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THE NORMAL DISTRIBUTION
AND STANDARD SCORES

Number of Heads per 10 Flips (X)

IFIGURE 6.1 IThe Distribution of the Number of Heads in Ten Fair Coins Tossed Many
Times .

• THE IMPORTANCE OF THE NORMAL
DISTRIBUTION

The normal distribution, also known as the Gaussian curve or the normal probability curve,
is the most fundamentally important distribution in statistics. The normal curve is used
extensively in all subsequent chapters. Its use in this chapter will be illustrated by describ­
ing the performance of an individual or group using standard scores. Other more important
applications of the normal distribution will be evident in the following chapters. Measures
of skewness and kurtosis, which describe and quantify the extent to which a distribution
deviates from a true normal distribution, will also be considered.

Historical Backqround
The study of the normal distribution dates from at least the seventeenth century. It was
noticed, for example, that if an object were weighed repeatedly, the observed weights
were not identical; there was some variation among the measurements. If enough mea­
surements were taken, the distribution of the observations displayed a regular pattern, a
pattern now recognized to be the normal distribution. Errors of observation of many kinds
were found to follow this same pattern. In fact, the distribution was initially called the
"normal curve of errors."

• GOD LOVES THE NORMAL CURVE

It was soon discovered that observations other than measurement error resulted in normal,
or approximately normal, curves. If ten fair coins were tossed, the number of heads re­
corded in the toss, and the procedure repeated many times (actually an infinite number), the
distribution in Figure 6.1 would result. Note that the expected value (Section 5.13) for the
number of heads is 5, which is the mean, JI., of the theoretical distribution shown in Figure

6.1. In normal distributions the mean is also the mode-the value of JI. occurs more fre­
quently than any other score. Figure 6.1 shows that almost 259'c of the sets of ten tosses
results in five heads; but for 75% of the sets of ten flips. the number of heads is not five, but
varies symmetrically about five; four and six heads were each observed in more than 20%
of the sets. The distribution is symmetrical and approximately normal, but note that it does
not result from errors of measurement, but from the laws of chance. No collection of em­
pirical observations would look exactly like a perfect normal distribution because the latter
is a mathematical abstraction. For example, the distribution of number of heads in Fisure
6.1 is discrete (i.e., has gaps), not continuous: there are no points between 4 and 5, or
bet:veen 5 ~nd ?, for i?stance. The tru.enormal distribution is continuous; there are no gaps.
Vanables like time, distance, and weight are continuous and can be measured so there are
virtually no gaps. If the number of coins flipped were increased to 100, and the number of
heads recorded in many repeated tosses, then the distribution of the number of heads would
approach the mathematical normal distribution much more closely. Of course, the ap­
proximation would be even better if 1,000 fair coins were tossed.

Late in the nineteenth century Francis Galton, an Englishman, took systematic mea­
surements of many physical, psychological, and psychomotor characteristics on large
samples of persons and found that the distributions of the measurements were very close
approximations to the normal distribution. Figure 6.2 illustrates his findinas usinz the
heights of 8.585 adult men born in Great Britain during the nineteenth century, Note

O

how
closely the distribution approximates a normal curve.

It is fortunate that the measurements of many variables in all disciplines have distri­
butions that are good approximations of the normal distribution, for example, reaction
times for children at ten years of age, size of wings of a given species of butterfly, heights
for a given variety of plant, daily high temperature on January 15 for the past century.
Refined measures of most cognitive, psychomotor, and many affective and other human
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82 6 THE NORMAL DISTRIBUTION AND STANDARD SCORES 6.3 The Standard Normal Distribution as a Standard Reference Distribution: z-Scores 83

Equation 6.1 is the equation for the normal distribution, We shall have little to do
directly with Equation 6.1 as such, although it was used to generate the normal curve table,
Table A in the Appendix.

The empirical distribution of IQ scores is almost perfectly normal between 70 and 130.
Although the commonly observed empirical bell-shaped curves of errors, height, IQ, and
other variables have piqued the curiosity of scientists of many different stripes. the promi­
nence ofthe normal distribution ill inferential statistics is primarily due to its mathematical
properties. No other distribution has such desirable properties with which the mathematical
statistician can do magic. Many technical problems in statistics have been solved only by
assuming the observations in the population are normally distributed. Specific instances
will appear in later chapters.

The ubiquity of the normal curve sometimes leads to the mistaken notion that there is
a necessary link between it and almost any good set of data, but many variables are defi­
nitely not normally distributed. For example, many sociological variables, such as social
class, socioeconomic status, income, level of education, and family size, are skewed.
Certain social and political attitudes, such as attitude toward abortion, have bimodal dis­
tributions. Such variables as age, ethnicity, religion, and college major obviously are not
normally distributed.

The graph of Equation 6.1 yields the familiar, symmetric, bell-shaped curve known as
the normal curve. One speaks of a normal curve, because Equation 6.1 imparts a character­
istic shape to the graph. All normal curves have the following properties: unimodal, sym­
metry, points of inflection J at u ± (J, tails that approach (but never quite touch) the
horizontal axis? as they deviate from u. Not all curves with these characteristics are normal
(as you will see in Section 6.9). The normal curve has a smooth, altogether handsome coun­
tenance-a thing of beauty.

757065
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IFrequency Polygon for Heights of. 8,585 Adult Men Born in Great Britain
During the Nineteenth Century (X = 67.02", s= 2.564").
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IFIGURE 6.2

characteristics have empirical distributions that are approximately normal. Indeed, God
loves the normal curve.

No set of empirical observations is ever perfectly described by the normal distribution.
Even if a variable were perfectly normally distributed, the observed distribution would
never be perfectly normal. There is sampling error inherent in any finite set of data that will
result in some departure from the mathematical curve, but the shape is often extremely
close to the theoretical normal curve. The discrepancy is frequently so small that it can be
disregarded for practical purposes. .

Building on the work of Pascal (1623-1662). de Fermat (1601-1665), and Bernoulli
(1654-1705), Abraham DeMoivre (1667-1754) was able to show that the mathematical
curve that approximates the curve that connects the tops of the lines in Figures 6.1 and 6.2
is described by the following equation:

ell THE STANDARD NORMAL DISTRIBUTION AS A
STANDARD REFERENCE DISTRIBUTION:' z-SCORES

A raw score of 42 on a test means little, but to know that this score is 1'/1standard deviations
(1.5(J) above the mean tells us that it is quite high relative to the other scores in the distribu­
tion. If the mean and standard deviation are known, the individual scores can be pictured
relative to the entire set of scores in the distribution. Observations expressed in standard
deviation units from the mean are termed z-scores. For IQ scores where II is 100 and o is 15,
an IQ score of 130 can be transformed to a z-score of 2. It is two standard deviations above
the mean. A z-score of-2 is two standard deviations below the mean, or equivalent to an IQ
score of 70. Equation 6.2 defines a z-score:

u= I e-f['S-IlJ/lTl'
(J,'2Tr (6.1) I

X;-Ji Xi
z,=-(J-- =(J (6.2) I

where II is the height of the curve above any given value of the variable, X;
Tr is the ratio of the circumference of a circle to its diameter; Tr= 3.14159 ... ;
e is the base of the system of natural logarithms, e =2.71828 ... ; and
Ji and (Jare the mean and the standard deviation of the variable, X.

'A point of inflection is the precise point at which a smooth curve changes from concave (down-sloping) to
convex (up-sloping). It is found using calculus; it is the point at which the second derivative of the equation equals
zero.

'The mathematician would say that "the curve approaches the X-axis asytnptoticully" or "the X-axis is the
asymptote of the curve:'

ii' -



84 6 THE NORMAL DISTRIBUTION AND STANDARD SCORES

In other words, a z-score tells us how many standard deviations the given score is
above or below the mean. It is very informative when scores are expressed in terms of
standard deviations from the mean u, that is, z-scores. For almost any application of the
normal curve, one wants to know how many standard deviations a score lies above or below
the mean. Knowing this, questions about the area between points or scores. XI and X2 (or
heights of the curve above any point), can be answered by reference to the standard normal
curve (see Table A in the Appendix). The shape of a curve does not change when a constant
is added or subtracted from each score or when each score is multiplied or divided by a
constant. Thus, when f.1 is subtracted from each score and these differences are divided by a
(see Equation 6.2), the shape of the distribution is not changed.

Any set of scores with mean f.1 and standard deviation a can be transformed into a
different set of scores with a mean of 0, and a standard deviation of 1; the transformed
score, z,describes how many standard deviations the score falls above or below the mean of
the distribution. These points are summarized in the following statement: If X is normally
distributed with mean f.1 and standard deviation a, then z; = (X; - .u)lahas a normal distri­
bution with a mean of 0, and standard deviation of 1. By making use of the definition of a
z-score in Equation 6.2, Equation6.1 can be simplified (Heffernan, 1988):

(6.3) I

The normal curve in Equation 6.3 and Figure 6.3 is a special one because it has been chosen
as a standard. It is known variously as the unit normal curve or the standard (or standard­
ized) normal distribution.

6.5 Areas Under the Normal Curve

• ORDINATES OF THE NORMAL DISTRIBUTION

In rare circumstances, it is necessary to find the ordinate u, the height of the curve, at a given
value of z. Solving Equation 6.3 for II when z is given is far too inconvenient (unless one is
proticient with a scientific hand calculator that has a variable exponent function). Table A in
the Appendix gives the ordinate II for values of z in the standard normal curve. The highest
point on the curve is above the point z = 0 (see Figure 6.3 and Table A); when z ;; 0 is
inserted in Equation 6.3, the height (ordinate) II is .3989. Notice in Figure 6.3 that the
ordinate II equals .2-1-20 at z± 1.0, and that II = .0540 at z± 2.0. For practice, locate these
values in Table A.

til AREAS UNDER THE NORMAL CURVE

In many applications of statistics, it is necessary to know the area of the normal curve (i.e.,
the proportion of the distribution) that falls below a particular value of z.To find the propor­
tion of scores that falls below any particular score in a normal distribution, the score is
converted to a z-score, The proportion is then read from the normal curve table, Table A. For
example. in Figure 6.2, what proportion of the men were shorter than 70 inches? Stated
differently, what is the percentile rank of70 inches?3 Assuming a normal distribution with a
mean of 67.02" and a standard deviation of 2.56", XI = 70" expressed as a z-score, using
Equation 6.2, is:

__ 70-67.02 _ 2.98 _I 16
q - - -.

2.56 2.56

85

.4 -----------------------------------------------------.

IThe Standard Normal Distribution, J.1 = 0 and CT= 1.

.3
u

.2

.1

IFIGURE 6.3

-3 -2 -1 o
z

+1 +2 +3

One then finds ; =1.16 in Table A and in the adjacent column reads p, the proportion of
the curve that falls below Zl =1.16. For z, = 1.16, PI =.8770; thus, 87.7% of the area (or
observations) in a normal distribution falls below a z-score of 1.16 (see Figure 6.4). Or,
stated differently, only 1 -.8770 = .1230 (12.3%) of the men were taller than 70".

What proportion of the heights in Figure 6.2 falls between 66" and 70"? If the pro­
portion of heights below X2 = 66" is subtracted from the proportion below 70 ", the differ­
ence is the proportion between 66" and 70". A height of 66" corresponds to a z-score of
-.40 [:::2 =(66 - 67.02)/2.56=-.398, which rounds to -.40]. From Table A, the area below
:::2 = -.40 is found to be .3446 (see Figure 6.4). Of the .8770 of the heights below 70",
.3446 are below 66"; therefore, .8770 - .3446 = .5324 (or 53.24%) of the cases fall be­
tween 66" and 70".~

The steps just illustrated can be summarized as follows: The area between XI and X2

"The heights in Figure 6.2 are not representative of the United Stutes population. for which J.1 = 69.7" and
CT=2.6" in 1976.

. "Chebyshev's inequality proves that the proportion of the area of any distribution that is beyond the points ±z
IS less than II:'. Thus there is never more than Y,' = .25 of the distribution that is more than two standard deviations
(: = 2) from the mean. For symmetric unimodal distributions, the maximum area beyond ±: is 4/(9:') (Dixon and
Massey. 1983). Thus. there can be no more than 4/[9(2)'] = 1/9 or 11.1% of the area falling in the tails beyond the
points ; = -2 and: = +2 in symmetric unimodal distributions.

-



86 6 THE NORMAL DISTRIBUTION AND STANDARD SCORES 6.7 T-Scores 87

in the normal distribution with mean p and standard deviation a is the area between ZI =
(XI - p)/ a and Z2= (X2 - p)/ a in the standard normal distribution.

CEil OTHER STANDARD SCORES

(6.4) I

(6.5) IT;=50 + 10.::;

[--------'--'-"---=-.:...._-----
where 5; is the new standard score equivalent to z;;

Its is the mean of the new standard-score scale;
as is the standard deviation of the new standard-score scale; and
z; is the z-score for the ith observation.

fiaT-SCORES

Z-scores" are widely used to report performance on standardized tests and inventories.
T-scores are standard scores with a mean (Pr) of 50 and a standard deviation (ar) of 10. To
convert z-scores to T-scores, Equation 6.4 becomes

A z-score can be converted to any other standard score (5) using the general formula in
Eq.6.4:

An example will illustrate certain advantages of standard scores. Suppose a ten-year­
old boy is 46" tall and weighs 76 pounds. Are his height and weight commensurate? Who
knows without norms? However, expressed as T-scores (30 and 70, respectively) his weight
problem becomes readily apparent-he is at the 2nd percentile in height, but the 98th per­
centile in weight!

If a student in grade 5.1 (first month of grade 5) obtained an IQ score of 130 and grade­
equivalent scores of 6.4 and 6.1 on the standardized reading and arithmetic tests, respec­
tively, how does her achievement compare with her measured scholastic aptitude (IQ)? The
corresponding T-scores of70, 60, and 60 show that the student's relative superiority above
the mean on the intelligence test was twice as great as her degree of exceeding the mean on
the reading and arithmetic tests."

Figure 6.5 shows the relation of z-scores, T-scores, and several other standard-score
scales. Observe that converting raw scores to standard scores does not alter the shape of the
distribution or change the percentile ranks of any observation. Standard scores have the
advantage of having a common mean and standard deviation that facilitates interpretation.

Notice that the frequently mentioned Wechsler IQ scale is a standard-score scale with
P =100 and a= IS. The scale employed by the historic Stanford-Binet Intelligence Scale
(form L-M) differs little (p = 100, a = 16).7 An IQ score of 145 on the Wechsler has the
same z-score and percentile rank as a Stanford-Binet score of 148.

5The T-scale (named in honor of the early educational psychologist. Edward Lee Thorndike) was originally
proposed as a normalized standard score (Section 6.11): in most current applications T-scores are not normalized,
but are simply a linear transformation (Section 7.9) of raw scores.

fill' more explanation and practice using the normal distribution and standard scores are desired. you may find
the programmed instruction in Chapters 2 and 3 of Hopkins. Stanley. and Hopkins (1990) helpful.

'Prior to the 1960 revision of the Stanford-Binet. performance was expressed as a ratio IQ: IQ = 100iMentai
Age/Chronological Age). The standard deviation of IQ scores fluctuated from one age to another, consequently
the associated percentile rank for a given IQ score varied considerably from age to age. Now, virtually all cognitive
aptitude tests use standard scores.

~---.-A----_"'

Area above 2, = 1.16:
1 - .8770 = .1230

.5324

-1

t
0 +1. +2

I
22 =-AD 2, =1.16

I" ~I

Shaded area, p, - p;.:

.8770
-.3446
.5324

.3446

-2

IThe Proportion of the Area under the Normal Curve Falling between Two
Values of z.

-3

Area below2, = 1.16:
p,=.B770

Area belowZ2 = -AD:
p;.= .3446

.._---------.A----------

IFIGURE 6.4

It is easier to interpret observations when they are expressed as standard scores rather than
as raw scores. With standard scores, the mean and standard deviation always have the same
fixed values. To know that an IQ score on the Wechsler Intelligence Scale is 120 means little
unless one knows also that p = 100: in addition, to know that a= 15 enables the score of 120
to be interpreted much more meaningfully.

The z-score scale (p = 0, a= 1) is the most widely used standard score scale in statis­
tics, but any observation expressed in standard deviation units from the mean is a standard
score. Most standardized tests of intelligence, achievement, interest, and personality report
performance in standard scores. Such measures rarely use z-scores because other standard­
score scales that do not involve negative numbers or decimals are preferred.

--------------_.._ ... -



This chapter has assumed that the population mean (fl) and standard deviation (a) of a
normal distribution are known. If the mean and standard deviation are estimated from a
sample (i.e., X and s are used since fl and a are not known) and inferences are made to the
population, the proportion found in Table A is not precise, but only an approximation; the
accuracy of the approximation is determined by how accurately X and s estimate fl and a.
When the random sample contains 100 or more scores, the z-value for an observation (Xi)
using X and s will differ from the true z-value (i.e., the z-value using pand a) by .1 or less
in most situations." This degree of precision is adequate for most purposes. One should be
wary of using Table A for inferential purposes if X and s are based on very small samples
and when the frequency distribution is not normal.

6.9 Skewness 89

A complete description of a distribution should include not only its central tendency and
variability, but also the degree of asymmetry or skewness. The nature and extent of skew­
ness is visually apparent from well-constructed frequency polygons and histograms, but
these are rarely available in published research. Besides, mere observation of a distribution
is imprecise and cannot be communicated accurately in words or numbers. There are two
common measures of skewness. Recall (Section 4.15) that skewness influences the mean,
median, and mode in a predictable way. In positively skewed distributions, the mean will
have the largest value, and the mode the lowest; the relationship is reversed with negatively
skewed distributions.

Figure 6.6 was constructed to illustrate various degrees of skewness. All the curves
were converted to standard scores so they all have the same mean and standard deviation,
but differ in skewness. Of course, the differences among the mean, median, and mode in-

• SKEWNESS

One may wonder why statisticians bothered to invent standard scores; why not just
provide percentiles, which are easier to interpret? For all the clarity and simplicity of per­
centile scores, they are unsatisfactory for many statistical operations such as averaging and
correlation (Chapter 7). The difference between the heights of two women at the 50th and
55th percentiles is much smaller than the height difference between two women at the 90th
and 95th percentiles. Compare the z-scores in the normal distribution at the 50th and 55th
versus the 90th and 95th percentiles: P50 corresponds to a z of 0 and P55 to a z of .126, a
difference of .1260; whereas, PyO corresponds to a z of 1.282 and P95 to a z of 1.645, a
difference .3630; and the difference between PgOand Pg5 is almost three (2.88) times greater
than the difference between P50 and P55! In terms of the heights in Figure 6.2, the difference
between P50 and P55 is only .33 inches, whereas the difference between P90 and Pg5 is .93
inches. Stated differently, in IQ units, P50 and P55 differ by less than two (1.89) IQ points,
whereas P90 and Pg5 differ by more than five (5.45) points. Standard scores avoid this distor­
tion and lend themselves readily to meaningful summary statistical calculations.

til AREAS UNDER THE NORMAL CURVE IN
SAMPLES

'Technically only (X; - Jl)1 (J is a z-rutio: (X; - X)Is is termed a r-ratio. If 11 is large. there will be little
difference between the z and the I associated with an observation. The I-distribution is widely used in statistics and
will be used extensively beginning in Chapter J I.

another; this is true only when each test yields
essentially a normal distribution of scores and when
both scales are based on Identical or very similar groups
of people.

'Score points (norms pertain to university students
and not the general population). (GRE = Graduate
Record Examination, SAT= Scholastic Aptitude Test of
the College Entrance Examination Board, ACT=
American College Testing Assessment.) Certain of these
tests are not rescaled to better allow comparisons over
time. Consequently, current means are lower than
means given above.

'Standard-score IQ'swith a = 16 are also used on
certain other intelligence tests.

'The NCE("Normal Curve Equivalent") scale is an i11­
conceived normalized scale used in the evaluation of
certain federally funded educational programs. The NCE
scale has /1= 50 and a » 2 I; and the NCEunit is 1/98 of
the distance between the Ist and 99th percentiles,
expressed in z-score units. The NCE scale invites the
confusion of NCEstandard scores with percentiles.

IIllustrations of Various Standard Score Scales. (Adapted from Test Service Bulletin
No. 48, The Psychological Corporation, New York, by permission of The
Psychological Corporation.)

Percentage of Cases
Under Portions

of the Normal Curve

.13%
Standard Deviations

-4cr -3cr -2cr -tc 0 +1cr +2cr +3cr +4cr
I I I I I I I

I
Cumulative I .1~~ 2.3% 15.9% 50.0% 84.1% 97.7% 99.9%

Percentages Rounded 2% 16% 50% 84'0 98%
Percentile Equivalents

I

~I I I
Typical Standard I I

5 10 120 30 40 50 6070 80/90 95

I
99

IScores 0, Md 0 3

z4score ' I J I J I I I I

-4.0 -3.0 -2.0 -1.0 0 +1.0 +2.0 +3.0 +4.0
r-score I I I I J I I I

20 30 40 50 60 70 80
GRE, SAT" I I I I I I I I

200 300 400 500 600 700 800
ACT" I I I I I I , ,

5 10 15 20 25 30 35

I I I I I IWechsler 10 , , I , I I I

Stanford-Binet 55 70 85 100 115 130 145
lab I

J J I J I I ,
52 68 84 100 116 132 148

NCE" I I I I I I

8 29 50 71 9299

Distribution of scores of many standardized educational
and psychological tests approximate the form of the
normal curve shown at the top of this chart. Below It
are shown other standard scores that are used by
certain tests.

The zero (0) at the center of the baseline shows the
location of the mean (average) raw score on a test, and
the symbol a (sigma) marks off the scale of raw scores
in standard deviation units.

Most systems are based on the standard deviation
unit. Among these standard score scales, the z-score
and the T-score are general systems that have been
applied to a variety of tests. The others are special
variations used with College Entrance Examination
Board tests, the Graduate Records Examination, and
other intelligence and ability scales.

Tables of norms, whether In percentile or standard
score form, have meaning only with reference to a
specified test applied to a specified reference
population. The chart does not permit one to conclude,
for instance, that a percentile rank of 84 on one test
necessarily is equivalent to a z-score of + i.O on

88
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(6.6) I

(6.7) I

(6.8) I

n= ii-Mode
(J

sk=3(X-Md)

s

Pearson proposed a second measure of skewness. Yi, which is preferred for inferential
use." If each of the N scores in a frequency distribution is transformed to a z-score and then
cubed [(z)(Zj)(;:) = :/L the mean of the :/ scores is Y,:

6.9 Skewness

Notice that the skewness index, n, describes the distance from the mean to the mode param­
eters in standard deviation units; it is the z-score of the mode with a change in sign. If
n = .5, the mean is .5(Jabove the mode .

When used inferentially. the formula is usually revised so that the median can replace
the mode because the sample median has much less sampling error than the mode of a
sample. Recall that the distance between the mean and mode is approximately three times
the distance between the mean and the median for regular unimodal distributions (see Equa­
tion 4. 10, Section -+. 15). Equation 6.7 provides a useful alternative for estimating n from
the sample mean and median:

crease as the magnitude of the skewness increases. Indeed, Karl Pearson suggested Equa­
tion 6.6 as a useful and an easily interpreted measure of skewness in the population:

Note that Y, is a parameter; when s is used rather than (Jin the computation of the
z-scores, Y, is estimated by the statistic fl. ln The various curves in Figure 6.6 illustrate
several degrees of positive and negative skewness. The curves were obtained by performing
mathematical transformations (Section 6. I I) on the normally distributed T-scores in the top
curve. The six curves with various degrees of skewness provide some frame of reference for
interpreting the YI skewness index: II the curves on the left illustrate various degrees of
positive skewness (YI > 0) and the curves on the right are negatively skewed. n is more
informative than YI for visualizing the degree of skewness and reconstructing the frequency
distribution; YI is superior for inferential purposes (Snedecor and Cochran, 1980, pp. 78­
79). Note that n can be estimated for the curves in Figure 6.6. 12

"This is the measure used by HMD, SPSS. SAS and virtually all other computer programs.

lI'The circumflex. "A" above a Greek letter denotes not the parameter, but an estimate of the parameter, for
example, s = Cr(say. "sigma hat").

"The curves were created by applying a mathematical transformation to scores from a normal distribution.
For example, if scores from a normal distribution are squared, the Yi changes from 0 to .6.

"Since all distributions are expressed using T-scores (J.l= 50. (J = 10), and the mode is the value with the
greatest frequency. Q = (Mode - 50 JI 10.
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• KURTOSIS

Up to this point, three properties or features of groups of scores have been described:
central tendency, variability, and symmetry. A fourth property, kurtosis, completes the set of
characteristics of distributions of scores that are of interest in analyzing data. One may wish
to know whether there are more or fewer extreme scores!' than expected in a normal
distribution. The customary measure of kurtosis, }2, IS the mean of the distribution ofzf scores
(i.e., z's raised to the fourth power) minus the constant 3 (which is the mean Z;4 value for the
normal curve)."!

Although it is not yet common practice, researchers should routinely report the degree
of skewness to describe the shape of the distributions of interest (Hopkins & Weeks, 1990).
This information is also useful for the interpretation of certain measures (e.g., correlation
coefficients) and statistical tests (e.g., homogeneity of variance, Section 12.10) that can be
affected by skewness.

Figure 6.7 gives three distributions (on the left) that have the same means and stan­
dard deviations (i.e., expressed in T-scores), but have negative kurtosis. They are termed
platykurtic distributions. (The prefix "platy" means flat or broad.) These curves have
fewer extreme scores than found in a normal distribution. Note that Y2 for a symmetrical
dichotomous distribution is -2 and -1.2 for a rectangular (uniform) distribution. When
the kurtosis is based on a sample of 11 observations, the kurtosis index is a statistic and
denoted by Y2'

The three curves on the right are from the t-distribution family with 5, 10, and 25
degrees of freedom; this distribution will be used extensively beginning in Chapter II. The
r-distributions have more extremely high or low scores than does the normal distribution,
which gives Y2 a positive value. In the normal distribution, the value of Y2 is 0; it is said to be
mesokurtic ("meso" means intermediate). Distributions in which the kurtosis index is posi­
tive are described as leptokurtic ("lepto" means slender or narrow). Highly skewed distribu­
tions tend to be leptokurtic because they have more scores that are far from the mean thun
does the normal distribution.

Ordinarily, there is far less interest in the kurtosis of a distribution as a descriptive
statistic than in its central tendency, variability, and skewness. Kurtosis is important for
evaluating the accuracy of certain statistical tests (e.g., see Section 13.8).

"Shiffler (1988) has shown that the largest possible z-score for any observation is limited by sample size
II: Zm" ; (11-1 J/-Jii , For example, if II; 4, z"'"; 1.5: if II; 100, Zm,., ; 9.9.

'4In some sources -3 is absent from the formula for kurtosis; without the -3 in Equation 6.9. the normal
distribution would have a kurtosis index of 3.
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fill TRANSFORMATIONS15

Many statistical methods assume a normal distribution in the populations being studied.
Although many of these methods work quite well even when the assumption is not satisfied.
it is sometimes desirable to convert the original scores to another metric in which the distri­
bution is more nearly normal. It often happens that a certain change of scale, such as using
the square root, reciprocal, or logarithm of the observations, will result in less skewness
than in the original observation. Transformations can sometimes convert non-linear rela­
tionships between two variables into a linear relationship (Section 8.28).

Figure 6.6 illustrates how the shape of a normal distribution is altered by six math­
ematical transformations. Notice that if the mathematical process is reversed, the normal
distribution would be reproduced (except for the distribution of absolute values, 1::;1). For
example, if we started with a distribution that has slight negative skewness like the T-scores
of the square root transformation (immediately below and to the right of the normal distri­
bution), and square its members, a normal distribution will result. In other words, negative
skewness can be reduced by raising the scores to a power greater than I. Likewise, the
square root and log transformations will reduce the positive skewness in a distribution. If
the square root transformation is applied to the distribution "T-score after squaring." the
normal distribution at the top of Figure 6.6 would result. Thus, root and log transformations
reduce positive skewness and power transformations reduce negative skewness.

Transformations are not an end in themselves; but certain other statistical procedures
may require that a variable be normally distributed, or have a linear relationship with an­
other variable, and that may require a transformation. The best transformation is often dif­
ficult to find, and success in finding a good transformation is frequently a matter of trial and
error. Additional guidelines can be found in Kirk (1982, pp. 81-84); Winer, Brown, and
Michels (1991); Lee (1975, pp. 288-291); Dixon and Massey (1983, Chapter 16); Snedecor
and Cochran (1980, Chapter IS); and Tukey (1977, Chapter 3).

b NORMALIZED SCORES

When it can be assumed that the variable being measured is normally distributed, but the
observations are not normally distributed because of faulty measurement, the observed dis­
tribution is sometimes normalized, that is, the distribution is forced to approximate the
normal distribution as closely as possible. This transformation is monotonic (the rank order
of X;'s is maintained), but is non-linear (the relative distances between scores are not main­
tained, see Section 7.12).

Usually normalized scores are expressed using the T-score scale (/1 = 50, a = 10).
Normalized T-scores are obtained by first converting the original scores to percentiles, then
converting each percentile to the T-score corresponding to that percentile in a normal distri­
bution. In other words, this sequence is followed:

(6.10) I

For example, suppose a raw score of 37 is at the 10th percentile in the original distri-

15;"[oreexplicitly, this should read non-linear transformations (i.e., transformations that change the shape of
a distribution). The z-scale and T-scale (Equations 6.2 and 6.5) are linear transformations of X (Section 7.9).

6.14 CaseStudy

bution. From Table A in the Appendix, one can see that the z-score that is associated with
the 10th percentile in the normal distribution is -1.282. The T-score that corresponds to
::;=-1.282 (Equation 6.5) is T = 50 + 10{-1.282) = 37.18 or 37 (T-scores are usually
rounded to the nearest whole number.) Unless the observed distribution deviates substan­
tially from the normal distribution in skewness or kurtosis. normalized T-scores will differ
little from non-normalized T-scores. 16

tiEl CHAPTER SUMMARY

The measurements of many variables in the social and behavioral sciences have distribu­
tions that are closely approximated by the normal distribution. In addition. many distribu­
tions used in inferential statistics are normally distributed.

The normal distribution is symmetrical, unimodal. and bell-shaped. There is a known
proportion of the curve below any z-score in a normal distribution. These proportions can be
found from Table A by expressing the observation as a z-score, the number of standard
deviations that the observation falls above or below the mean [Zi= (Xi - /1)/a].

Besides z-scores, there are other widely used standard-score scales. The most popular
is the T-scale that sets /1= 50 and a= 10.

Skewness and kurtosis indices describe two ways in which a distribution differs from
the normal distribution. Non-normal distributions can often be made to be more nearly
normal by using certain mathematical transformations on the scores.

b CASE STUDY

In previous chapters. we have studied the variables in the case study with respect to central
tendency and variability. We did observe skewness in certain of the variables. In this chap­
ter, we quantify the degree of skewness, Yi, and kurtosis, Y2'

The skewness index, rio is a measure of asymmetry; ID# has a skewness index of .00
because the distribution is perfectly rectangular and symmetrical. The distribution of height
is only slightly asymmetrical. Notice that all the other distributions are skewe~ positively:
the degree of the skewness is substantial for the SBP, weight, and coronary vanables. Note
that a dichotomous variable like coronary will be skewed to the extent that the frequencies
in the two categories are unequal; they are very unequal here, hence, the large value for rl'

Table 6. I gives }/I and r2 indices when the scores on each variable are converted to
T-scores. Although for all variables the mean T-score is 50 and the standard deviation is 10,
the shape of the distribution has not changed; thus, the skewness and kurtosis indices are

I·On rare occasions. one may need to know the mean and standard deviation within a segment of the normal
distribution. The mean z-score for a given section of the normal distribution between the points z" and Zb (where z">
z,,) is the difference in the corresponding ordinates lI"and lI"at z" and z" divided by p, the proportion of cases falling
within the segment. Thus.u,« (lI"-lI,,J!P. To find the mean of scores falling between the median and Q,expressed as
a z-score, do the followinz: From Table A, read that the ordinates corresponding to z, and Z/, are lI"=.3989 and lib =
.3178. Hence, ,IL= (.3989:' .3178)/.25 = .3244. The same procedure can be used to find the mean of the scores in the
tail of the norm;' distribution (Kelley, 1939). The mean z-score in the top quarter of normally distributed scores is
u, = (.3178 - 0)/.25 = 1.27: conversely, the mean of scores below Q, is p, = (0 - .3178)/.25 = -1.27.

- The variance of z-scores within a section of the normal distribution is (5/ =[P(Z"lI" -Z"lI,,) - (II" -lI,,)'l/Ii. The
variance of z-scores between the median and Q, is (5.' = (.25[(0)(.3989) - (.674)(.3178)] - (.3989 - .3178)')1i .25)'
=.0380, and (5, = .195. Forthe top or bottom q~arte~ of the normal distribution, (5, = .490.

9S
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HistogramFrequency Histogram Frequency

Mean 285.110 Std Err 4.599 Median 276.000 Mean 16.775 StdErr .136 Median 16.613

Made 264.000 Std Dev 65.041 Variance 4230.309 Made 16.248 Sid Dev 1.927 Variance 3.713

Kurtosis .420 S EKurt .342 Skewness .407 Kurtosis .094 SEKurt .342 Skewness .048

S ESkew .172 Range 385.000 Minimum 135.000 S ESkew .172 Range 11.185 Minimum 11.619

Maximum 520.000 Sum 57022.000 Maximum 22.804 Sum 3355.092

Valid Cases 200 Missing Cases 0 Valid Cases 200 Missing Cases
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IFIGURE 6.8

identical to those for the raw score distributions. This type of conversion from one scale to
a different scale that does not change the configuration of the frequency distribution is
termed a linear transformation.'!

The positive skewness in SBP could be reduced if certain non-linear transformations
are employed, for example, if the actual blood pressure values are replaced by their square
roots or logs. IS We will illustrate the effect of two transformations-square root and loga­
rithrns.!" In Table 6.1, skewness and kurtosis indices are given for the distributions of the
square root (SQRT) transformation, .JX. Note that the SQRT transformation reduces posi­
tive skewness, for example, for age the skewness was reduced from .28 to .07. The SQRT
transformation will introduce negative skewness for symmetrical distributions like ID #.
Since skewed distributions are leptokurtic (91) 0), the SQRT transformation also reduces
the leptokurtosis (i.e., 91 is decreased) in the distributions. The transformations have no
effect on a dichotomous distribution, but they will change its mean and variance.

The effect of the square root transformation on the shape of the distribution of
cholesterol level is illustrated in Figure 6.8. The printout is from the computer program
SPSS FREQUENCIES, which will superimpose a normal distribution backdrop if re­
quested. (This program also produces a variety of statistical information including mea­
sures of central tendency, variability, skewness, and kurtosis.) Although the differences
between the two distributions are not striking, a study of both distributions will reveal
that the outlier (X = 520) that contributes greatly to the positive skewness and kurtosis.
becomes less extreme after the square root transforrnation.?"

Table 6.1 gives 91 and 91 indices after a second non-linear transformation has been
applied to the raw scores, that is, when each Xi is replaced by 10g1OXi . This LOG transforma­
tion reduces positive skewness, or increases negative skewness, even more than the SQRT

I7Thetopic of lineartransformations is treated more extensively in Chapter 7, Section 7.12.

"Note in Figure 6.6 how the shape of the distribution changes depending on the particular transformation
that is applied.

'"It is unlikely that transformations would be used in the actual study. especially based on what we know
about the variables at this point; they are included primarily for illustrative purposes.

"'Confirm that in the raw score distribution, the outlier 520 in the distribution with a mean of 285.11 and a
standard deviation of 65.04 is 3.61 (= z) standard deviations above the mean. Afterthe square root transformation.
the mean and standard deviation were 16.775 and 1.927, respectively, and ..J52r5 = 22.804, which is 3.13 (=:)
standard deviations from the mean.

ITABLE 6.1 Descriptive Information for Chapman Case Study Variables (n = 200)

T-scores .fi LOGJlJT

Variable r, ·h 1, Y2 1, Y2 1, 12
Age .28 -.80 .28 -.80 .07 -.96 -.15 -.97
Systolic B.P. (SBP) 1.51 3.50 1.51 3.50 1.23 2.47 .96 1.70
Diastolic B.P. (DBP) .45 .76 .45 .76 .22 .58 -.01 .55
Cholesterol Level .41 .42 .41 .42 .05 .09 -.31 .16
Height (in.) .10 -.35 .10 -.35 .05 -.34 .01 -.33
Weight (lbs.) .84 1.54 .84 1.54 .55 .91 .28 .52
Coronary? 'O=N. I=Y, 2.29 3.25 2.29 3.25 2.29 3.25 NA NA
ID# .00 -1.2 .00 -1.2 -.56 -.63 -.56 -.625
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MASTERY TEST

Information 011 certain standardized intelligence and achievement tests is given. An.nl'er questions I
to 10 assuming the scores are normally distributed.

b SUGGESTED COMPUTER EXERCISE

1. An IQ score above 115 is obtained by what percent of the population?

2. If a fifth-grade student obtains a percentile rank of 84 in reading. what is the grade-equivalent
score?

3. What is the grade-equivalent score for the same relative performance as in question 2 (Px.j) in
arithmetic at grade 5'1

4. Jack was reading at 6.1 when he entered grade 8. If his Wechsler IQ is equivalent to the same
percentile rank, what is it?

5. If Jack's score in question 4 is valid, he reads better than about what percentage of children in his
grade?

6. Upon entering grade 3. approximately what percent of third-grade children:

(a) obtains a reading grade-equivalent score of 3.0 or better?
(b) obtains a score of 4.0 or better?
(c) obtains a score of 5.0 or better'?

7. On the reading test, what percent of beginning third-grade students (3.0) score no higher than the

average beginning second-grade students (2.0)'?

8. At grade 5, is a grade-equivalent score of 6.0 relatively better (i.e.. does it have a higher percen­

tile equivalent) in arithmetic than in reading?

9. In reading, what percentages of third-grade students score below grade-equivalent scores of 2.0,

3.0, 4.0, and 5.0, respectively'?
10. How much reading gain in grade-equivalent units is required during the five years between

grades 3.0 and 8.0 to:

(a) maintain a percentile equivalent of 50'7
(b) maintain a percentile rank of 84'1

11. If X, = 176 with P = 163 and (J = 26, express XJ as:
(a) ~ z-score. (b) a T-score. (c) a percentile equivalent.

12. If IQ's were perfectly normally distributed. how many persons in the United States would have
IQ's exceeding 175'?(Assume p = 100, (J= 15, and N = 250,000.000.)

13. What percentage of IQ scores would fall between:

(a) 90 and llO'? (b) 80 and 120,? rc) 75 and 125'?

14. Ifmen's heights are distributed normally. approximately how many men in 10.000 will be 6'6" or

taller? (Use p = 69.7". (J= 2.6")

15. Which of these is not a characteristic of a normal distribution'?

(a) symmetrical (b) unimodal (c) skewed (d) mesokurtic

16. Which of these reflects the poorest performance on a test? Assume a normal distribution.

(a) Pill (b):=-1.5 (c)T=30

17. With a sample of 1,000 representative observations. which of these is probably least accurately

characterized by the normal distribution'?

(a) scores on a musical aptitude test
(b) number of baby teeth lost by age eight
(c) size of reading vocabulary of twelve-year-old children
(d) number of times attended a religious service in the past year
(e) scores on an inventory measuring interest in politics

18. If raw scores are changed to z-sccres. would the shape of the distribution be changed?

19. If z-scores are multiplied by 10, the standard deviation increases from __ to --'

20. What is the variance in a distribution expressed as (a) :-scores'? (b) T-scores'?

21. Small changes in z-scores near the mean (e.g., from 0 to.5) correspond to large or small changes
in percentile equivalents. Large z-score changes near the extremes (e.g., 2.0 to 2.5) correspond to
large or small changes in percentile equivalents.

22. If for a class of gifted children p = 140, (J= 10, and skewness sk = .6 (Equation 6.7), estimate the

mode and median of the distribution of scores.

23. What is the skewness index, sk, for the distribution of cholesterol levels in the Chapman study'?

(Use Equation 6.7 and Table 5.2.)

24. The square root and log transformations wil! reduce __ (positive or negative) skewness in a

distribution. (See Figure 6.6)
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100
15

WechslerIQ

p
(J

transformation. Note that for age, the original value of YI was .28; YI decreased to .07 with
the SQRT transformation, and YI became slightly negative (-.15) when the LOG transfer­
mation was applied. If our goal was to coerce the distributions into approximate noifriality
as closely as possible, we would apply neither transformation to coronary nor 10 #.We
would choose the SQRT over the LOG transformation for age and cholesterol level, and the
LOG transformation for all others. Based on our current analyses, we would not use transfor­
mations; other considerations pertaining to transformations will be considered in Chapter 7.

We could remove most of the skewness in all the variables that have an underlying
continuum if we normalized (Section 6.12) the distributions, but normalizing is appropriate
only when there is a problem with the measurement scale, which is not the case here.

Using speadsheet or statistical software, compute skewness indices for all the variables in
the HSB case study data set including 10, but not career (CAR) and RACE. Note that the
variable ID has a rectangular distribution, thus has no skewness. Note that the dichotomous
variable School Type (SCTYP) is highly skewed, but SEX is only slightly skewed. Note
that the use of T-scores does not necessarily indicate that a variable is normally distributed,
for example, writing (WRTG). Use a transformation on WRTG to see if you can reduce its
skewness (since WRTG is negatively skewed, create another variable that is the square or
cube of the WRTG scores). See what happens to the skewness of WRTG if the square root
or log transformations are used. Recompute the skewness to see how the skewness is af­
fected by the transformations. Obtain histograms and examine the change in appearance
before and after the transformations.

-
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PROBLEMS AND EXERCISES

Use Figure 6.5 to answer the exercises below.

(a) If Mary's Motor performance improved by Ia, the percentile equivalent would increase from
16 to __, or __ percentile units.

(b) If the Verbal score improved by Ia, the percentile equivalent on the Verbal tests would in­
crease from 98 to __, or __ percentile units.

(c) In standard deviation units, is the size of the difference between Mary's performance on the
Verbal and Perceptual tests the same as the difference between her Motor and Quantitative
scores?

(d) If expressed in T-scores, would the change from P I6 to Pso in exercise (a) be equal to the
change from P98 to PY9.Y in exercise (b)?

6. The manual for the Metropolitan Achievement Tests (MAT) contains no report of standard devia­
tions for the grade equivalent (GE) scales but does give percentile ranks as indicated:

1. Find the area under the normal curve which lies:

(a) above z = 1.00 (e) between ZI = 0 and z- = 3.00
(b) below z=2.00 (f) above z=-.50 -
(c) above z = 1.64 (g) between Zl = -1.50 and z- = 1.50
(d) below z =-1.96 -

2. Find the ordinates of these z-scores in the normal distribution:

(a) z=2.25 (b) z=-.15

3. Find the z-scores that are exceeded by the following proportions of the area under the normal
distribution:

(a) .50 (b) .16 (c) .84 (d) .05 (e) .005 (0 .995 (g) .10

4. If in the general population of children, Stanford-Binet IQ's have a nearly normal distribution
with mean 100 and standard deviation 16 (see Figure 6.5), find the percentile equivalent of each
of the following IQ's:

(a) 100 (b) 120 (c) 75 (d) 95 (e) 140

5. Suppose Mary obtained the following percentiles on five subtests on the Mctlarthv Scales of
Children's Abilities: . . 8. If many naive examinees guess randomly on each of the 100 items on a true-false test, the mean

would be expected to be 50 =u, with a= 5. What percent of examinees would be expected to
earn scores of 65 or more?

9. Each of eleven students in a class was asked to respond to a sociometric measure in which they
identified the three persons who had showed the most leadership ability. The scores (number of
nominations) for each student are given below. View the group as a population, not as a sample.

z-score

above 1.5
.5 to 1.5
-.5 to.5
-1.5 to-.5
below -1.5

A
B
C
D
F

Xi Xi z/ _3 _4
~i ':"j ':"j

9 6 2.4 5.76 13.824 33.1776
5 2 .8 .6-1- .512 .4096
5 2
4 1 .4
3 0 .0 .00 .000 .0000
2 -1 -.4 .16
2 -I -.4 .16 -.064 .0256
1 -2 -.8 .M -.512 .4096
1 -2 -.8 .M -.512 .4096
1 -2 -.8 .M -.512 .4096
0 -3 1.4-1- -1.728 2.0736

ITi=_ LXi=_ LZi=_ L::?=_ LZP=_ LZi
4=_

Grade

(b) Which distribution is more severely skewed?
(c) Would the mean GE be greater on the reading or the math test? Explain.
(d) Using the estimated standard deviation on the math test, approximately what percent of be­

ginning fifth-grade students obtain GE scores above 6.0 on the MAT? Assuming normal
distributions, compare this figure with the corresponding figure for the ITBS Arithmetic Test
(see data preceding question I on the Mastery Test).

7. "Grading on the normal curve" was popular in some circles a few decades ago. The most com­
mon method used the following conversion. Using this system. what percent of A's, B's, C's, D's,
and F's are expected with a normal distribution of scores?

98
99.9
50
84
16

PercentileSubtest

Verbal
Perceptual
Quantitative
Memory
Motor

Percentile for
Grade Equivalents

Fall ofGrade 5 Reading Math

84 9.0 6.8 10.
50 5.0 5.0
16 3.0 3.4

(a) Estimate the GE standard deviation for the reading and math tests. [a~ (P
S4

- P
I6)/2]

(a) What are the mean, median, and mode of the distribution?
(b) Supply the missing z-score (a= 2.5).
(c) Supply the missing values in the zP, zp. and z/ columns, and find the sums of each column.
(d) Compute the skewness (YI) and kurtosis (Y2) indices of the distribution.

Suppose a student can qualify for $100 in additional state aid designated for special remedial
reading by scoring 2.0 or more grade equivalents below his current grade level status. For a
typical, representative school district with approximately 4,000 students per grade level, how
much more state aid would the district receive for its fifth graders given that the Metropolitan
(MAT) was given rather than the Iowa (ITBS)? The standard deviations are 3.0 and 1.4 for the
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MAT and ITBS, respectively; use 5.0 for both means. Assume normality and round z-scores to
the second decimal place.

11. Knowing U= 15 on the Wechsler IQ scale, estimate Q.
12. Some academic departments use the Miller Analogies Test for selecting graduate students. Al­

though only raw scores are reported. for students applying for graduate study the mean and
standard deviation ate approximately 48 and 17, respectively. If applicants at a certain presti­
gious university are expected to be in the upper 10%, what is the minimum raw score expected
on the Miller?

13. Prove that L;Z;" = N.

ANSWERS TO MASTERY TEST

CORRELATION: MEASURES OF
RELATIONSHIP BETWEEN TWO
VARIABLES

ANSWERS TO PROBLEMS AND EXERCISES

1. 16'7c
2. 6.4
3. 6.1
4. 85
5. 16'7c
6. (a) 50%, (b) 16%, (c) 2%
7. 16'7c
8. yes
9. 16'7c, 50%, 84%, and 98%

10. (a) 5.0 (b) 5.9
11. (a) ;: = (176 - 163)/26 = .50

(b) T = 50 + 10(.50) = 55
(c) f'69

12. Z = (175 - 100)/15 = 5,0;
(.0000002867)(250,000,000) = 80

1. (a) .1587 (b) .9772 (c) .0505 (d) .025
(e)A987 (f) .6915 (g) .8664

2. (a) .0317 (b) .3945
3. (a) 0.00 (b) +1.00 (c)-1.00 (d) +1.645

(e) +1.58 (f) -2.58 (g) +1.28
4. (a) 50 (b) 89 (c) 6 (d) 38 (e) 99
5. (a) 50, 34 (b) 99.9, 1.9 (c) yes, I rr in

each instance (d) yes, T-score increase of
10 in each instance

6. (a) UF, = 3.0, 0;\1 = 1.7 (b) reading (c)
reading; greater positive skewness (d)
MAT: z =.59,28% above 6.0; ITBS: z =
.91,18% above 6.0

7. A: 7'7c. B: 24%, C: 38%, D: 24%, F: 7%
8. .0013 or .13%, or roughly one student in

1,000

13. (a) .7486 - .2514 =.4972 or about 50%
(b) .9082 - .0918 = .8164 or 82%
(c) .9525 - .0475 = .9050 or 91%

14. z = (78 - 69.7)/2.6 = 3.19;
(.00071)(10,000) = 7.1 or about 7

15. (c)
16. (c)
17. (d)
18. no
19. 1.0 to 10
20. (a)(1)2=1; (b) (10)"= 100
21. large, small
22. Mode =134, Md = 138 (See Equation

4.10)
23. .42
24. positive

9. (a) mean = 3.0, median = 2, mode = I;
(b) .8, -1.2 (c); (c) LX= 33, LX= 0,
LZ= 0, LZ2 = 10.88, LZ3 = 11.52,
LZ4= 37.3760; (d) y,= 11.52/11 = 1.05,
Y2 = 37.376/11 - 3 = 040

10. MAT: Z = -.67, (.2514)(4,000)(100) =
$100,560; ITBS: Z = -1.43,
(.0764)(4,000)(100)= $30,560, or
$70,000 more using MAT

11. From Table A, Q = .674u, Q = 10
12. 70
13. LjZ;" = L;(X;- f.l)2/U2 = (I/a2)L;(X;- /..1)2

= (l/a2)(Na2) = N

fill INTRODUCTION

Measures of correlation are used to describe the relationship between two variables. In
addition, correlation is an important part of many other statistical techniques. In this chap­
ter, we will present the meaning. use, and computation of common measures of relation­
ship.

Behavioral research frequently assesses the degree of association between two vari­
ables. The variables may be on many different kinds of observational units: persons,
classes, schools, sites. cities, or the like. For example: Is absenteeism related to socio­
economic status (SES) for high school students? Is class size related to achievement growth
for first grade classes? Do competitive cultures have a greater incidence of peptic ulcers?
Can GPA be better predicted from SES than from IQ? To answer questions such as these,
measures of relationship (correlation coefficients) are needed.

Most persons have a general understanding of correlation. Two variables are correlated
if high scores on one variable tend to "go together" with high scores on the second variable.
Likewise, if low scores on variable X tend to be accompanied by low scores on variable Y,
then the variables X and Yare correlated. The degree of correlation between variables call be
described by such terms as strong. low, positive. or moderate, but these terms are not very
precise. If a coefficient of correlation is computed between the two sets of scores, the rela­
tionship is described more precisely. A coefficient of correlation is a statistical summary of
the degree and direction of relationship or association between two variables.

fill THE CONCEPT OF CORRELATION

There is a substantial, but by no means perfect. positive correlation between annual income
and the taxes paid to IRS. Husbands and wives tend to be alike in age, amount of education,
and many other ways. The sons of tall fathers tend to be taller than average, and the sons of
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