

Performing under Pressure; on the Biology, Psychology and Sociology of stress in high-performance professions

How do you utilise the stress response to facilitate optimal performance?

- Prepare the system for stress (See lecture 6)
- Managing the acute stress response
- Optimising the acute stress response
 - ▶ Increase dopamine
 - Increase feelings of control

Almost all of the most effective mechanisms to reduce or control the acute stress response involve feedback loops

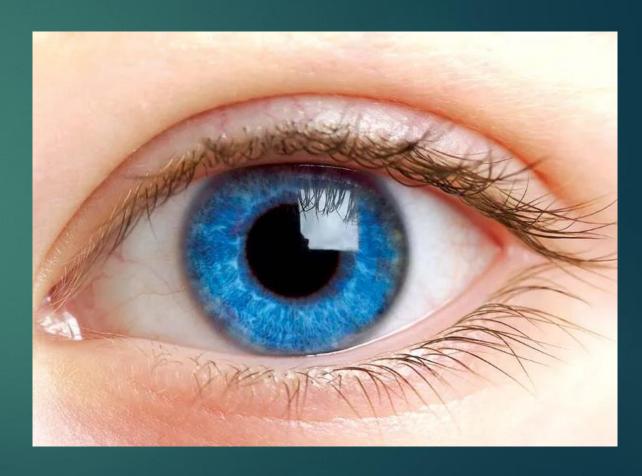
- It is hard to control
 - Thoughts
 - Emotions
 - Physiological states
- Behaviour is much easier and that will alter all the above
- Stress often requires an expression to movement (be that physiological or psychological – behaviour is the key!)

Managing the acute stress response

Feedback loops as a means to manipulate the stress system

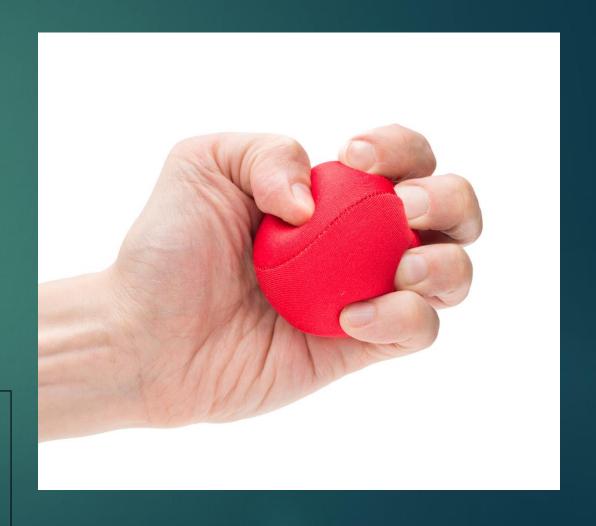
- Neurotropic substances
 - ▶ Benzodiazepams
- Behavioural manipulations
 - Breath work
 - Visual system control
 - Visualisation

Breath work


- Double sigh
 - Off load much more carbon dioxide
- Respiratory sinus arrhythmia
 - ► Inhales: diaphragm moves down, more space for the heart, brain sends a signal to speed up to keep blood pressure steady.
 - Basis for Heart Rave Variability (HRV)

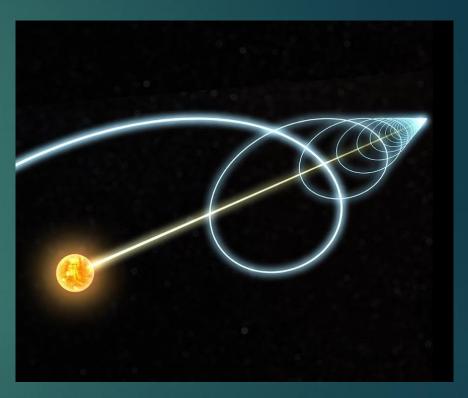
Feldman JL. <u>Neurobiology of breathing control.</u> Where to <u>look and what to look for.</u> Advances in experimental medicine and biology, 1995.

Visual control: Can you use the eyes to control stress?


- ► Eyes 2 functions
 - Detecting shapes, colours, etc. (vision)
 - Communicate to the brain active or inactive (Cues about time of day, stressors, etc.) (YES! Another feedback loop!!)
 - ▶ Relaxed (panoramic vision)
 - Stressed (focussed vision)

Left-brain / right brain cross talk

- Over activity in the left side of the brain may lead to overthinking
- Activity with the left hand, which cross talks to the right hemisphere, leads to an overall downregulation of brain activity


Mesagno, C., Beckmann, J., Wergin, V. V., & Gröpel, P. (2019). Primed to perform: Comparing different pre-performance routine interventions to improve accuracy in closed, self-paced motor tasks. *Psychology of Sport and Exercise*, 43(January), 73–81. https://doi.org/10.1016/j.psychsport.2019.01.001 Mesagno, C., & Beckmann, J. (2017). Choking under pressure: theoretical models and interventions. *Current Opinion in Psychology*, 16(June), 170–175. https://doi.org/10.1016/j.copsyc.2017.05.015

Optimising the acute stress response

Forward movement: The nucleus reuniens

- ► A small nucleus in the thalamus
- Secretes dopamine in response to forward movement
- Behaviour effects
 - ▶ In rats it increases willingness to fight harder
 - ▶ In people...

Nutrition

- Certain foods stimulate the endorphin and dopamine systems.
 - Sugar
 - ▶ Alcohol
 - Cacao
 - ▶ Etc.
- ▶ Careful! Many have a secondary detrimental effect.

Internal reward

- External rewards seem to be transient and unreliable. There is significantly greater value in internal rewards
 - Slice time to fit your motivational needs
 - Connect reward to accomplishment not something you get upon finishing
 - Don't engage in too many behaviours that release dopamine for little effort

Altruism: just a strange observation

▶ I have no data to support this, but there seems to be a strong link between resilience and altruism. Individuals who take up the responsibility to pull others through appear better at handling extreme stress

Special forces selection procedures

