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"Suppose you have run an experiment on 20 subjects, and have obtained a
significant result which confirms your theory (2 = 2.23, P < .05, two
tailed). You now have cause to run an additional group of 10 subjects.
What do you think the probability is that the results will be significant, by
a one-tailed test, separately for this group?"

If you feel that the probability is somewhere around .85, you ma y be
pleased to know that you belong to a majority group. Indeed, that was the
median answer of two small groups who were kind enough to respond to a
questionnaire distributed at meetings of the Mathematical Psychology
Group and of the American Psychological Association.

On the other hand, if you feel that the probability is around .48, you
belong to a minority . Only 9 of our 84 respondents ga ve answers between
.40 and .60. However, .48 happens to be a much more reasonable estimate
than .85. 1

Apparently, most ps ychologists have an exaggerated belief in the likeli
hood of successfully replicating an obtained finding . The sources of such

1 The required estimate can be in terpre ted in several wa ys. One p ossible ap proa ch is to
follow com mo n research practice, where a value obtained in on e study is taken to define a
plausible altern ati ve to th e n ull hypothesis. Th e p robability requested in the quest ion can
th en be in terpret ed as th e power of the second test (i.e ., th e prob ab ility of obtaining a
significan t result in the secon d sample) agains t th e alternat ive hypothesis d efined by th e
result of the first sample. In the special case of a test of a mean with kno w n varian ce, one
would compute th e power of the test agains t th e hypothesis that th e population mean
equals the mean of the first sample. Since the size of the second sample is half that of the
first, th e computed probability of obtaining z ;" 1.645 is on ly .473. A th eoretically more
justifiable approach is to interpret the request ed probability within a Bayesian fram ework
and compute it relative to some appropriately se lec ted p rior di stribution. Assumi ng a
uniform prior, th e desired post erior probability is .478. Clearl y, if th e prior d istributi on
favors th e null hypothesis, as is often th e case, th e posterior probab ility will be even
sm all er.

Th is chapter origi nally appear ed in Psychological Bulle/ill, 1971, 2, 105-10. Cop yright © 1971 by
the American Psychological Association. Rep rinted by permission.
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beliefs, and their consequences for the conduct of scientific inquiry, are
what this paper is about. Our thesis is that people have strong intuitions
about random sampling; that these intuitions are wrong in fu ndamen tal
respects; that these intuitions are shared by naive subjects and by trained
scientists; and that they are applied with unfortunate consequences in the
course of scientific inquiry.

We submit that people view a sample randomly drawn from a popula
tion as highly representative, that is, similar to the population in all
essential characteristics. Consequently, they expect any two samples
drawn from a particular population to be more similar to one another and
to the population than sampling theory predicts, at least for small
samples.

The tendency to regard a sample as a represen tation is manifest in a
wide variety of situations. When subjects are instructed to generate a
random sequence of hypothetical tosses of a fair coin , for example, they
produce sequences w here the proportion of heads in any short segment
stays far closer to .50 th an th e law s of chance would pred ict (Tu ne, 1964) .
Thus, eac h segmen t of th e response se q ue nce is highly re presentative of
the "fairness" of th e coin . Simi lar effects are observed w hen subjec ts
successively p re dict eve n ts in a randomly genera ted se ries, as in p rob abil
i ty learning experiments (Estes, 1964) or in other sequential games of
chance. Subjects ac t as if every segmen t of the rand om sequence must
reflect the tr ue proportion: if the sequence h as strayed from the popula 
tion proportion, a corrective bias in the other direction is expected. This
has been called the gambler's fallacy.

The heart of th e ga mbler's fallacy is a misconception of the fairness of
th e laws of chance. The gambler feels that the fairness of the coin entitles
h im to expect that any deviation in one direction will soon be cancelled by
a corresponding deviation in the other. Even the fairest of coins, however,
given the limitations of its memory and moral sense, cannot be as fair as
th e gambler expects it to be. This fallacy is not un ique to gamblers.
Consider the fo llowing example:

The mean IQ of the population of eighth graders in a city is knoum to be 100. You
h ave se lec ted a random sample of 50 children for a st udy of educa tional achieve
ments. The first child tested has an IQ of 150 . What do yo u expect the mean IQ to
be for the w ho le sample?

The correct answer is 101. A surprisingly large number of people believe
th at th e expected IQ for the sample is still 100. This expecta tio n can be
just ified only by th e belief th at a random process is se lf -correcting . Idioms
such as "er rors canc el ea ch other ou t" reflect the image of an active
self-correc ting process. Some fami liar processes in n ature obey suc h law s:
a deviation from a stable equilibrium produces a force that resto res the
eq ui li brium. The laws of chance, in contrast, do not work th at way:
deviations are not canceled as sampling p ro cee ds, they are merely
di lu ted.

Thus far, we h ave attempted to describe tw o re lated intuitions about
chance. We proposed a represen tat ion hyp oth esis according to which
people believe samples to be very similar to one another and to the
popula tion from which they are drawn. We also suggested tha t people
believe sampling to be a self-correcting process. The two beliefs lead to the
same consequences. Both generate expectations about characteristics of
samples, and the variability of these expectations is less th an the true
variabili ty, at least for small samples.

The law of large numbers guarantees that very large samples will
indeed be highly representative of the population from which they are
drawn. If, in addition, a self-corrective tendency is at work, then small
samples should also be highly representative and similar to one another.
People's in tu itions about random sampling appear to satisfy the law of
small n umbers, which asserts that the law of large n umbers applies to
small n umbers as well.

Co nsider a hypothetical scientis t w ho lives by the law of small numbers.
How would h is belief affe ct h is scientific w ork? Ass ume our scie ntis t
stud ies phenomena whose magnitude is small re la tive to uncontrolled
variabili ty, that is, the signa l-to-noise ra tio in the m essages h e re ceiv es
from nature is low. Our scien tis t could be a m et eorol ogi st, a pharmacolo
gist, or perhaps a psychol ogist.

If h e believes in the law of small numbers, th e scie n tis t w ill h ave
exaggerated confidence in the validity of conclusion s based on sma ll
samples. To ill ustrate, su ppose he is engaged in studying w hich of two
toys infants will prefer to play with . Of th e firs t five infants studied, four
have shown a preference for th e same toy. Many a psychologist will feel
some confidence at this point, that the n ull hypothesis of no preference is
false. Fortunately, such a conviction is not a sufficient condition for
journal publication, although it may do for a book. By a quick computa
tion, our psychologist will discover that the probability of a result as
extreme as the one obtained is as h igh as 3fs un d er the null hypoth esis.

To be sure, the application of statistical hypothesis testing to scien tific
inference is beset with serious difficulties. Never theless, the computa tion
of significance levels (or likelihood ra tios, as a Bayesian might prefer)
forces th e scientist to evaluate the ob tai ned effect in terms of a valid
estima te of sam pling variance ra ther th an in terms of h is subjective bi ased
estima te. Sta tis tical tests, th erefore, protect the scientific com munity
aga inst overly hasty rejecti ons of th e null hypothesis (i.e ., Type I error) by
policing it s ma n y m embers w ho would rather live by th e law of sma ll
numbers. On th e other h and, there are n o comparable safeguards again st
th e risk of fai li n g to con firm a va lid research h ypothesis (i.e., Type II
error).

Imagine a psychologist who st udies the correlat ion between n eed for
achievement and gra des. When deciding on sample size, h e may reason as
fo llows: "What correl at ion do I expect? r = .35. What N do I n eed to make
the resul t significan t? (Looks at table.) N = 33. Fine, that's my sample."
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The only flaw in this reasoning is that our psychologist has forgotten
about sampling variation, possibly because he believes that any sample
must be highly representative of its population. However, if his guess
about the correlation in the population is correct, the correlation in the
sample is about as likely to lie below or above .35. Hence, the likelihood of
obtaining a significant result (i.e., the power of the test) for N ~ 33 is about
.50 .

In a detailed investigation of statistical power, J. Cohen (1962, 1969) has
provided plausible definitions of large, medium, and small effects and an
extensive set of computational aids to the estimation of power for a var iety
of statistical tests. In the normal test for a difference between two means,
for example, a difference of .250" is small, a difference of .500" is medium,
and a difference of 10" is large, according to the proposed definitions. The
mean IQ difference between clerical and semiskilled workers is a medium
effect. In an ingenious study of research practice, J. Cohen (1962) reviewed
all the statistical analyses published in one volume of the Journal of
Abnormal and Social Psychology, and computed the likelihood of detecting
each of the three sizes of effect. The average power was .18 for the
detection of small effects, .48 for medium effects, and .83 for large effects.
If psychologists typically expect medium effects and select sample size as
in the above example, the power of their studies should indeed be about
.50.

Cohen's analysis shows that the statistical power of many psychological
studies is ridiculously low. This is a self-defeating practice: it makes for
frustrated scientists and inefficient research. The investigator who tests a
valid hypothesis but fails to obtain significant results cannot help but
regard nature as untrustworthy or even hostile . Furthermore, as Overall
(1969) has shown, the prevalence of studies deficient in statistical power is
not only wasteful but actually pernicious: it results in a large proportion of
invalid rejections of the null hypothesis among published results.

Because considerations of statistical power are of particular importance
in the design of replication studies, we probed attitudes concerning
replication in our questionnaire.

Suppose one of your doctoral students has completed a difficult and time
consuming experiment on 40 animals . He has scored and analyzed a large number i

of variables. His results are generally inconclusive, but one before-after compari
son yields a highly significant t ~ 2.70, which is surprising and could be of major
theoretical significance.

Considering the importance of the result, its surprisal value, and the number of
analyses that your student has performed, would you recommend that he replicate
the study before publishing? If you recommend replication, how many animals
would you urge him to run?

Among the psychologists to whom we put these questions there was
overwhelming sentiment favoring replication: it was recommended by 66

out of 75 respondents, probably because they suspected that the single
significant result was due to chance. The median recommendation was for
the doctoral student to run 20 subjects in a replication study. It is
instructive to consider the likely consequences of this advice. If the mean
and the variance in the second sample are actually identical to those in the
first sample, then the resulting value of t will be 1.88 . Follow in g the
reasoning of-Footnote 1, the student's chance of obtaining a significant
result in the replication is only slightly above one-half (for p = .05,
one-tail test). Since we had anticipated that a replication sample of 20
would appear reasonable to our respondents, we added the following
question:

Assume that your unhappy student has in fact repeated the initial study with 20
additional animals, and has obtained an insignificant result in the same direction,
t ~ 1.24. What would you recommend now? Check one : [the numbers in
parentheses refer to the number of respondents who checked each answer]

(a) He should pool the results and publish his conclusion as fact. (0)
(b) He should report the results as a tentative finding. (26)
(c) He should run another group of [median 20] animals. (21)
(d) He should try to find an explanation for the difference between the two

groups. (30)

Note that regardless of one's confidence in the original finding, its
credibility is surely enhanced by the replication. Not only is the experi
mental effect in the same direction in the two samples but the magnitude
of the effect in the replication is fully two-thirds of that in the original
study. In view of the sample size (20), which our respondents recom
mended, the replication was about as successful as one is entitled to expect.
The distribution of responses, however, reflects continued skepticism
concerning the student's finding following the recommended replication.
This unhappy state of affairs is a typical consequence of insufficient
statistical power.

In contrast to Responses band c, which can be justified on some
grounds, the most popular response, Response d, is indefensible. We doubt
that the same answer would have been obtained if the respondents had
realized that the difference between the two studies does not even
approach significance. (If the variances of the two samples are equal, t for
the difference is .53.) In the absence of a statistical test, our respondents .
followed the representation hypothesis: as the difference between the two
samples was larger than they expected, they viewed it as worthy of
explanation. However, the attempt to "find an explanation for the differ
ence between the two groups" is in all probability an exercise in explain
ing noise.

Altogether our respondents evaluated the replication rather harshly.
This follows from the representation hypothesis: if we expect all samples
to be very similar to one another, then almost all replications of a valid
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h ypothesis should be statistically significant. The harshness of the crite
rion for successful replication is manifest in the responses to the following
question:

An investigator has reported a result that yo u consider implausible . He ran 15
subjects, and reported a sign ificant value, t = 2.46. Another investigator ha s
attempted to duplicate his procedure, and he ob tained a nonsignificant val ue of t
with the same number of subjec ts. The direction was the same in both sets of data.

You are reviewing th e litera ture. Wha t is the h ighest va lue of t in th e second se t
of data th at yo u would describe as a failure to replicate?

The ma jority of our respondents regarded t = 1.70 as a failure to replicate.
If the data of two such studies (t = 2.46 and t = 1.70) are pooled, the va lue
of t for the combined data is ab out 3.00 (assuming equal variances). Thus,
w e are faced w ith a paradoxical state of affairs, in which the sa me data that
would increase our confidence in the finding when viewed as part of the
original st udy, shake our confidence when view ed as an independent
study. This double standard is particularly disturbing since, for many
reasons, replications are usually considered as independent st udies, and
h ypoth eses are often eva lua ted by lis tin g confirming an d d isconfirmi ng
re ports.

Contra ry to a widespread bel ief, a case can be made th at a replica tion
sample should often be larger than th e original. The decision to replicate a
once ob tained finding often expresses a great fondness for that finding
and a desire to see it accep ted by a skeptical community. Since tha t
c?m~.unity unreasonably demands that the replication be independently
significan t, or at least that it approach significance, one must run a large
sa mple. To illustrate, if the unfor tu na te doctoral student w hose thesis was
d iscussed earlier assumes th e va lidi ty of h is initial result (t = 2.70, N = 40),
an d if h e is willing to accept a risk of only .10 of ob tai n ing a t low er th an
1.~O, h e should run ap p ro ximat el y 50 animals in h is repli catio n study.
WIth a somewhat weaker in itia l resu lt (t = 2.20, N ~ 40), the size of the
replication sample required for the same power rises to about 75.

That th e effects discussed thus far are not limited to hypotheses about
mean~ and variances is demonstrated by the responses to the following
question:

You have run a correla tional study, scoring 20 variables on 100 subjects. Twenty
seven of th e 190 correla tion coefficients are sign ifican t at the .05 level; an d 9 of
these are significa nt beyond the .01 level. The mean absolute level of the
significan t correlations is .31, and th e pa tte rn of results is very reasonable on
th eoretical grounds. Ho w many of the 27 significan t correlat ions wo uld you expect
to be significant again, in an exact replication of the study, w ith N ~ 40?

Wi th N = 40, a correla tion of about .31 is required for significance a t th e
.05 level. Th is is the mean of the significant cor relations in th e original
study. Thus, only about half of the originally significant correlations (i .e.,
13 or 14) would remain significant with N = 40 . In addition, of course, the

correlations in th e replication are bound to differ from those in the
original study. Hence, by regression effects, the initially significant coeffi
cients are most likely to be reduced. Th us, 8 to 10 repeated significant
correlations from the original 27 is probably a generous estimate of w hat
one is entitled to expect. The median estimate of our respondents is 18.
Th is is more than th e number of repeated sig nificant correlations that will
be found if the correl a tions are recomputed for 40 subjects ra ndomly
selected from th e original 100! Apparently, people expect m ore than a
mere duplication of the original s ta tis tics in the re plication sample ; they
expect a duplica tio n of th e significance of results, with li ttl e regard for
sample size. This expectation requires a lud icrous extension of the repre
sentation hypothesis; even th e law of small numbers is incapable of
generating such a result.

The expectation tha t patterns of results are replicable almost in their
entirety provides th e rationale for a common, though much deplored
practice. The in vestigator who computes all correlations between three
indexes of anxiety and three indexes of d ep en dency will of ten report and
interpret w i th great confid ence the single significant correla tion ob tai ned .
His confid ence in th e shaky finding ste ms from his belief th at the
ob tai ned correlat ion matrix is highly rep resentative an d read ily replica
ble.

In review, we h ave seen that the believer in the law of small numbers
practices science as follows:

1. He gambles his research hypotheses on small samples without realiz
ing that th e odds against him are unreasonably high. He overes timates
power.

2. He h as undue confidence in early trends (e .g. , the data of the first
few subjects) and in th e stabili ty of observed patterns (e.g., th e n umber
and id en ti ty of significan t results) . He overestimates significance .

3. In evalua ting rep lic a tions, h is or o thers', h e h as unreasonably high
expecta tions abo u t the replicability of significa nt resul ts. H e underesti
ma tes the breadth of con fid en ce intervals .

4. He rarely attributes a deviation of results from expectations to
sampling variability, because he finds a causal "explanation" for any
dis crepancy. Thus , he has little opportunity to recognize sampling varia
tion in action. His beli ef in the law of small numbers, therefore, will
foreve r remain intact .

Our questionnaire elici ted consid erable evidence for the p reval ence of
th e belief in th e law of small numbers.' Our typical res ponden t is a
be liever, rega rd less of th e group to which h e bel on gs. There were practi 
cally n o d ifferences be tween the median responses of audiences at a

2 w. Edwards (1968, 25) has argued that people fai l to extract sufficient in fo rmation or
certainty from probabilistic data; he called th is failure conserv atism. Our respondents can
hardly be d escribed as conservati ve. Rather, in accord with th e representation hypothesis,
they ten d to ex tract more certainty from th e data th an the dat a, in fact , contain.
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mathematical psychology meeting and at a general session of the Ameri
can Psychological Association convention, although we make no claims
for the representativeness of either sample. Apparently, acquaintance
with formal logic and with probability theory does not extinguish erro
neous intuitions. What, then, can be done? Can the belief in the law of
small numbers be abolished or at least controlled?

Research experience is unlikely to help much, because sampling varia
tion is all too easily "explained." Corrective experiences are th ose that
provide neither motive nor opportunity for spurious explanation. Thus, a
student in a statistics course may draw repeated samples of given size from
a population, and learn the effect of sample size on sampling variability
from personal observation. We are far from certain, however, that expecta
tions can be corrected in this manner, since related biases, such as the
gambler's fallacy, survive considerable contradictory evidence.

Even if the bias cannot be unlearned, students can learn to recognize its
existence and take the necessary precautions. Since the teaching of statis
tics is not short on admonitions, a warning about biased statistical intui
tions may not be out of place. The obvious precaution is computation. The
believer in the law of small numbers has incorrect intuitions about
significance level, power, and confidence intervals. Significance levels-are
usually computed and reported, but power and confidence limits are not .
Perhaps they should be.

Explicit computation of power, relative to some reasonable hypothesis,
for instance, J. Cohen's (1962, 1969) small, large, and medium effects,
should surely be carried out before any study is done. Such computations
will often lead to the realization that there is simply no point in running
the study unless, for example, sample size is multiplied by four . We refuse
to believe that a serious investigator will knowingly accept a .50 risk of
failing to confirm a valid research hypothesis. In addition, computations
of power are essential to the interpretation of negative results, that is,
failures to reject the null hypothesis. Because readers' intuitive estimates
of power are likely to be wrong, the publication of computed values does
not appear to be a waste of either readers' time or journal space.

In the early psychological literature, the convention prevailed of report
ing, for example, a sample mean as M ± PE, where PE is the probable error
(i.e., the 50% confidence interval around the mean). This convention was
later abandoned in favor of the hypothesis-testing formulation. A confi
dence interval, however, provides a useful index of sampling variability,
and it is precisely this variability that we tend to underestimate. The
emphasis on significance levels tends to obscure a fundamental distinction
between the size of an effect and its statistical significance. Regardless of
sample size, the size of an effect in one study is a reasonable estimate of
the size of the effect in replication. In contrast, the estimated significance
level in a replication depends critically on sample size. Unrealistic expec
tations concerning the replicability of significance levels may be corrected

if the distinction between size and significance is clarified, and if the
computed size of observed effects is routinely reported. From this point of
view, at least, the acceptance of the hypothesis-testing model has not been
an unmixed blessing for psychology.

The true believer in the law of small numbers commits his multitude of
sins against the logic of statistical inference in good fa~th. The. representa
tion hypothesis describes a cognitive or perceptual bias, which operates
regardless of motivational factors. Thus, while the h~sty rejection of. t~e
null hypothesis is gratifying, the rejection of a cher~s~ed ~~pothesls lS
aggravating, yet the true believer is subject to both. His intuitive expecta
tions are governed by a consistent misperception of the world rather than
by opportunistic wishful thinking. Given some editorial proddin?,. he may
be willing to regard his statistical intuitions with proper S~splclOn and
replace impression formation by computation whenever possible.


