

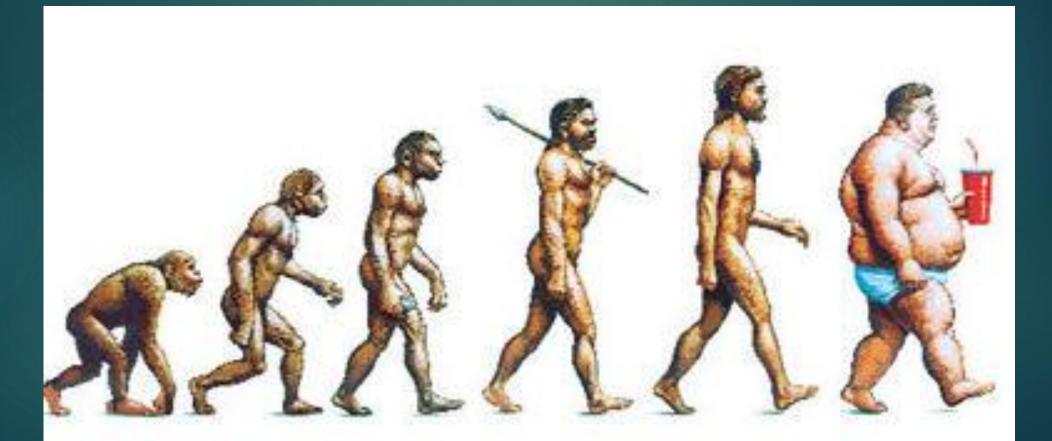
Performing under Pressure; on the Biology, Psychology and Sociology of stress in high-performance professions

IX – NUTRITION, STRESS AND PERFORMANCE

On the chaos that is Nutrition Science

- Everyone has their favourite diet and tests it against the standard American diet (MacDonald's, Burger king and worse).
 - Very few randomised trails
 - Extremely complicated to get people to follow a diet
 - Animal studies usually do not translate well
 - Mostly self-report data (highly unreliable)
- Mostly aimed at the treatment of disease rather than optimum function
 - ► Heart disease, obesity, diabetes
 - With the exception of sport's science, longevity research

The first question to ask:What are you aims?


- Nutrition is probably not a question of 'optimal' function, but of optimisation for a specific outcome.
 - Longevity
 - Peak performance
 - Psychological stability

Stress resilience and peak performance?

The second question: what else are you doing/willing to do?

- Nutrition does not exist in a vacuum.
 - Physical exercise
 - ► Link with carbohydrate consumption
 - ► Sleep
 - ► Affects leptin levels, amongst other endocrine and neuroendocrine systems.
 - Mental health
 - > Your mental state may influence metabolism and vice versa.

The natural starting point: What did we evolve to eat?

How far back do we go?

Which ancestral species?

- The further back you go the more fruit and leaves based diet gets (humans are believed to have first appeared between 300 and 500 thousand years ago).
 - After the advent of meat eating (at least 2.6 million years ago)
 - Energy surplus
 - ▶ After the advent of cooking (300 000 2 million years ago)
 - Energy surplus + gut-size reduction
 - After the agricultural revolution (+/- 11 700 years ago)
 - Rise in population, organisation and culture

Wrangham, R. (2009). Catching Fire: How Cooking Made Us Human. New York: Basic Books. Thompson, J. C., Carvalho, S., Marean, C. W., & Alemseged, Z. (2019). Origins of the human predatory pattern: The transition to large-animal exploitation by early hominins. *Current Anthropology*, 60(1), 1–23. https://doi.org/10.1086/701477 Diamond, J. (2003). Guns, Germs, and Steel in 2003. *Antipode*, 35(4), 829–831. https://doi.org/10.1046/j.1467-8330.2003.00357.x

Changes in the food supply

- Many of the foods of the time do no longer exist
 - Selective breeding of food stuffs
 - All year round access
 - Climate change & the disappearance of species

Changes in consumption culture

3 meals a day with snacks

Throughout most of pre-agricultural history people went often through short periods (a few days) of food deprivation, but rarely through starvation.

Non-stop availability

- Obesity and diabetes
- High levels of food-processing
 - Excess levels of salt, sugar and unhealthy fats

What do we actually know about prehistoric diet?

Atkins, paleo, raw, vegan, carnivore, keto ... ????

We actually know surprisingly little

- Generalist (all types of food stuffs)
- An aim at digestibility (cooking)

But!!!! This diet was consumed in a highly physically active context!

Start of meat eating

Climate change: more grass lands.

Hunting is dangerous and hard. How do you start eating meat?

- Scavenging (also rather dangerous but..... BONE MARROW!!!!)
 - Remains fresh for a few days because its encaged in a handy little box (bone)
 - Doesn't take complicated tools (a stone)
 - ► High in fat

Thompson, J. C., Carvalho, S., Marean, C. W., & Alemseged, Z. (2019). Origins of the human predatory pattern: The transition to large-animal exploitation by early hominins. *Current Anthropology*, 60(1), 1–23. <u>https://doi.org/10.1086/701477</u> Thompson, J. C., McPherron, S. P., Bobe, R., Reed, D., Barr, W. A., Wynn, J. G., ... Alemseged, Z. (2015). Taphonomy of fossils from the homininbearing deposits at Dikika, Ethiopia. *Journal of Human Evolution*, 86, 112–135. https://doi.org/10.1016/j.jhevol.2015.06.013

Hunting & endurance running

Big game overheats quicker

If you can cool more easily, hunting becomes easy.

- No need for sophisticated tools
- No need for extreme physical output

Pickering, T. R., & Bunn, H. T. (2007). The endurance running hypothesis and hunting and scavenging in savanna-woodlands. *Journal of Human Evolution*, 53, 434–437. https://doi.org/10.1016/j.jhevol.2007.01.012

Key nutrients

Macronutrients

Micronutrients

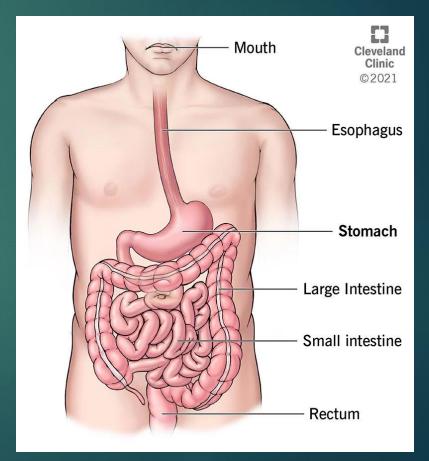
- Carbohydrates (4cal/gram)
- Protein (4cal/gram)*
- ► Fat (9cal/gram)*

- Vitamins
- Minerals

Micronutrients

Deficiencies, and in some cases excess, of a micronutrient may affect both the stress response and resilience. Regular bloodwork should tell you if you are deficient in anything.

- Common deficiencies
 - ► lodine
 - ► Calcium
 - ► Magnesium
 - ▶ Vitamins A, B12, D
 - Iron
- Others to pay attention to:
 - Omega 3 fatty acids (anti-inflammatory)
 - Antioxidants


Macronutrients

The main sources of fuel and building materials

- Fat and protein are essential
- We can survive without carbohydrates
 - Endogenous production of glucose for the brain

The digestive system has specific sensors for different nutrients

- Sugars
 - We like sweet things even if you numb taste buds
 - Stimulates endorphin secretion
- Amino acids (building blocks of protein)
 - We will eat until we have enough, not until we are full
 - L-tyrocine (dopamine precursor)
 - Chicken, turkey, fish, milk, yoghurt and almonds
 - Tryptophan (serotonin precursor)
- Fats (lipids)

The system simplified

- What you do not use, you store. But, not all macronutrients are stored the same way.
 - Insulin
 - Fat metabolism
- Stress releases stored energy
 - Cortisol
- Stress for no real reason
 - You dump a lot of energy on the system, remove it, dump it back in, remove it, etc.

Serotonin: the relax neuromodulator

- Carbohydrates stimulate serotonin secretion
 - Rest and digest relax
 - SSRIs Common anti-depressants but serious side-effects
 - Blunted emotions
 - Diminished motivation
 - Diminished hunger
 - Diminished sex-drive

Fasting

► Longevity

Regulation of insulin levels

► Neurogenesis

Mattson, M. P., Longo, V. D., & Harvie, M. (2017). Impact of intermittent fasting on health and disease processes. Ageing Research Reviews, 39, 46–58. https://doi.org/10.1016/j.arr.2016.10.005 Longo, V. D., Mitteldorf, J., & Skulachev, V. P. (2005). Opinion: Programmed and altruistic ageing. Nature Reviews Genetics, 6(11), 866–872. https://doi.org/10.1038/nrg1706