feature selection and principal component analysis.

3.3. Evaluation ofmodel cost (C) parameter

The cost parameter C in SVM controls the cost of
misclassification (by weighting the error term, and
consequently down-weighting the regularisation), and
therefore lower C values may lead tomore complexmod-
els which cannot then be easily generalised to other sets
of data (i.e. theOSHwould too narrowly conform around
the individual data points specific to this set). The C
parameter was in our initial analysis set to the default

value C = 1.0. In a typical machine learning scenario,
the C parameter is optimised with respect tomodel accu-
racy using a hyper parameter optimisation strategy such
as grid search (varying the values) in an inner cross-
validation loop. To see how the C value affects the par-
ticipant classification results, the value was varied from
0.01 to 1000. As shown by the results, which can be seen
in Figure 5, the value has only minor effect on the results,
and the default value is close to the optimal. This shows

Figure 5. Evaluation of parameter C, showing a range from 1000 to 0.01, which minimally affected results.
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Figure 6. Genre and participant classification accuracy per genre.

Figure 7. Relative importance of distinct features in classification of individual participants.
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that a model with medium complexity is feasible for the
classification task.

In summary, as shown by the various trials with dif-
ferent model parameters and the comparisons to other
feature sets, the results demonstrate the high robustness
of the kernel covariance features at representing dance
move patterns for participant classification, and the fea-
sibility of the classification pipeline employed.

3.4. Accuracy by participants and genres

If a participant’s dance moves are idiosyncratic, the pat-
terns of theirmovements should be invariable across gen-
res, and therefore should yield high individual classifica-
tion accuracy for that participant. Conversely, such non-
genre-specific movement patterns would likely result in
low genre classification accuracy for that participant. To
examine this relationship between the participant and
genre classification accuracies, we computed correlation
between the participant-wise accuracies of participant
and genre classification. The correlations are significantly
negative, as expected, r = −.31, p < .01.

Correspondingly, if a specific genre elicits genre-
typical movement patterns, this should yield high genre
classification accuracies of that genre, and conversely,
low participant classification accuracies of that genre.
This is demonstrated by the genre-wise participant and
genre classification accuracies, whereMetal and Jazzwere
found to elicit the most genre-typical dance moves, and
vice versa for Dance, Pop, and Blues, the results of which
can be seen in Figure 6.

3.5. Importance of features

To further explore the unexpectedly accurate classifi-
cation of individual participants, we chose to examine
which features optimally classify participants. The partic-
ipant classification model pipeline with the 107 selected
kernel covariance features was run on the full data set,
and the feature importance scores were computed as the
L2 norms of the L2 norm SVM classifier feature weights
over the classes (participants). The results can be seen in
Figure 7.

The results show a very general pattern of relation-
ships betweenmedio-lateral (ML) and anterior-posterior
(AP) movement across various markers as distinguish-
ing features between dancers, while marker move-
ment in the vertical (V) direction was distinguishable
more often in relation to other vertical movement. The
markers/dimensions which were overall most impor-
tant for classification of individuals, calculated by taking
the mean over feature matrix columns, are shown in
Table 2.

Table 2. Markers/dimensions with the highest feature
importance.

Head (AP) 14.81
R knee (ML) 13.60
L knee (ML) 13.27
R shoulder (ML) 13.02
L shoulder (ML) 11.31
R knee (AP) 10.87
Head (ML) 10.34
Head (V) 9.18

4. Discussion

The current paper employed a novel approach to explor-
ing the relationship between musical genre and music-
induced movement. Participants’ free, improvised dance
movementswere capturedwhile dancing tomusical stim-
uli representing eight genres selected using a data-driven,
social-tagging method. Both linear covariance and non-
linear correntropy were calculated from dancers’ whole-
body movements for each stimulus, and an established
machine learning algorithm was applied with the aim of
classifying the correct genre to which the movement was
generated and the correct participant who generated the
movement. Contrary to our expectations, person classi-
fication was notably more accurate than genre classifica-
tion, despite chance level being much lower for person
classification (1.37%compared to 12.5%).However, some
genres were also more recognisable than others from
dancers’ movements. To the authors’ knowledge, this is
the first study to attempt to classify genres or individuals
in the context of free dance movement.

Greater classification accuracywas achieved using cor-
rentropy, calculated using an RBF kernel, than when
using the linear covariance as a movement feature. This
suggests that nonlinear features are particularly able to
capture relevant identifying characteristics of movement.
In this context, we can interpret the correntropy measure
as being defined more by similarities between markers
than by dissimilarities; that is, when markers are moving
dissimilarly, it is of little consequence exactly how much
their two time-series differ. If, for instance, the RBF ker-
nel used is very narrow (that is, the curve represents a
steep decay), correntropy can be thought of as measuring
the proportion of time for which the two time-series are
very similar to each other.

Human capacity to identify individuals from point
light displays of movement has been explored in the liter-
ature (Swedish & Troje, 2007; Troje & Chang, 2013; Troje
et al., 2005; Ueda, Yamamoto, &Watanabe, 2018), as have
kinematic features that commonly characterise traits
such as gender, mood, and personality in human move-
ment (Bhowmik, Ghosh, Debsinha, Kajal, & Professor,
2016; Røislien et al., 2009; Troje et al., 2005). However,
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computational classification of individuals based on
movement features has largely been studied in relation
to practical applications, such as security surveillance,
where video data is more commonly used than three-
dimensionalmotion capture data, necessitating the inclu-
sion of shape and colour features (Bhowmik et al., 2016;
Moeslund, Hilton, & Krüger, 2006). The current study
is the first known to the authors to classify individu-
als using only movement-related features derived from a
free dance movement setting. The surprisingly accurate
results suggest that individuality is partly encoded into
the covariance between the three-dimensional move-
ment of certain body parts.

The model achieved its best fit at 107 features, most of
which were related to the head and limbs. Analysis of the
chosen features revealed that head, shoulder and knees
were important markers in distinguishing between indi-
viduals, and that discriminative features often occurred
between adjacent joints (e.g. the right wrist and right
elbow) within the same dimension and between key
left and right markers such as the shoulders and knees.
Although the complexity of this model creates challenges
for interpretation, the general picture that emerges is a
mathematically andmechanically reasonable explanation
but still a surprisingly telling one in actuality. Of course,
in theory, different individuals’ movements may covary
differently between any markers in any dimensions, but
as it is highly unlikely that participant’ were consciously
controlling these aspects of theirmovements, the fact that
thesemovement features could be used to accurately clas-
sify individuals across various musical stimuli suggests
that we each have our own ‘motoric fingerprint’ which
is evidenced in our free dance movements, regardless of
what music is playing.

Just what genre of music was playing was, against our
expectations, not classified very accurately. Although our
model did manage to perform better than chance for
an 8-class classification problem, at best its overall accu-
racy rate was less than 25%, well below accuracy rates
for most models which classify genre from acoustic sig-
nals, which often have accuracy rates of more than 80%
(e.g. Holzapfel & Stylianou, 2006; Nanni et al., 2016). The
results suggest that an individual’s motoric fingerprint
has a stronger influence on her dancemovement than the
specific music to which she is dancing. This results are
supported by previous work, for example that of Troje
and Chang (2013), showing that there are highly indi-
vidual characteristics of biological movement, and also
by work showing a large degree of consistency of indi-
vidual movement strategy in skilled drummers across
conditions (Dahl, 2011; Danielsen, Waadeland, Sundt,
& Witek, 2015) However, these results do not neces-
sarily indicate that the body is not involved in parsing

sound or genre. Rather, comparison of the current results
with previous work involving classification of genre from
audio signals reveal some interesting parallels that can be
interpreted through a lens of embodied music cognition.

The results show that some genres were more success-
fully classified by examining dancers’ movements than
others, namelyMetal (53% accuracy) and Jazz (35% accu-
racy). This is in line with previous audio-based classifi-
cation studies, which have routinely shown differences
between genres in ease of classification. Tzanetakis and
Cook (2002), for example, found that Jazz was classi-
fied noticeably better than other genres. Holzapfel and
Stylianou (2006) report the highest classification rate for
Metal, as do Wülfing and Riedmiller (2012). Metal and
Jazz (along with Classical) were also classifiedmost accu-
rately by Hartmann et al. (2013). These similarities arise
despite differences in the acoustic features and classifica-
tionmethods used, corroborating the evidence that there
is indeed something particularly ‘genre-like’ about these
genres, especially compared to genres that have regu-
larly proven more difficult to classify, such as Rock and
Pop. One interpretation, in keeping with a framework
of embodied music cognition as conceptualised in the
works of Leman (2008) and Godøy et al. (2016) is that
these genres tend to supply listeners with perceptually
distinctive audio stimuli than that of some other genres,
naturally eliciting different movement patterns that dis-
tinguish the results from the less differentiable Pop and
Dance. Jazz music tends to feature a fairly unique set of
instruments—keyboard, drums, bass, and saxophone are
archetypal to jazz—while Metal, though sharing the gui-
tar, drums, bass and vocals of many Rock-related styles,
is characterised by noisiness and spectral rolloff the audio
signal (Ajoodha, Klein, & Rosman, 2017). One might
question whether these characteristic timbral features
are necessarily processed by listeners through different
movements than others. It is also worth asking whether
the sonic forms afforded by Jazz and Metal are particu-
larly distinctive from those of other genres, making the
empathic imitation of them similarly more distinctive?

Although the unique musical features of Metal and
Jazz undoubtedly do play a role in influencingmovement,
it is important to mention the obvious extramusical fac-
tors that may also have affected participants responses to
these genres. Some genres have been previously associ-
ated with stereotypical movements; Luck et al. (2010), for
example, found evidence that Techno, Latin and Metal
were all associated with specific movement patterns, the
latterwith recognisable ‘headbanging’ patterns.Although
this could again relate to the acoustic qualities of the
heard music, the role of culture in driving such stereo-
types must be considered in interpreting the current
results. Musical genres often exist as part of a culture
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that includes visual elements, such as clothing ormakeup,
and associated dance movements (e.g. Jaimangal-Jones,
Pritchard, &Morgan, 2015). Familiarity with these visual
elements of culture is likely to have influenced partici-
pants’ embodied responses to some genres.

Metal seems to be a central piece of a definite sub-
culture, which has been analysed from various socio-
logical perspectives (Bryson, 1996; Lacourse, Claes, &
Villeneuve, 2001; Straw, 1984). Snell andHodgetts (2007)
explored the formation of identity within the social con-
text of Metal music scenes, and found a close association
between stereotypical movements such as headbanging
and participants’ sense of communal bonding and shared
experience. They refer to ‘the sharing of [Metal] music
through dance as a way of reaffirming a sense of belong-
ing, shared experience and support’ (p. 434). The current
results suggest that, while dancing to Metal, participants
moved in more similar ways to one another, allowing for
more accurate classification, possibly supporting the idea
of stereotypical dance inMetal serving identificationwith
a group. Jazz, which has its origins in its own subculture,
has been historically associated with a number of distinc-
tive dance movements, such as the Charleston and other
types of swing dancing, which through revivals and spe-
cific efforts at cultural preservation are not unlikely to
be at least cursorily familiar to Western listeners today
(Lena & Peterson, 2008; Monaghan, 2002). These influ-
ences may be less prominent in responses to genres that
are more mainstream, such as Pop, Hip-Hop and Dance,
which may account for the differences in identification
accuracy of these genres compared to Metal and Jazz.

Given these cultural characteristics, it is possible that
participants’ movements were affected by familiarity with
norms specific to the subcultures invoked by these two
musical genres, quite possibly even if they themselves did
not identify with that culture. Familiarity may arise, for
example, through exposure to music videos, films, and
other types of visual media, as well as through direct
engagement with others in the cultural context. This does
not need to be considered a conflicting interpretation to
the idea that particular acoustic features were embodied
by participantswhile listening to these genres, in linewith
a framework of embodied music cognition. It does, how-
ever, invite consideration of the idea that an embodied
response tomusic—that is, the use of bodilymovement to
process and parse the incoming audio signals—means, in
naturalistic settings at least, the embodiment of music on
many levels of abstraction higher than sound. Previous
work has shown that emotion, mood, and personality are
embodied by our music-induced movements (Camurri,
Lagerlöf, & Volpe, 2003; Luck et al., 2010; Van Dyck,
Maes, Hargreaves, Lesaffre, & Leman, 2013), as well as
our own cultures (Himberg & Thompson, 2011). It is not

a very far leap, then, to expect that cultural information
embedded into musical genre is also embodied. Viewed
in this light, the process of dancing to a song is not
only the process of interaction between a complex acous-
tic signal and an even more complex human nervous
and muscular system; it is simultaneously the interac-
tion of a unique person and their memories, beliefs, and
preferences with a culturally-defined set of extramusi-
cal associations and expectations (Shevy, 2008). Finnish
participants, who comprised a majority of the current
study’s participants, may be particularly familiar with,
and therefore predisposed to enjoy,Metal music (Carlson
et al., 2017), which could have yielded a more prominent
embodied manifestation of Metal culture in the current
results than would be found elsewhere in the world.

The current results suggest that the unique role of the
individual and the role not only the participants’ cul-
ture, but the cultural affordance of themusic itself, should
be taken into consideration in designing and interpret-
ing studies related to embodied music cognition. These
results also show that, while analysis focused on identi-
fying groupmeans and general tendencies are a common
approach for such studies, there are both quantitative and
theoretical insights to be gained from the application of
analysis methods which highlight individual differences.
The notable individuality of movement patterns shown
here should be explored with further research, for exam-
ple by using stimulus manipulations other than genre,
or considering individual differences at the level of per-
sonality or culture. Future research is also necessary to
examine genres and their associated dance movements
at the level of sub-genre, to explore the relationships
between genre preferences and movement patterns, and
to explore embodied responses to audio excerpts that are
ambiguous or multi-faceted in terms of genre. The cur-
rent results regarding genre also merit further research,
particularly of the influences ofmusic preference, culture,
and familiarity with a given genre and its extramusical
associations.
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