

Performing under Pressure; on the Biology, Psychology and Sociology of stress in high-performance professions

II - ON THE PHYSIOLOGY OF STRESS

Nature selects for speed

Speed over accuracy

It matter less where you run than that you run as quickly as possible

Limited time frame (5 min)

Most negatives effects of stress are the result of turning on the system for way longer than the approximately 5 minutes it usually takes.

Sapolsky, R. M. (2004). Why zebras don't get ulcers: A guide to stress, stress related diseases, and coping. In Natural History. https://doi.org/10.1002/cir.3880060119 Heitz, R. P. (2014). The speed-accuracy tradeoff: History, physiology, methodology, and behavior. Frontiers in Neuroscience, 8(8 JUN), 1–19. https://doi.org/10.3389/fnins.2014.00150

Both the lion and the gazelle need the same acute processes to survive

- Transport energy (fuel + oxygen) to those parts of the body that you need to survive
 - Legs
 - Upper body

Hyper cognitive focus on the task at hand (fight or flight)

Down-regulation of non-essential processes

Energy

- Oxygen in-take and transport to the relevant muscle groups
 - Increased respiration rate
 - Increased blood pressure / increased heart rate
- Release of glucose from glycogen stores and transport to the relevant muscle groups
 - Cortisol
 - Increased blood glucose levels
 - Increased blood pressure / increased heart rate

Important cognitive changes

Mild stress

- Enhanced cognitive function; implicit memory & declarative tasks
- Enhanced task oriented focus
- High acute or chronic stress
 - Impairs the formation of complex memories: enhances implicit memory
 - Repetitive tasks

Sandi, C. (2013). Stress and cognition. WIREs Cogn Sci, 4(June). https://doi.org/10.1002/wcs.1222

Downregulated functions

Yamamora, D. L. R., & Reid, R. L. (1990). Psychological stress and the reproductive system. Seminars in Reproductive Endocrinology, 8(1), 65–72. <u>https://doi.org/10.1055/s-2007-1021424</u> Toyoda, A., Iio, W., Matsukawa, N., & Tsukahara, T. (2015). Influence of chronic social defeat stress on digestive system functioning in rats. *Journal of Nutritional Science and Vitaminology*, 61(3), 280–284. https://doi.org/10.3177/jnsv.61.280 Oroian, B. A., Ciobica, A., Timofte, D., Stefanescu, C., & Serban, I. L. (2021). New Metabolic, Digestive, and Oxidative Stress-Related Manifestations Associated with Posttraumatic Stress Disorder. Oxidative Medicine and Cellular Longevity, 2021. https://doi.org/10.1155/2021/5599265

Processing stimuli; the hardware

- A stimulus is detected by one of our senses
- The amygdala relays signals if the stimulus is threatening
 - Locus coeruleus (Norepinephrine)
 - Hypothalamic adrenal axis (Cortisol)
 - Ventral tegmental area (Dopamine)
 - Medial prefrontal cortex

Autonomic nervous system

Sympathetic nervous system

Parasympathetic nervous system

(nor-)adrenaline / (nor-)epinephrine

Setting the system up for movement

- Blood pressure / heart-rate
- Respiration rate
- Task related focus and memory
- Heightened alertness & stressor related memory
- Three behavioural stages of nor-adrenaline
 - Movement
 - Erratic movement (panic)
 - Shutdown

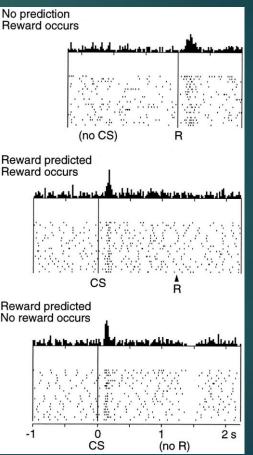
Ross, J. A., & Van Bockstaele, E. J. (2021). The Locus Coeruleus- Norepinephrine System in Stress and Arousal: Unraveling Historical, Current, and Future Perspectives. *Frontiers in Psychiatry*, 11 (January), 1–23. https://doi.org/10.3389/fpsyt.2020.601519

Cortisol

Release glucose (fuel) from glycogen stores

- Highest in the morning
 - ► Nightmares
 - ► Interaction with nutrition

Suppress inflammation


Blood pressure

What does dopamine do to the stress response

 Dopamine: the great motivator (NO, it does not do reward!!)

Training

Uncertainty

Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36(2), 241–263. https://doi.org/10.1016/S0896-6273(02)00967-4