

Performing under Pressure; on the Biology, Psychology and Sociology of stress in high-performance professions

II-ON THE PHYSIOLOGY OF STRESS

Nature selects for speed

- Speed over accuracy
 - It matter less where you run than that you run as quickly as possible
 - Limited time frame (5 min)
 - Most negatives effects of stress are the result of turning on the system for way longer than the approximately 5 minutes it usually takes.

Sapolsky, R. M. (2004). Why zebras don't get ulcers: A guide to stress, stress related diseases, and coping. In Natural History.

Heitz, R. P. (2014). The speed-accuracy tradeoff: History, physiology, methodology, and behavior. Frontiers in Neuroscience, 8(8 JUN), 1–19, https://doi.org/10.3389/fnins.2014.00150

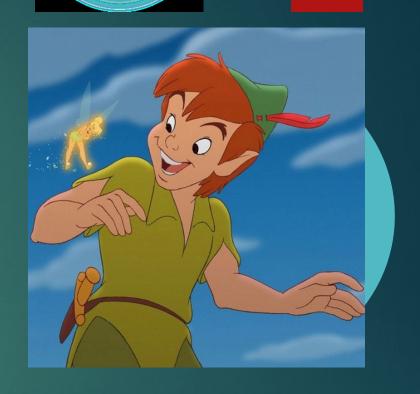
Both the lion and the gazelle need the same acute processes to survive

- Transport energy (fuel + oxygen) to those parts of the body that you need to survive
 - Legs
 - Upper body
 - Hyper cognitive focus on the task at hand (fight or flight)
- Down-regulation of non-essential processes

Energy

- Oxygen in-take and transport to the relevant muscle groups
 - Increased respiration rate
 - Increased blood pressure / increased heart rate
 - Release of glucose from glycogen stores and transport to the relevant muscle groups
 - Cortisol
 - Increased blood glucose levels
 - Increased blood pressure / increased heart rate

Important cognitive changes


- Mild stress
 - Enhanced cognitive function; implicit memory & declarative tasks
 - Enhanced task oriented focus
- High acute or chronic stress
 - Impairs the formation of complex memories: enhances implicit memory
 - Repetitive tasks

Downregulated functions

Growth

Reproduction

Digestion

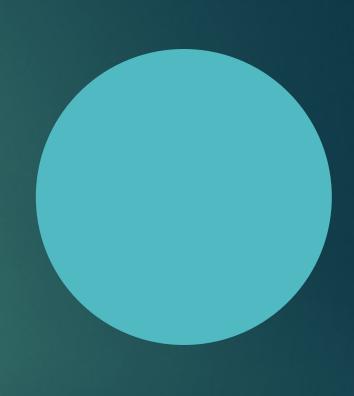
Yamamora, D. L. R., & Reid, R. L. (1990). Psychological stress and the reproductive system. Seminars in Reproductive Endocrinology, 8(1), 65–72.

Toyoda, A., Iio, W., Matsukawa, N., & Tsukahara, T. (2015). Influence of chronic social defeat stress on digestive system functioning in rats. Journal of Nutritional Science and Vitaminology, 61(3), 280–284. https://doi.org/10.3177/jnsv.61.280

Oroian, B. A., Ciobica, A., Timofte, D., Stefanescu, C., & Serban, I. L. (2021). New Metabolic, Digestive, and Oxidative Stress-Related Manifestations Associated with Posttraumatic Stress Disorder. Oxidative Medicine and Cellular Longevity, 2021.

https://doi.org/10.1155/2021/5599265

Processing stimuli; the hardware


- A stimulus is detected by one of our senses
- The amygdala relays signals if the stimulus is threatening
 - Locus coeruleus (Norepinephrine)
 - Hypothalamic adienal axis (Cortisol)
 - Ventral tegmental area (Dopamine)
 - Medial prefrontal cortex (is this really a problem?)

Autonomic nervous system

Parasympathetic nervous system

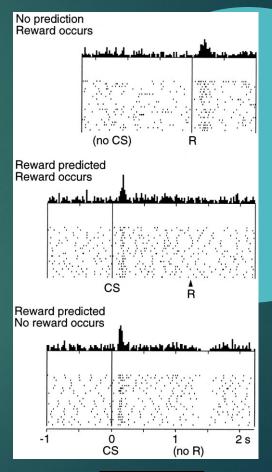
(nor-)adrenaline / (nor-)epinephrine

- Setting the system up for movement
 - Blood pressure / heart-rate
 - Respiration rate
 - Task related focus and memory
- Heightened alerthess & stressor related memory
- Three behavioural stages of nor-adrenaline
 - Movement
 - Erratic movement (panic)
 - Shutdown

Ross, J. A., & Van Bockstaele, E. J. (2021). The Locus Coeruleus- Norepinephrine System in Stress and Arousal: Unraveling Historical, Current, and Future Perspectives. Frontiers in Psychiatry, 11 (January), 1–23. https://doi.org/10/3389/fpsy/.2020.601519

Cortisol

- ▶ Release glucose (fuel) from glycogen stores
 - Highest in the morning
 - Nightmares
 - Interaction with nutrition
- Suppress inflammation
- ▶ Blood pressure



What does dopamine do to the stress response

Dopamine: the great motivator (NQ, it does not do reward!!)

Training

Uncertainty

