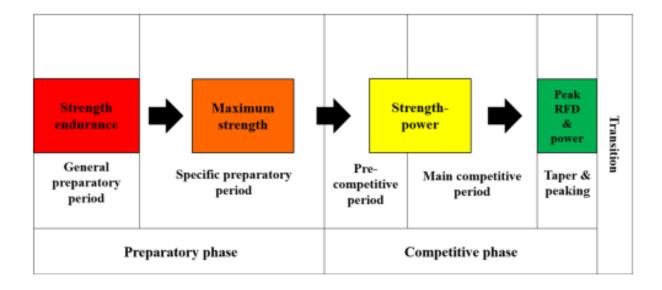
Injury prevention in team sport: the role of strength and conditioning training

Focus on load monitoring

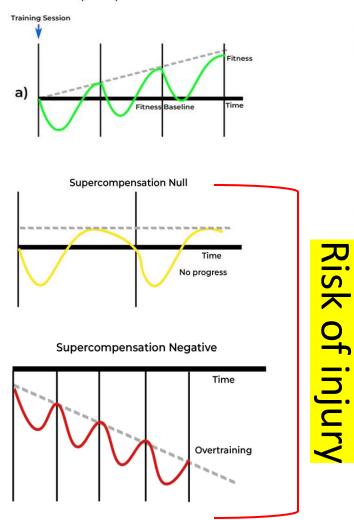
Ana Carolina Paludo

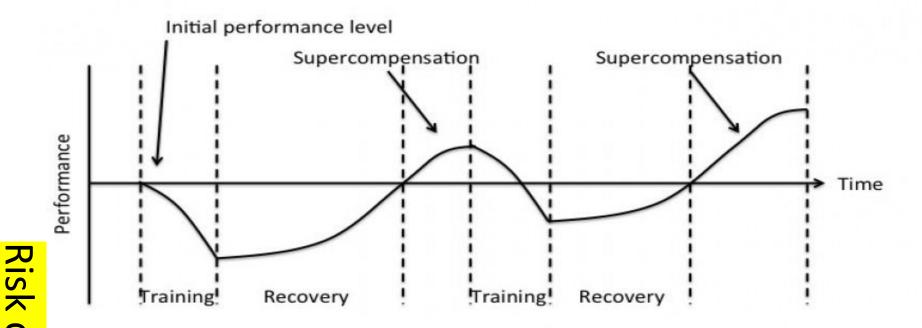
Training Plan - Periodization

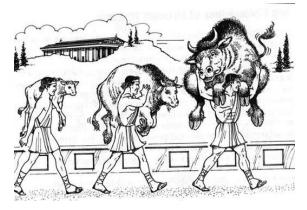

Prepare the team to reach the peak performance

on the target competition

anacpaludo@gmail.com


Periodization Phases


										Mac	roc	ycle										
Preparatory Period						Competitive Period				Transition Period												
	General Specific Preparation Preparation Phase Phase				Сс	Pr mp Pha	etiti	on	Main Competition Tran Phase				insit	nsition Phase								
Mesocycle 1 Mesocy			cycle	e 2	Mesocycle 3			Mesocycle 4			Mesocycle 5			5	Mesocycle 6		cle					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
									Ν	licro	осус	les										


Supercompensation: training dose- response

Supercompensation Positive

Classic periodization model: A training load followed by recovery results in increased performance (supercompensation).

How to verify the training progress?

External Load (imposed)

Metrics:

- GPS
- Training (duration, frequency...)

Internal Load (received/perceived)

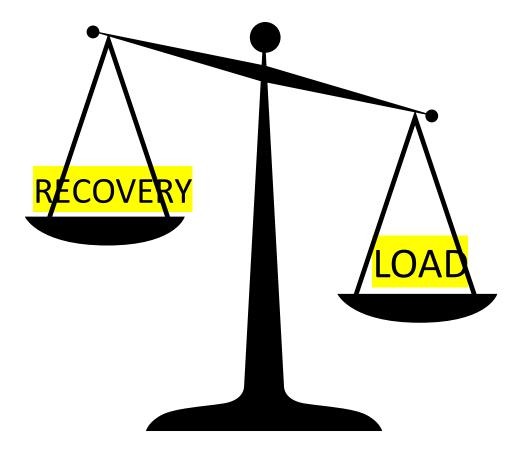
Physiological parameters:

Heart rate, lactate, hormones...

Perceptions:

 Recovery, session intensity (RPE), muscle pain...

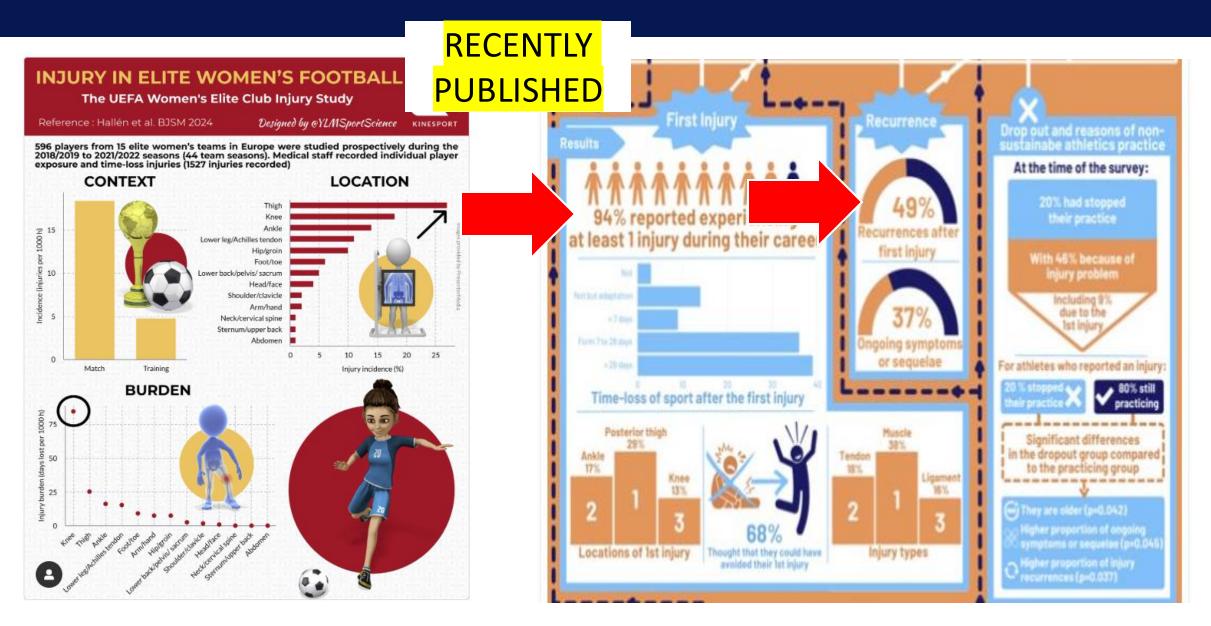
Perceived Athlete Recovery



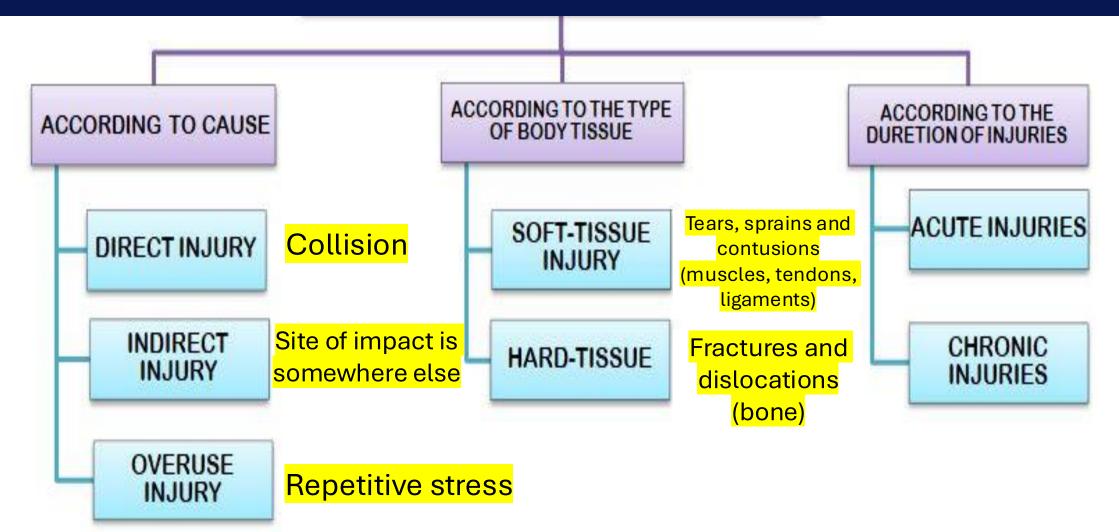
Perceived Session Intensity

anacpaludo@gmail.com

Training dose-response

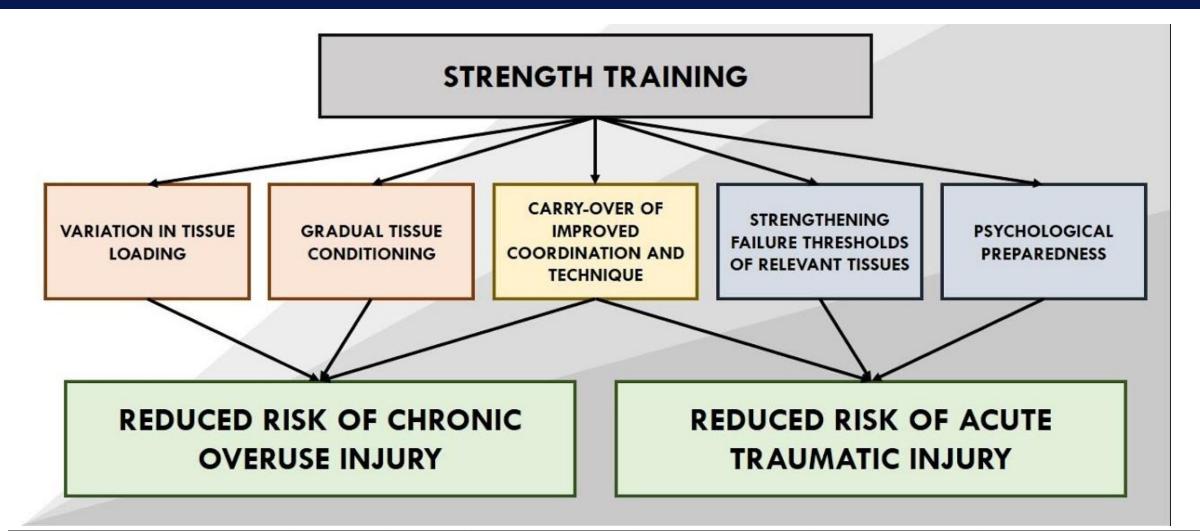


Injury investigation in team-sports



Methodology: Claims.co.uk investigated athlete injury data from reputable sports websites as well as fantasy league injury trackers, and were able to reveal the most common physical injuries in different sports.

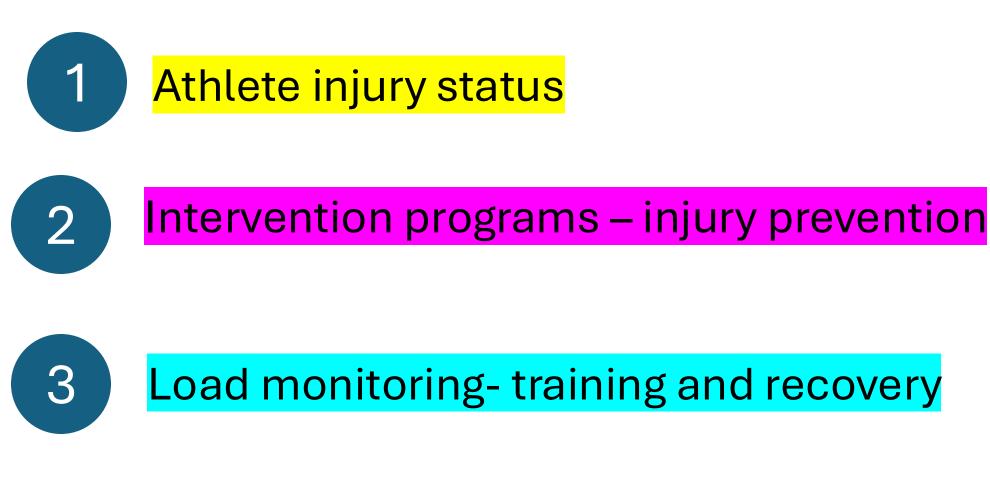
Injury investigation in team-sports



Type of sport injuries

Indirect injury refers to harm or damage that occurs as a result of an event or action but is not directly caused by that event or action itself Direct injury refers to harm or damage that occurs immediately as a result of a specific event or action

Importance of Strength Training


Lauersen et al. (2018). Strength Training as a Superior, Dose-Dependent and Safe Prevention of Acute and Overuse Sports Injuries: A Systematic Review, Qualitative Analysis and Meta-Analysis. Br J Sports Med, 52(24), 1557-1563.

How to prepare a plan to prevent injury?

Sports Injury Prevention is Complex: We Need to Invest in Better Processes, Not Singular Solutions

How to prepare a plan to prevent injury?

Athlete injury retrospective

Consensus statement on injury definitions and data collection procedures in studies of football (soccer) injuries

C. W. Fuller¹, J. Ekstrand², A. Junge³, T. E. Andersen⁴, R. Bahr⁴, J. Dvorak³, M. Hägglund², P. McCrorv⁵, W. H. Meeuwisse⁶

severity

4.

5.

6.

7.

🗆 no

□ overuse

2A Injured body part

□ head/face	shoulder/clavicula	hip/groin
□ neck/cervical spine	upper arm	thigh
□ sternum/ribs/upper back	elbow	knee
□ abdomen	forearm	lower leg/Achilles tendon
□ low back/sacrum/pelvis	wrist	ankle
	hand/finger/thumb	foot/toe

cartilage

tendinosis/

bursitis

□ left

2B Side of body

□ right

3. Type of injury

- \Box concussion (with or without haematoma/
- contusion/loss of consciousness) □ fracture
- \Box other bone injury
- □ dislocation/subluxation □ tendon injury/rupture/

 \Box not applicable \Box lesion of meniscus or □ bruise

- □ muscle rupture/strain/ tear/cramps

□ sprain/ligament injury \Box other injury (please specify):...

- □ laceration □ nerve injury
 - □ dental injury

□ yes

□ trauma

When did the injury occur? □ match \Box training

Diagnosis (text or Orchard code):

Was the injury caused by contact or collision? 8. \Box no

Was the injury caused by overuse or trauma?

 \Box yes, with another player \Box yes, with the ball \Box yes, with other object (specify) ...

If YES, specify date of player's return to full participation from the previous injury:...

Has the player had a **previous injury** of the same type at the same site (i.e. this injury is a recurrence)?

recurrence

Importance of Strength Training

Lauersen, et al. (2014). The Effectiveness of Exercise Interventions to Prevent Sports Injuries: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Br J Sports Med, 48(11), 871-877.

Intervention programs – injury prevention

Physical test - Asymmetry

Max Strength 224.4 kg Left 102.6 kg 15.8% Asymmetry

Asymmetry Thresholds for Common Screening Tests and Their Effects on Jump Performance in Professional Soccer Players

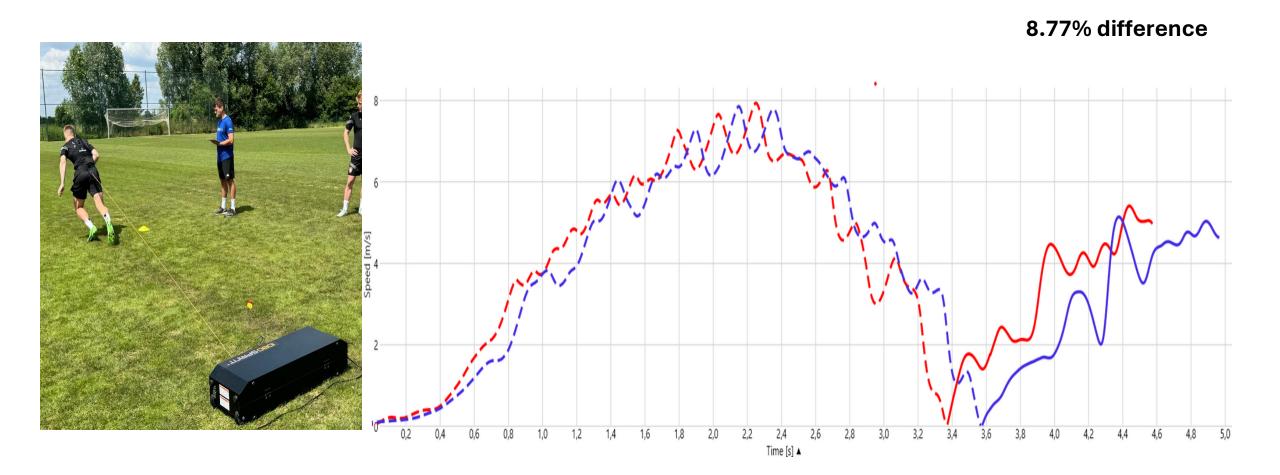

Paul J. Read, PhD, CSCS*D*; Seán McAuliffe, PhD*; Chris Bishop, PhD†; Jon L. Oliver, PhD‡; Phil Graham-Smith, PhD§; Mohammed Abdulaziz Farooq, PhD, MSc, MPH*

Table 2. Asymmetry Thresholds for Players in Each Quartile

	Absolute Asymmetry (%) Quartile							
Test Variable	Small (Q1)	Moderate (Q2)	Large (Q3)	Very Large (Q4)				
Range of motion								
Bent-knee fall-out	≤5.7	5.8-12.5	12.6-20.9	≥21				
Hip internal rotation, 90°	≤3.5	3.6-8.9	9.0–16.3	≥16.4				
HAM peak knee extension	≤1.3	1.4–3.3	3.4-6.1	≥6.2				
Ankle dorsiflexion	≤3.8	3.9–9.1	9.2-18.1	≥18.2				
Strength								
QUAD: Concentric, 60°/s	\leq 4.4	4.5–7.4	7.5–13.4	≥13.5				
HAM: Concentric, 60°/s	≤4.3	4.4-7.3	7.4–13.8	≥13.9				
HAM: Eccentric, 60°/s	≤4.3	4.4-8.4	8.5-16.7	≥16.8				
Functional HAM:QUAD	≤5.2	5.3–11.0	11.1-20.1	≥20.2				
Adduction : abduction	≤6.2	6.3-12.7	12.8-19.8	≥19.9				
NordBord	≤2.8	2.9-5.1	5.2-8.9	≥ 9				
Eccentric hip adduction	≤3.8	3.9-8.1	8.2-14.1	≥14.2				
Eccentric hip abduction	≤3.7	3.8-8.7	8.9–14.5	≥14.6				
Jump								
Single-legged countermovement jump, height, cm	≤3.3	3.4-8.7	8.8-14.9	≥15.0				
Single-legged countermovement jump, peak force, N	≤1.8	1.9–3.8	3.9-6.3	≥6.4				
10-s Hop height, cm	≤4.6	4.7–10.3	10.4-18.0	≥18.1				
10-s Hop reactive strength index	≤5.5	5.6-11.7	11.8-20.4	≥20.5				

Abbreviations: HAM hamstrings: NordRord Nordic hamstrings curl (Vald Performance Albion Australia): OLIAD quadricens

Physical test - Asymmetry

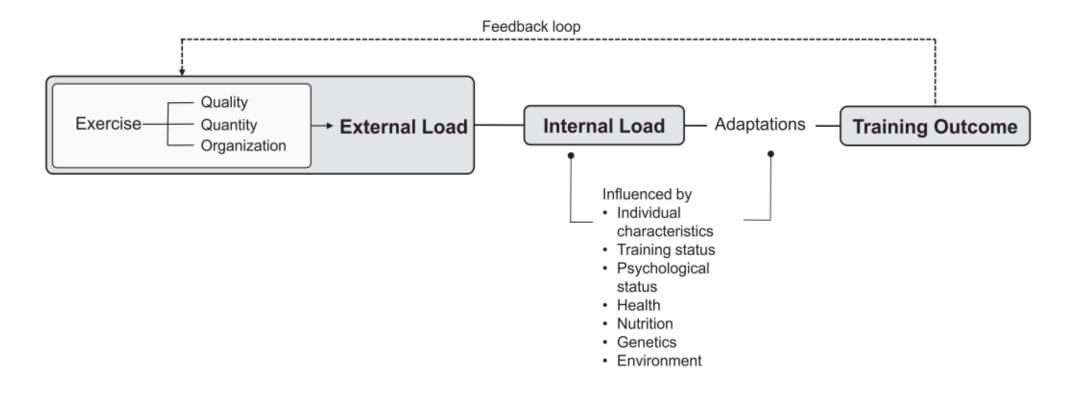
Association Between the Acute to Chronic Workload Ratio and Injury Occurrence in Young Male Team Soccer Players: A Preliminary Study

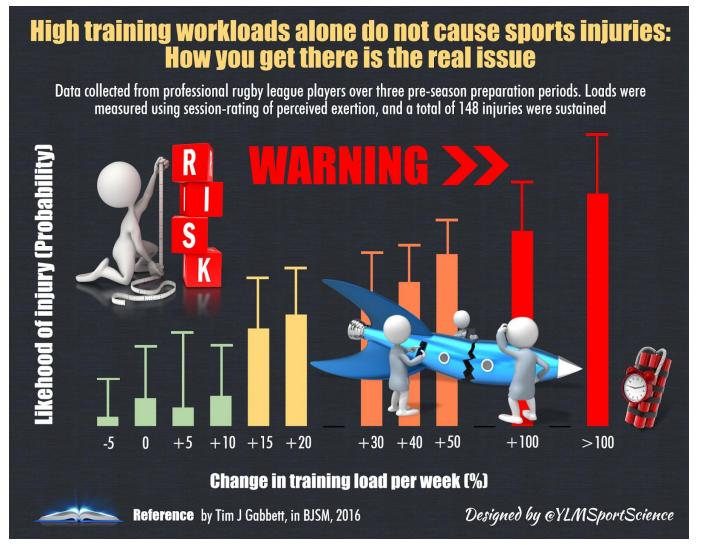
Hamid Arazi¹, Abbas Asadi², Farhood Khalkhali¹, Daniel Boullosa^{3,4}, Anthony C. Hackney⁵, Urs Granacher^{6+†} and Hassane Zouhal^{7+†}

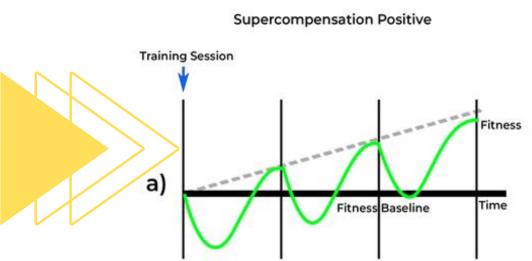
Training Load and Its Role in Injury Prevention, Part I: Back to the Future

Franco M. Impellizzeri, PhD*; Paolo Menaspà, PhD; Aaron J. Coutts, PhD†; Judd Kalkhoven, BSportExSc(Hons)*; Miranda J. Menaspà, M. Sports Physio, FACP‡

The Influence of Changes in Acute Training Load on Daily Sensitivity of Morning-Measured Fatigue Variables in Elite Soccer Players

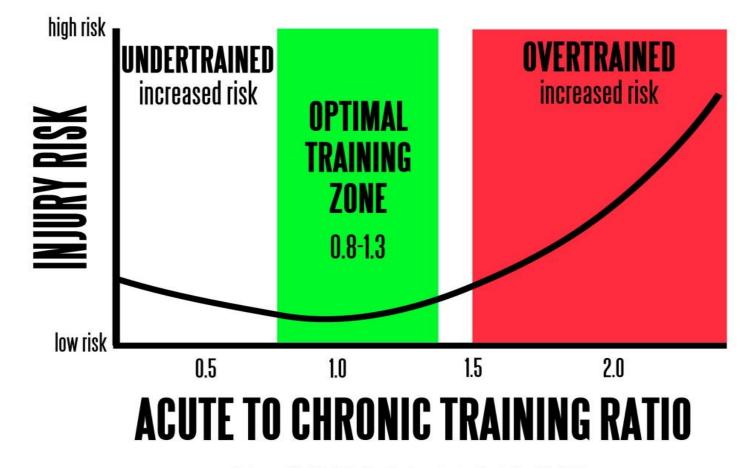

> Robin T. Thorpe, Anthony J. Strudwick, Martin Buchheit, Greg Atkinson, Barry Drust, and Warren Gregson


Training Load and Its Role in Injury Prevention, Part 2: Conceptual and Methodologic Pitfalls

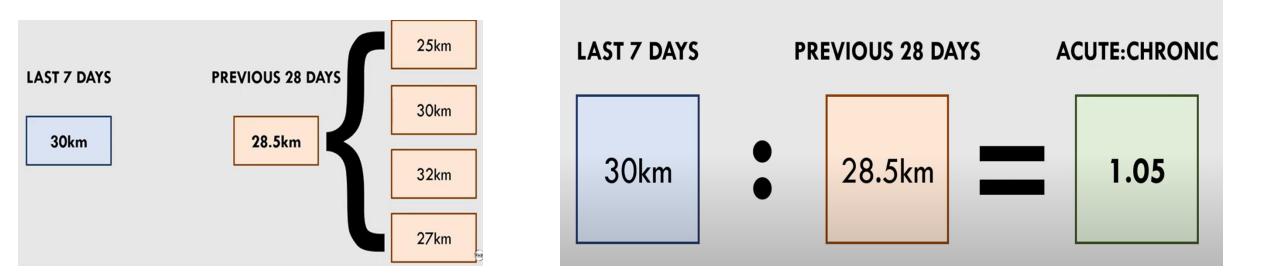

Franco M. Impellizzeri, PhD*; Alan McCall, PhD†; Patrick Ward, PhD‡; Luke Bornn, PhD§; Aaron J. Coutts, PhD*

Training Load and Its Role in Injury Prevention, Part I: Back to the Future

Franco M. Impellizzeri, PhD*; Paolo Menaspà, PhD; Aaron J. Coutts, PhD†; Judd Kalkhoven, BSportExSc(Hons)*; Miranda J. Menaspà, M. Sports Physio, FACP‡



Acute:Chronic Workload Ratio


$$ACR = \frac{WL_{Acute}}{WL_{Chronic}}$$

Reference: Gabbett TJ. The Training Injury Prevention Paradox. Br J Sports Med, 2016.

Acute:Chronic Workload Ratio

$$ACR = \frac{WL_{Acute}}{WL_{Chronic}}$$

			Acute t	o chronic w	orkload ratio	D ACWR				
Weeks		Mon	Tue	Wed	Thu	Fri	Sat	Sun	AWL	
	Plan	Rest	Easy run	Cross train	Speed run	Easy run	Easy run	Long run		
1	Duration in mins	0	60	45	60	60	60	120		
	RPE	0	4	5	8	4	4	7		
	Load = (RPE x mins)	0	240	225	480	240	240	840	2265	
	Plan	Rest	Easy run	Cross train	Speed run	Easy run	Easy run	Long run		
2	Duration in mins	0	60	45	60	60	60	150		
2	RPE	0	4	6	6	4	4	8		
	Load = (RPE x mins)	0	240	270	360	240	240	1200	2550	

Manipulation of training load

Increase performance, minimize risk of injury

anacpaludo@gmail.com

Commercial Platforms

Risk advisor (injury): based on players training variables

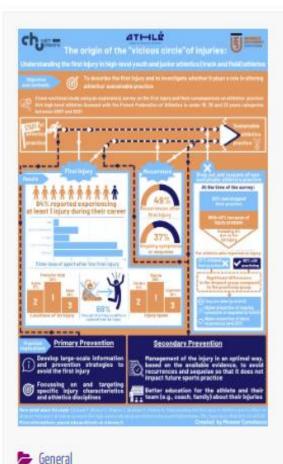
anacpaludo@gmail.com

Commercial Platforms

Complete software solution for clubs, coaches and athletes.

Strength & Conditioning

Video library with thousands of exercises. Get instant feedback on your athlete's progress.


More about injury prevention?

British Journal of Sports Medicine

BJSM Podcast

The origin of the "vicious circle" of injuries in athletics (track and field) Posted on April 8, 2024 by jenduncan

Keywords: Injury; epidemiology; injury prevention; injury risk factors; youth; growing. This blog summarises a recently published study to better understand the primary injury in athletes and investigate if it plays a role in their performance and career (1). The main findings of this study are displayed in the attached infographic and portray the main findings [...]

Read More...

carolina.paludo@fsps.muni.cz