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Changing Times
The Holocene Legacy

William R. Dickinson

Environmentalism has become a powerful force in global scientific and political
aftairs. Part of its influence stems from the truism that a viable environment is not
justa lofty ideal but a practical necessity for the future of humanity. Another part
comes froma reawakening of prehumanistic thoughts that humanity is not neces-
sarily the sole measure of all things. These two threads of modern environmental
thinking underscore the age-old question of the place of humankind in nature.
Alternate concepts about the relationship of human beings to nature depend largely
on philosophical attitudes independent of any external reality, but accurate per-
ception of environmental history is a prerequisite for valid environmental con-
cepts. Understanding how the global environment we obsenve today has evolved
from antecedent conditions is indispensable as part of the basis for guiding future
environmental management. An adequate appraisal of environmental history must
include a geological perspective.

Holocene Time

In geological parlance, the time since the last great Pleistocene ice sheets melted
away is termed the Holocene, which has not been a long chapter in the history of
the Earth. Together, the Pleistocene and Holocene make up the Quaternary period,
marked by waxing and waning of polar glaciers. The round number of 10,0600 vears
ago is commonly taken to mark the beginning of Holocene time, although im-
proved calibration of radiocarbon dating indicates that 11,500-11,600 years is a
better estimate (see Figure 1). The time span of the postglacial world has been
surprisingly brief, and in geological terms, most modern environments have a short
time depth.

The glacial world of the Pleistocene was dramatically different from our own. At
times of glacial maxima, the most recent of which was only 20,000-22,000 years
ago, great ice sheets covered most of North America as far south as Seattle, Chicago,
and New York City. In Europe (see Figure 2), a curved line connecting the capital



cities of I lon, Berlin, Warsaw, and Moscow delineales the approximate ice
limit, with a variety of those locales overrun by ice during periods of intense glacial
advances and lying just beyond the ice limit during lesser advances. At such times,
the Baltic Sea and the shallower part of the North Sea between Great Britain and
Norway disappeared beneath ice cover that crowned Scandinavia, and northern
Europe closely resembled modern Greenland in its climate and overall aspect.:

When Pleistocene ice was in place, the geographic tracts of North America and
Europe that are now temperate grasslands and mixed forests were very different
places. Tundra and open steppe occupied most of Furope south to the Mediterra-
nean littoral, and a belt of tundra fringing the ice fields in North America met a
broad band of coniferous forest, much like the modern Siberian taiga to the south,
extending across the midsection of the United States and reaching down perhaps as
far as the southem borders of Tennessee and Oklahoma (see Figure 3). None of the
familiar landscapes of Purommerican tradition, nor of Amerindian tradition, ex-
isted at the beginning of Holocene time.

Continental and island shorelines were also impacted in dramatic fashion by
Pleistocene glaciation, and the direct effects extended worldwide because the con-
tinental ice sheets drew water from all the oceans. During peak glaciation, global
sea level stood an estimated 410 feet lower than today (see Figure 4). Modern
shorelines, together with their associated estuaries, tidal flats and coral reefs, cannot
have occupied their present positions for more than a few thousand vears. Coastal
ecosystems have been forced to migrate staggering distances since the waning of
Pleistocene glaciers began to drive the postglacial rise in global sea level, termed
eustasy by geologists. Sea level was still perhaps 300 feet below its modern position
as recently as 15,000 years ago. Typically, the postglacial biotic migrations were
much greater than just the distances landward from synglacial positions of the
strandline directly offshore. Climatic zones and water masses shifted latitude as
glaciation waned, meaning that many littoral species also had to move hundreds of
miles laterally along coastlines to arrive at congenial Holocene environments.

Coastlines near regions of Pleistocene glaciation paradoxically experienced an
opposite change in relative sea level when the ice sheets melted. Removal of the
weight of thick glacial ice caused the landscape to be uplifted at rates that outpaced
the eustatic rise in sea level. Geologists term such postglacial uplift isostatic re-
bound because it stems from changes in isostasy, which refers to the processes that
balance rock masses at different elevations above the fluid interior of the Farth.
Because of isostatic rebound, Pleistocene paleoshorelines in formerly glaciated
areas are now exposed far inland or well up the flanks of coastal mountain ranges.
Along the Pacific coast of Canada, for example, paleoshorelines of Pleistocene age
stand 150-500 feet above modern sea level. The isostatic rebound was time-
delayed, because it could only be accomplished through slow worldwide flowage
of viscous mantle lying below the stiff crust of the Farth.

Simultaneously, continental margins distant from regions of Pleistocene glacia-
tion were tilted downward toward adjacent ocean basins when the weight of glacial
meltwater was added 1o scawaler volumies. Fven al sites far removed from eircim-
polar ice masses, isostatic changes in local relative sca level resulting from the
additional weight of ocean water left a subtle imprint on coastal landscapes. Re-

Figure 1. Conventional vs. calibrated radiocarbon ages. Dast. . line is locus of
equal ages. Solid line is actual approximate correlation ofwnvcnhonal and cali-
brated ages, with the latter derived from tree-ring chronologics for Folocene time
and from independent uranium/thorium isotopic dating for Pleistocenc time 2
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gional isostatic adjustments to deglaciation affected sea level much less than the
custatic change in average global sea level resulting from the addition of glacial
meltwater, but were quite important locally. For most Pacific islands, postglacial
isostatic effects led to a relative highstand of five to eight feet in regional sea level
during mid-Holocene time, peaking perhaps 4,000 years ago.}

Holocene Humankind

The remarkable changes in the physical environments of the Farth during the
Holocene have been more than matched by the cultural evolution of humankind.
At the end of the Pleistocene, none of our ancestors had access to any tools mnore
sophisticated than could be fashioned by hand from pieces of stone, bone, or wood.
Virtually all the technology upon which we now rely has been developed during
Holocene time in less than five hundred human generations. Human civilization
as it exists was produced by opportunistic adaptations of the human species to
emerging postglacial environments.+

Civen the factthat glaciations have waxed and wamed al leasta dozen limes, and
probably a score or more times, for well over a million years, the Holocene can be



Figure2.*  "hem limits of Pleistocene glaciations in northern [Lurope. Successive
ice fronts nuark southward extent, at various Himes during the Pleistocene epoch, of
the vast continental glacier that blanketed the entire landscape farther north, in-
cluding marine shelves exposed to the air by eustatic drawdown of sea level s
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viewed as just the latest of a long serics of interglacial time intervals, and destined
like the others to be succeeded in due course by yet another glaciation. In one
crucial respect, Holocene time has been unique among interglacial intervals. It is
the first interglaciation during which anatomically modern humans existed (see
Figure 5). Whether modern human beings emerged only 50,000 years ago, as many
have thought, or have existed for nearly 100,000 years, as some now argue, none
were present during the last interglaciation approximately 125,000 years ago. Inter-
glacial climatic conditions analogous to historical experience lasted only 12,000 to
20,000 years, not markedly longer than the duration of the Holocene to date
The impact of the emerging human species on global environments during the
last glaciation is moot because the conditions that prevailed then were so exten-
sively modified by the climatic transition to Tolocene time. As modern Holocene
environments evolved from Pleistocene precursors, people of essentially modern
aspect, driven by familiar impulses, were active on most parts of the continental
landmasses from the very initiation of postglacial conditions. The same cannot be
said of oceanic islands or polar regions that people were unable to occupy before
acquiring adequate maritime technology and the skills to survive under extreme
climatic conditions. Exploration and settlement of the Pacific islands of Oceania,
remote from the Australian and Asian landmasses, did not begin until approxi-

[igure 3. Environmental belts of eastern North America at peak graciation —20,000
years ago; taiga is spruce-pine evergreen forest analogous to the forests of modern
Siberia; varied broadleaf tree species accompanied the oak-pine woodlands farther
south.”
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mately 3,500 years ago. The peopling of Oceania by the Polynestans and their
ancestors is one of the great sagas of prehistory but was delayed until after the
middle of Holocene time.®

In most global environments, the Holocene landscape never established itself
without human influence. Landscapes and cultures coevolved over the same inter-
vals. Knowing the propensity of human beings to alter their surroundings indicates
that the nature of Holocene environments was in part determined by lniman activi-
ties, even as people learned to adapt to them and exploit them for their own
purposes. The environmental impact of human dispersal through Oceania over
several millenia before European contact with island cultures is instructive. In
istand group after island group, human arrival was followed closely by environmen-
tal alteration involving forest clearance, with consequent upland erosion and down-
stream sedimentation, or replacement of virgin forest by agroforest developed
through human silviculture.9



Thes.  tive notion that the world was a pristine place before people gradually
hewed their way into it, culminating their impact with the environmental insults of
the industrial age, is out of focus. The landscapes of yesteryear, so beloved in our
cultural memories, did not spring up wholly untouched by human hands. Nor
should we view overt human manipulation, or inadvertent alteration, of the envi-
ronment during prehistory as necessarily or uniformly deleterious to ambient con-
ditions. The postglacial Holocene world was inherently i flux, and successful
aboriginal cultures must have adjusted their environmental practices to modes that
improved, rather than reduced, resources for subsistence.

Shoreline Evolution

The glacial drawdown in global sea level has had lingering effects through much of
Holocene time. In the protohistoric period of 7000~gooo B¢, when many civiliza-
tions of the ancient world had their first tentative beginnings, global sca level was
still more than seventy-five feet below its modern fevel, not rising to within fifteen
feet of its present stand until about 5,000 years ago (see Figure 4). Massive encroach-
ment of the sca on almost all landmasses was the rule during the first half of Ho-
locene time. During the Pleistocene lowstand, the entire Persian (or Arabian) Gulf,
down to the Strait of Hormuz, was dry land, though perhaps dotted with lakes, and
the ground where ancient Mesopotamia later thrived stood roughly 60c miles from
the open marine waters of the Indian Ocean. Following the postglacial eustatic rise
insea level, some 250 miles of riverine lowlands along the Tigris-Euphrates valley
of the Iertile Crescent were flooded by saltwater as recently as 6,000 years ago, to
be reclaimed later as dry land by fluvial aggradation. Fven the seaport of Charax,
founded by Alexander the Great, now lies ninety miles from open water.*

As the rate of rising sea level gradually slowed, rivers began to build deltas from
retreating shorelines into the encroaching seas. This process became important
after about 6000 BC, and led to dramatic impacts on coastal landscapes. The Ho-
locene Mississippi River has extended its delta about 150 miles into the Gulf o
Mexico, adding more than 12,000 mi* of land surface south of Baton Rouge to the
coastal lowlands (see I'igure 6). All the resulting diversity of levee and marshland,
with its residentaquatic wildlife, occupies an arca that was drowned under shelf sea
at the dawn of Old World civilizations. In Fgypt, the arcuate front of the Nile delta,
with its classic deltoid shape, has prograded steadily into the Mediterrancan at a
mean rate of approximately one kilometer per century over the last 5,000 vears."

Recent human modifications lo river regimens have now begun to reverse delta
growth in key instances. lissentially all deltas subside slowly from their isostatic
loads on the Earth’s crustand from the time-delayed compaction of delta sediment
accumulations. Without continuing deltaic sedimentation, scawater encroachment
is inevitable along delta margins. Upstream dams and dense networks of irrigation
or drainage cavals that trap sediment inhibit delta growth, as does the dredging of
ship channels to funnel riverine sediment directly into deep water offshore. As a
result, the Mississippi delta is currently losing subaerial delta plain at a rate nearly
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Figure 4. Approximate latest Pleistocene and Holocene rise 1. incan global sea
level from eustatic change in seawater volume as deglaciation transferred mass
from circumpolar ice fields to the world ocean.”

modern mean sea level

0O —— — — — — — — — — —0
quasi-modern S_}
levels by
~5000 yrs. ago
25
—100
E —
S :
4]
2 steep part 2
o of curve —200 =
2 marks main %
» interval of a
o 75— deglaciation B
3] 2
£
-300
100
end of peak glacial
drawdown ~20,000 yrs. ago
400
125 T T |
20,000 15,000 10,000 5000 0

Time (Years Ago)

ten times the average rate of outbuilding over the past 8,000 years. Accelerated
crosion of the front of the Nile delta has been underway for the past century, with
current rates of shoreline retreat locally exceeding zso feet per year in some years.”

The signal changes in worldwide strandlines during the Holocene and the con-
parable changes that repeatedly accompanied suceessive glacial-interglacial transi-
tions throughout the duration of the Pleistocene had surprisingly little net effect on
strandline biotas. We know little about shoreline faumas during Pleistocenc lowstands
in sca level, because drawdown in sea level placed them at sites now underwater
and far offshore. IFrom study of suceessive interglacial faunas, it is clear that Quater-
nary extinction rates of coastal marine organisins were generally unexceptional.
Coastal life evidently endured the stress of repeated migration remarkably well

Analysis suggests that species survived as habitats migrated with changing limes
because cach individual species shifts location independently, in response to its
own unique tolerances and requirements, rather than as part of intact coadapted



Figure  “rincipal climatic fluctuations over the past half million years, between
glacial (G) and interglacial (I) conditions, in relation to the evolutionary emer-

gence of anatomically modermn human only 50,000 to 100,000 years ago.'s
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biotic communities. This picture of flux suggests that no modern coastal ccosystem
is yet fully adjusted to current conditions. Iach may represent a metastable state
still in process of adjusting to postglacial changes in surroundings, drawing on
species pools available on nearby marine shelves as local conditions vary. The
living biotas of modern coastal ecosystems are likely ephemeral associations caught
at an arbitrary point along a spectrum of gradual change. If lasting stability of
habitat and biota has been reached along any present coastline, such a state of
affairs could not possibly have an antiquity of more than a few thousand years.’

Terrestrial Surface

As Pleistocenc ice masses retreated, massive biotic migrations also swept across
much of the Holocene land surface as global climates changed. In Japan, far from
any continental ice sheets but joined into one elongated island by drawdown in sea
level during full glacial times, the extensive conifer forests of modern-day Hokkaido
on the north replaced preexisting Pleistocene tundra, and the existing deciduous
and evergreen broadleaf forests of the more southerly Japanese islands in turn re-
placed conifer forest that prevailed during glacial times.””

In the United States, stark latitudinal changes in vegetative cover were promi-
nent during the transition from Pleistocene to [lolocene conditions (sec Iigure 3).
Inthe cast, the southern limit ofabundant spruce retreated from the Ohio Valley to
the Canadian taiga north of the Great Lakes, and an irregular boundary between
coniferous and deciduous forest migrated northward in its wake. In the west, during
the last glaciation, mountain ranges of the Great Basin now cloaked by pygmy

conifers—pinyon and juniper—harbored subalpine conifer .urests analogous to
those of the modern Rocky Mountains. Similarly, pygmy conifer woodlands char-
acteristic of the modern Colorado Plateau spread southward, during the last glacia-
tion, over much of the present Desert Southwest, which lies at distinctly lower
elevations and is now occupied by a mixture of cactus and thornscrub.®

As the climate warmed across the American Southwest, plantassemblages in its
many mountain ranges migrated upward in elevation by a minimum of at least
1,300 feet and a maximum of fully 2,600 fect to escape increasing temperature and
aridity. Pleistocene floras of the intermountain region included unfamiliar plant
associations unmatched exactly by any that exist today. Inland biotas experienced
individualistic floral migrations, species by species in response to climatic change,
that produced uneven displacements of species along both latitudinal and
elevational gradients. Present plant communities are evidently ephemeral aggrega-
tions controlled by intersecting gradients of floral change. Fossil analogues are not
precisely equivalent to the observed communities, and a seeming permanence of
observed plant associations in the absence of modern disturbance is probably an
illusion fostered by the short time frame of historic observation.™

The effects of deglaciation on tropical regions are not fully understood, but
ambient temperatures at equatorial latitudes were cooler by approximately 5°C
during the last glacial maximum. Available evidence from the Amazon basin indi-
cates that the rain forests so prevalent in the tropics today were more restricted in
extent during Pleistocene glaciation, probably broken into less continuous tracls,
and composed in part of species adapted to cooler conditions than those that now
prevail. Forests were nevertheless widespread in the Amazon basin even at peak
glaciation.®

Human Influences

Frew of the dramatic postglacial changes in global environment escaped the atten-
tion of aboriginal humans. Even in the Americas, the last continents to be invaded
by the human species, Clovis migrants from Furasia had spread from Canada to
Patagonia, and fromy Arizona to Boston, by thirteen thousand years ago. Several
aspects of the growth of human culture suggest that the impact of human activities
became an integral facet of Holocene environmental evolution. Many deltas felt
the influence of human occupation almost as soon as they began to grow seaward
after 6ooo re. Irrigation in lowland Mesopotamia, which lengthened steadily as
the Tigris-Fuphrates delta built itself into the Persian Gulf, was practiced at lcast
locally by that time. Rice culture, with its elaborate systems of paddies and terraces,
was also born about that time on the delta surfaces of southeast Asia.”

Across the wider terrestrial landscape, perhaps no aboriginal impact was greater
than the results of broadeast fire. Aboriginal peoples burned the land deliberately,
to flush small game and drive big game, to deny cover to dangerous animal preda-
tors, to clear the growth that might provide cover for enemy ambushes around their
settlements and camps, to foster fresh shoots of vegetation that attract favored
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game  eep woodlands clear of imderbrush and easv to traverse, and to keep
relativery unproductive woodlands from encroaching upon grasslands richer in
usable resources. In precontact Australia, firing of native vegetation was so inten-
sive, to nurture plant communities favored as food by either humans or their game,
that native fire practices have been called “firestick farming.” When people turned
to growing domesticated crops, they resorted even more assiduously to wild fire to
clear garden plots and fields, developing a pattern of behavior that survives today as
so-called “slash-and-burn™ agriculture. Although “slash and burn™ has distinetly pe-
jorative connotations for lovers of forested lands, the distributions of different tree
species in many present forests owe much to the recurrence of past anthropogenic
fires.”

Human Impact

Despite decades of general knowledge about the near ubiquity of anthropogenic
fire in prehistory, we are still far from comprehending its full import. On the one
hand, we acknowledge that fire was the greatest invention of humankind, having in
mind its critical application for cooking food, but tending to overlook the fact that
it was also the most effective tool of land management available to aboriginal
peoples. The grasslands and savannahs of the temperate and tropical regions might
owe their very existence to anthropogenic burning, either to remove woodlands or
to prevent their initial advance into tundra or steppe inherited from Pleistocene
glaciation. Studies throughout the tropics have shown repeatedly that savannah
grasslands are dependent for their maintenance, if not their initial creation, on the
ersistence of anthropogenic fires to combat forest encroachment.»

ﬁ‘ The alternate origin suggested for the development of grasslands is the effect of

4 climate. In some semiarid grasslands, tree growth is precluded by lack of sufficient

soil moisture. A fortuitous “experiment” shows, however, that aboriginal peoples
were capable of converting forest to open land by deliberate use of wildfire. The
arrival of Polynesian migrants roughly a thousand years ago was followed within
just a few hundred years by removal of approximately half the previously dense
New Zealand forest by repetitive firing to produce grassland, food-rich fernland,
and open woodland (see Figure 7).

The impact of wildfire on the nature and density of vegetative cover and the
influence of vegetative cover on erosion rates and consequent sedimentation rates
suggest that the cumulative effects of anthropogenic fire have exerted a strong
control over the evolution of the Holocene landscape. Wildfire could not make
mountains or govern the general courses of rivers and streams, but fine-tuning the
contours of hill slopes, river boltoms, and stream terraces seems well within the
scope of possible results from broadcast burning condueted sinee the end of Pleis-
tocene time.

Human behavior has also influenced evolving Holocene faunas over much of
the world in two salient ways. First, Kurasian domestication of familiar pastoral
animals—cattle, goats, horses, sheep, and swine —early in [olocene time affected

Figure 6. Approximate growth pattern, shown as age ranges of key delta segments, of
Holocene Mississippi River delta below Baton Rouge, Louisiana (symbols dashed
for submerged parts of delta lobes). In detail, time-space relations are more com-
plex than depicted, for more than fifteen successive delta lobes or subdeltas have
been distinguished from landscape feature and coring of the delta plain. “N.O.”
denotes New Orleans, lying just above the head of the youngest component of the
delta plain.
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the viability of wild counterparts over wide arcas. Second, the spread of aboriginal
peoples to previously unoccupied landmasses, including previously isolated is-
lands, resulted in the extinction or local extirpation of many animals, both mam-
mals and birds, as a result of intensive hunting. The effect was most notable on large
animals, the megafauna, with long gestation periods that make population mainte-
nance or recovery difficult in the face of steady attrition. Megafaunal extinctions
were not synchronous globally, but phased sequentially from place to place as
aboriginal peoples reached different continents and islands. Only in sub-Saharan
Africa, where the native fauna coevolved with humankind and prehistoric domes-
tications were a minor factor did a diverse megafauna survive into modern times,
By altering fauna, aboriginal peoples might indireetly have affected the flora of
many regions as well. In Australia, the extinction of farge herbivores following the
late Pleistocene arrival of humans to that continent apparently altered the floral
balance, leading to conditions that encouraged the setting of wildfires to control
vegetation.



On  yoceanic islands, destruction of habitat by intensive human occupation
and anthropogenic introduction of exotic nonhuman predators probably contrib-
uted, along with hunting pressure, to the population crashes of the prehistoric past.
Within the broad Pacific arena, occupying nearly half the globe, the arrival of
Polynesian voyagers over the past few millennia led rapidly to the successive deci-
mation of local bird species, and to other pervasive environmental changes in
island group after island group.”

Environmental Restoration

Although we live in a world of four dimensions, the dimension of time is unique.
We may proceed east or west and north or south, retracing our steps at will, and with
the aid of aircraft we can move up or down. But we can only move forward in time,
with no hope of ever moving backward. We cannot recover past environments,
although we might be able to regencrate them as a means of restoration.

I'rom a geological perspective, the grand sweep of Holocene environmental
changes that are largely irreversible imake the likelihood of full success in regenerat-
ing or restoring lost environments seem quite slin. Returning to where we began at
the outset of Holocene time is certainly impossible, and any expectation that a
beneficent Nature could restore itself spontaneously to some admired state that
existed in the more recent past seems quixotic. Modern industrial civilization and
burgeoning population growth have injured the global environment far beyond
the perspective or ability of aboriginal peoples to attempt, but the preindustrial
environment was already the contingent product of multiple influences, among
them the impact of our distant ancestors.

Environmental Management

"The burden of environmental management rests inevitably on human shoulders,
and a clear sense of environmental history over the full course of Holocene time is
a prerequisite for wise environmental decisions. Simply trying as human beings to
make no mark on our surroundings may not achieve what we desire. Avoiding some
practices, such as burning the landscape, which once were pursued with vigor by
aboriginal peoples, introduces wholly new factors into the environmental equa-
tion. The popular concept of wilderness as pristine wildland free of any human
influence is largely a psychocultural myth, springing more from an uplifting vision
of the proverbial xden than from any historical reality. For charting the future, we
will have no substitute for understanding the dynamics of varied ccosystems and
the rules of landscape evolution well enough to be able to gauge in advance the
results of specific actions that we are able to control

The challenge to our powers of insight is daunting. In the environmental arena,
the temptation is strong to label everything that is “natural” as “good,” and anything
that seems “bad” as “unnatural,” but none of those tenms is easy to define in a
continuously changing world. Ever since the dawn of Holocene time, when global

Figure 7. Changing forest cover (ruled areas forested) in New  aland: A) pre-
Holocene at last glacial maximum; B) Holocene prior to arrival of Polynesian
migrants; C) after 750+ years of Polynesian occupation; D) after 120 years of
Furopean settlement. Anthropogenic firing of the landscape largely accounted
for Polvnesian forest clearance, with further reductions in forest cover made by
Européan farmers, stockmen, and city builders. During Pleistocene glaciation,
owing to drawdown in sea level, New Zealand was actually one large island half
again as large as the two present islands combined (not shown as such here
because the nature of synglacial vegetative cover on surrounding marine shelves
is unknown from any direct evidence).®
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conditions remotely like those of the present-day first evolved from the ice ages,
humans have always impacted the natural environment. Reducing human impact
toward a nil level is not only unattainable in practice, but quite literally unprec-
edented. The task for future human culture is to acquire the knowledge of environ-
mental history and dynamics needed to choose the sorts of human impact that will
lead to a posterity of our liking. Faith in a sclf-regulating and self-restorative nature,
independent of humankind, cannot guide us into any environmental harbor where
we would wish to moor.

Holistic History

Existing intellectual traditions have addressed Holocene history from four largely
independent standpoints, none adequate alone for a holistic environmental his-
tory. From Inumanism sprang the discipline of history, basing its insights principally
on the written record and deriving much of its basic posture from times when even
the most rudimentary facts about Pleistocene glaciation and its lingering effects on
the Holocene aftermath were unknown. From the social sciences, archaeology
came later upon the scene with a primary focus on strictly human prehistory in the
sensc of cultural events prior to the advent of comprehensive written records. From



the phy * I 'sciences, Quaternary geology developed as a discipline that was ini-
tially al.. st entirely divorced from considerations of human behavior, From the
life sciences, ecologists and brogeograpliers have evaluated modern and historic
biota with increasing sophistication but with minimal attention to prehistoric
antecedents, exeeplt for docnmcnling cvolnlion;xry taxonomie trends.

‘ach of these disparate approaches leads to only partial understanding of the full
tapestry of the Holocene past. Casting off discipline-oriented blinders mightallow
us to achicve a more integrated vision of Holocene history by working from the
premise that environmental and human history are ])urallci tracks along the same
road map across an ever-changing olocene landscape. Our very ability to forecast
the environmental future with any accuracy may depend np()'n the i)lcn(linlg of
insights from diverse intellectual wellsprings.
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