AR

i

Manipulating
variables

MANIPULATING VARIABLES - WHY?

Often, when you are working with data, you need to make
changes to your variables. This may be for a number of reasons.
For example, you may have an income variable that is measured
in pounds, but you would prefer to have income grouped into a
number of categories, or even percentiles, instead. You may be
examining educational qualifications, but you are only really
interested in studying whether people went to university or not,
and therefore you would collapse a variable into two categories
(i.e. went to university, didn’t go to university). You may have a
very detailed ethnicity or race variable that was collected as an
open-ended question — that is, the survey respondents could write
in whatever they pleased. Clearly a categorical variable with hun-
dreds of possible responses would be very nearly impossible to
work with and therefore you may want to collapse these into
more manageable categories. There are many reasons you would
want to change the way your variables are presented. One special

instance is the case of missing values.

MISSING VALUES

When people answer surveys, they don’t always answer all the
questions, either because they would rather not or because not all
the questions may be relevant to them. Survey researchers use a
variety of techniques to capture the instances where a respondent
may refuse to answer a question or that question isn’t appropriate
for the particular respondent. Often these values are recorded in
the data spreadsheet as negative numbers, such as ~1 for ‘refused’
or =9 for ‘inapplicable’. Sometimes, they are stored as high numbers,

41

42 Manipulating variables

such as 99 or 999. There is no rule about this — it depends on the
conventions of the particular researcher or research institute who
collected the data.

You can recode the missing values to one or more of the 27
values Stata recognizes as meaning ‘missing’. These 27 are a dot ()
and a dot followed by a letter (-ato .z). Stata actually uses the dot
to recode the value to an extremely high number, which is why
you have to be careful when using the greater than symbol (>) if
the variable has missing values,

In our example data the data collectors decided to use negative
numbers (i.e. ~7, -8) to indicate non-response for a variety of
reasons. The table below shows the output of the variable educ
using the tabulate command (see Chaprer 5):

tabulate educ

highest educational | &
qualification | Freg. Percent Cum !
______________________________ e
missing | 19 0.19 0.19 &
proxy respondent | 352 3.43 3.61
higher degree | 122 1.19 4.80
first degree | 598 5.83 10.63 =
teaching gf | 225 2.1%9 12.82 =
other higher gf | 1,207 11.76 24,58
nursing qf | 215 2.09 26.68 =
gce a levels | 985 9.60 36.27 F
gce o levels or equiv | 2,086 20.32 56.60
commercial gf, no o levels | 349 3.40 60.00 =
cse grade 2-5,scot grade 4-5 | 411 4.00 64 .00 o
apprenticeship | 262 2.55 66.55
other gf | 84 0.82 67.37 E
no gf f 3,349 32.63 100.00 b
_____________________________________ P
Total f 10,264 100.00 . I

As you can see from the frequency table there are 19 cases with
‘missing’ values and 352 cases where thig question was asked of a
‘proxy respondent’, A proxy respondent is someone in the house-
hold who answers questions on the respondent’s behalf if he or
she is not able ro participate. If we tabulate again, with the option
nol (nolabel) asking for the values rather than the labels of the
categories, we get:

i

1§

Missing values

tabulate educ,nol

highest |
educational |
qualification | Freq Percent Cum
______________ .
-9 | 19 0.19 0.19
-7 | 352 3.43 3.61
1 i 122 1.19 4.80
2 i 598 5.83 10.63
3 I 225 2.19 12.82
4 ! 1,207 11.76 24.58
5 j 215 2.09 26.68
6] 985 9.60 36.27
7 i 2,086 20.32 56.60
8 | 349 3.40 60.00
9 l 411 4.00 64.00
10 l 262 2.55 66.55
11] 84 0.82 67 .37
12 I 3,349 32.63 100.00
________________ R
Total | 10,264 100.00

We see that —9 is the value given to ‘missing’ cases and -7 to
‘proxy respondent’ cases. For this variable we would choose to
recode both =9 and -7 to be missing values.

There are a number of ways to specify missing values. The first
uses the recode command, where we recode both the negative
numbers to a dot.

recode educ ~-9=, ~T=,
or
recode educ ~9/-T=.

The forward slash / is Stata notation for a range of values — in
the above example, values =9 through -7. Remember to put the
lowest value first. There are no cases with a value of —8, but that
doesn’t matter.

43

44 Manipulating variables

If you wanted to keep the reasons for the missing values separ- -
ate then you could use the dot followed by a letter values such as ~ —

recode educ ~9=.a -7=.b

Also, you can recode more than one variable at a time if the vari-
ables in your list have the same values to change. For example, if
our variables education (educ) and housing tenure (tenure) had
the same range of missing values to recode, we could use

recode educ tenure (—9/—1=.)

or

recode educ tenure (~9=.a) (~7=.b)

Where there is more than one variable in the list, the recode values
must be in parentheses. The recode command is also used to
manipulate the non-missing values of variables, and this is covered
in the next section.

You must be sure that the ‘missing’ values do not have a measn-
ingful value. That is, in our example data, when the negative
values you may think to recode to missing values can represent a

real value, such as zero, for a variable. To illustrate this we shall %
look at the variables ncigs, which measures how many cigarettes a
respondent smoked per day. -
First, let us get some descriptive information on the variable. £
ta ncigs B
number of |
cigarettes smoked] Freq. Percent Cum. %
_______________________ +_...__.__..___.__—,‘_...___.__....___._..__...._... el
missing or wild | 20 0.19 0.19
inapplicable | 6,949 67.70 67.90 ¥
proxy respondent | 352 3.43 71.33
refused | 1 0.01 71.34
don’t know | 1 0.01 71.35 &
less than 1 per day | 41 0.40 71.75
1 39 0.38 72.13
2 | 55 0.54 72.66 -
3| 50 0.49 73.15
4 | 31 0.30 73.45 &
5 | 162 1.58 75.03

e

Missing values 45

6 | 59 0.57 75.60
7 | 53 0.52 76.12
8 | 62 0.60 76.72
9 | 14 0.14 76.86
10 | 501 4.88 81.74
etc

60 | 9 0.09 99.99
80 | 1 0.01 100.00
____________________ e ____

Total | 10,264 100.00
We can see that several respondents smoked less than one per day.

We can find out the variable values as well.
ta ncigs,nol
number of |
cigarettes |
smoked | Freq Percent Cum
____________________ e
~9 | 20 0.19 0.19
-8 | 6,949 67.70 67.90
-7 | 352 3.43 71.33
-2 | 1 0.01 71.34
-1] 1 0.01 71.35
0 | 41 0.40 71.75
1 f 39 0.38 72.13
2 | 55 0.54 72.66
3 50 0.49 73.15
4 | 31 0.30 73.45
5 | 162 1.58 75.03
6 | 59 0.57 75.60
7| 53 0.52 76.12
8 | 62 0.60 76.72
9 | 14 0.14 76.86
10 | 501 4.88 81.74
etc

60 | 9 0.09 99.99
80 | 1 0.01 100.00
_____________________ b

Total | 10,264 100.00

46 Manipulating variables

All respondents were asked the question ‘Do you smoke?’, If they
answered ‘Yes’, then they were asked the second question, ‘How
many cigarettes do you smoke a day?’. If they answered ‘No’ to the _
first question then they were not asked the second question. This §
can be seen by the number of respondents with a value of -8 in the
variable ncigs. This number should correspond to the number

. ool
of respondents who answered ‘No’ to the first question. As ¥
well, there is a value of 0, which is labelled as less than 1 per
day. But these are occasional smokers, so are they really zeros? Foo

If you wanted a variable thar indicared the number of
cigarettes smoked per day then you could recode the negative _
values of ncigs in this way: B
recode ncigs 0=l ~%9=, —8=0 —7=. -2=, —~l=, g I
Or, if you wanted to keep the reasons for missing values separate:
recode ncigs 0=1 -9=.a —-8=0 ~7=.b ~2=.¢ -l=.d

P

In the second way we have kept—9=.a and ~7=.b as they are for
the educ variable, as in our data -9 and —7 denote the same reason
for missing values in all of the variables. Both of these recodes will P

B i
produce the frequency table of the ncigs variable below. The k
differences in coding the missing values are only shown when -
the missing option is used in the tabulate command which B
we cover in Chapter §.

B
ta ncigs,nol -
number of | -

cigarettes | -
smoked | Freq Percent Cum
~~~~~~~~~~~~ R T E
0 | 6,949 70.26 70.26 B
1 80 0.81 71.07
2 | 55 0.56 71.63 !
3 50 0.51 72.13
4 i 31 0.31 72 .45 i
5 | 162 1.64 74.08 -
6 | 59 0.60 74 .68
7 53 0.54 75 .22 X
8 | 62 0.63 75.84 )

Oy




Missing valuss

9 j 14 0.14 75.99
10 ] 501 5.07 81.05
etc
60 ] 9 0.09 99.99
80 ) 1 0.01 100.00
______________ e
Tcetal f 9,890 100.00

There is a useful command that wil] convert all the negative
values to missing values in one step. But before you use this global
recode, you must make sure that all the values that you are going
to specify are indeed logically deemed to be system missing and
you want to recode all of the missing values to a dot (.) only rather
than keep the reasons for missing values separate. The command
is mvdecode (missing value decode). The subcommand is _all
(for all variables) and the further option mv specifies which
value(s) to treat as missing.

mvdecode all sV {(—9 /1)

The shortened range for the missing values {(~9/-1) does not work
on some Stata configurations. If this is the case with your set-up,
then you can enter the missing values one at a time:

mvdecode _all,mv {(—9)
mvdecode _all,mv {(—8)
etc.

Also, the mvdecode command can be used with single variables
or lists of variables and does not have to be used with _all:

mvdecode mastat s (—8 /~1}
mvdecode tenure- Eimn, mv (—9/-7 )

The use of negative numbers to indicate values likely to be
changed to missing is good practice. It has its limitations, as
we have shown above. Another time when negative numbers
are not appropriate is when you have standardized scores, as
these variables have negative numbers as legitimate values. As we
mentioned previously, some data sets use high numbers such as
99 or 999 to indicate non-response (no answer). Additional care is

47




48  Manipulating variables

needed when recoding these to missing and especially using the
global recode command mvdecode. For example, your data may
have a variable for age that uses 999 as the indicator for non-
response as well as a variable for five categories of marital status E
that uses 9 as the value for non-response. If you simply used the
global mvdecode _all command for the range 9/999 then all
respondents aged 9 and over would be given a missing value in the
age variable. Whatever system is used to indicate non-response,
you need to exercise care when declaring values to be missing, E

It is very important to note that there is no way to undo the
mvdecode command. You are well advised to be absolutely sure
you want to run this command. And you should never overwrite E
your original data sets — always work with copies.

As you may have gathered by now ~ there are usually half a

dozen different ways to do what you want to do in Stata, As you B
become more familiar with its possibilities you will find the way
that suits you best. In the numerous courses that we have taught =
on Stata, not one has passed without a student showing us some-
thing that we didn’t know!
CREATING NEW VARIABLES OUT OF
EXISTING VARIABLES P
You may want to make new variables out of one or more existing
variables. For example, you might want a variable that denotes B
women who are self-employed. To make this variable, you would
need information from two variables that already existed in your _
data set: gender (sex) and job status (jbstat). &
When you are creating variables, you often need to use math-
ematical expressions. The following are recognized by Stata: c
+  addition
- subtraction g
* multiplication B
/- division
N raise to the power "
Parentheses are used to control the order in which calculations are .

done. Parentheses may be nested within other parentheses, many
layers deep.

Before moving on to more advanced variable manipulation, it .
is necessary to understand the logical operators used in Stata. )

]

8



Creating new variables out of existing variables

~  not > greater than

== equal (two equals signs) | >= greater than or equal to

= notequal < less than

& and <= less than or equal to
q

| or

Stata also recognizes a myriad of mathematical functions. The
ones you probably use most are:

sqrt(x) square root log(x) or In(x) natural logarithm

exp(x) exponent nt(x) integer
(e to power)

Type help functions for the full range of functions supported
by Stata.

49




50  Manipulating variables

Probably the most common command used to create new vari-
ables from pre-existing variables is generate. The command
generate can be shortened to gen, ge or even g. To use the
generate command, you type generate followed by the name
of the new variable and then the set of conditions that equal the
value of the new variable. For example, if we wanted to create a
variable that measured yearly income, we could multiply our
monthly income variable (fizn) by 12:

bl

gen vearlvincome=fimn*12

Likewise, we could generate a variable that roughly equated to  —

weekly income by dividing monthly income by, say, 4.2: E
ge weeklyincome=Ffimn/4.2 =

We can use the recode command to make a new variable out
of an existing variable. Suppose we wanted to make a simplified g
variable where the only categories were ‘partnered’, ‘never
married’, and ‘previously married’ from the original marital status
variable (mastar). ‘Partnered’ would include married and cohabit- E
ing couples, while ‘previously married” would include all divorced,
separated, and widowed people. We could do this by: ™

E
recode mastat 1/2=1 3/5=2 6=3
But this would mean that we lose the original variable categories,
so we advise that you create new variables when recoding. Let’s _
call our new variable mastat2, so now the command will be: E
recode mastat 1/2=1 3/5=2 6=3,gen(mastat2) -
The gen option to the recode command creates a new variable
with the recoded categories, so you will keep the original variable .
and its categories as well. -
ta mastatz B
mastat? | Freq. Percent Curm )
_________ +.‘.._._...._.._..._...__...._.—..._...._._.._.....w._._“.w*_—__ -
1| 6,683 65.11 65.11 !
2 | 1,489 14.51 79.62
3| 2,092 20.38 100.00 [
_________ +_‘.4._.__.._—._—...._.__....__._...___._.______.._._.._, :
Total | 10,264 100.00



Creating new variables out of existing variables

You should always check the variables you create. One way
is to crosstabulate them, provided the number of categories is
manageable:

ta mastat mastat2

| mastat?2
marital status | 1 2 3 | Total

| 0|
living as couple | 674 0 0 | 674
widowed | 0 866 0 | 866
divorced | 0 434 0 | 434
separated | 0 189 0 | 189
never married | 0 0 2,081 | 2,081

Generating a new variable with information from one existing
variable is the simplest type of variable creation. Returning to
our example of a variable that indicates women who are self-
employed, we could do this in 2 number of different ways; we first
use step-by-step approaches so you can see how the different com-
mands work, and then we use a single command to demonstrate
Stata’s use of logic in constructing new variables. The self-
employed have the value 1 in the jbstat variable (10 categories)
and the missing values have been recoded to a dot (.), while
women have the value 2 in the sex variable and there are no
missing values on the sex variable.

The step-by-step way is to generate a new variable (fem1) and
set all values to missing (.), and then to replace the values as
they meet specific conditions. The command replace allows you
to change the contents of a variable, so to speak.

gen femls=.
replace feml=1 if dbstat==1 & sex==

replace feml=0 if +dbstat>=2 & jbstat<=12
replace feml=0 if sex==1 & jbstat==1

This will create a value of 1 for all women who are self-employed.
You are then left to decide what to do with the rest of the values.
A variable must take more than one value to vary. Often, a
researcher will use dummy variables to denote 1 for the category

51




52  Manipulating variables

of interest and 0 for cases that do not meet this condition, so we
replace the new variable with zeros where the cases are women
who are not self-employed and all men. The third line replaces
those who have an employment status but are not self employed ?
with a 0. The fourth line replaces men who are self-employed with
a 0. The step-by-step way of creating this new variable is cumber-

some, but it does help to understand what is actually happeningin ¥
your data with each command. However, we hope that you are
able to move quickly on to use more efficient commands. B

We can first reduce the four commands to three:

gen fem2=1 if dJbstat==1 & sex==2
replace fem2=0 if jbstat>=2 & jbstat<=12
replace fem2=0 if sex==1 & jbstat==1 -

In the first command line the generate (gen) command creates
a new variable fern2 with cases equal to 1 for women who are self-
employed, and then the rest of the cases are automatically set as
missing (.). The last two command lines are the same as in the first -
way, replacing all cases that are not self-employed or are self- ¥
employed men with a zero. Note here that we do not use
jbstat!=1 (jbstat not equal to one) as this would code the cases =
who are missing on jbstat to zero.

We can now reduce the three commands to two:

gen fem3=1 if jbstat==1 & sex==
replace fem3=0 if ((jbstat>=2&jbstat<=10)| /// Jou
sexs==1l) & Imissing(jbstat) i

In this way the last two lines are combined to replace cases ¥
who are not self-employed or are men as zeros. It is necessary
to include the last element of the command line - &

. . E
!missing (jbstat) - in order not to include men who have =
missing values on the jbstat variable in the zeros. This element
means ‘not missing values on the jbstar variable’. ¥

The most efficient way to create this new variable is to use
Stata’s logic for constructing new variables which then means it
can be done in one command line:

(&=

gen femd=jbstat==1 & sex==2 if ///
Imissing(jbstat, sex)

e




Dummy variables 53

In this form of the gen command, cases who are self-employed
(jbstat==1) and women (sex== ) are automatically given
the value 1 while all other cases are given zeros except for
those who are missing on either jbstat or sex — if 1missing
(ibstat, sex) —in which case they are given a missing value (.).
Note the use of the if in this way rather than the & in the last line
of making the fem3 variable. Including the variable sex in the
parentheses after Imissing is not strictly necessary as we know
in our data that there are no missing values on that variable.

A check on the summary statistics (see Chapter 5) of the new
variables shows that they are identical:

su fem*
Variable | Obs Mean Std. Dev. Min Max
MMMMMMMMM —;..—_'—-—“..——.—.._—-—_——..—-—_.—-——,—.—.—.——._-——___..—____..—-_,..-.._
feml | 9912 .0204802 .1416433 0 1
fem2 | 9912 .0204802 .1416433 0 1
fem3 | 9912 .0204802 .1416433 0 1
femd | 9912 ,0204802 .1416433 0 1
DUMMY VARIABLES

One very common reason to manipulate pre-existing variables is to
create dummy variables, or dichotomous variables, with the values
of 0 and 1. Dummy variables are a special case of nominal variables.
Remember, nominal variables are those which measure qualitative
characteristics such as sex, religion, or marital status. There are
two reasons why we use dummy variables, and they are based
upon what you should already know about nominal variables:

® The only measure of central tendency that makes sense for
a nominal variable is the mode. The mean and median for
nominal variables are not meaningful. Although you can
get Stata or any other software program to produce a
mean and a median for nominal variables, that doesn’t
mean they have any meaningful value.

® There are lots of nominal-type characteristics that are
important predictors of the things that social scientists are
interested in - but because we can’t determine a ‘meaningful
mean’ or median, we need to make a special adjustment so
that we can use nominal variables in multivariate statistics.

See Box 3.2 if you've heard of dummy variables but aren’t exactly
sure what they are or how to interpret them,.




54

Manipulating variables

- }Bﬁx 31,,2; Bﬁmgﬁy‘yaﬁa&ieéf ‘

s kvaﬂabée aﬁd a predzc;to{ 03‘ many epencﬁent vaﬁab ﬁs‘m w‘h‘
. are | n%eresteei paj, ﬁovert; fam

oy

e

T}

o

the dummy variab
kk‘Q male When we fransform our var able =
like ths it bewmes possible to ca?ouiate a mean thai we can
ntemmt If we add ¢ up the values oi the vari ab le sex absove ‘
‘ dmde by the numbe:r Gf C&a@‘ we .

[E =N




Dummy variables 55




56  Manipulating variables




57

es

|

Dummy variab




58  Manipulating variables

s

-
|

{ !
E i
:
B

As we’ve said before, and will say again, there is often more
than one way to complete a task in Stata that gets you to the right . = &
answer. The creation of variables is a case in point. Let us show
you some different ways of creating dummy variables.

Suppose we wanted to create a dummy variable for those who i

have a university degree called degree from the educ variable
where there are 12 categories of qualifications, with 1 and 2 being
degrees and the missing values recoded to a dot (.). We could do
this in a number of more or less efficient ways.

(a) Create a new variable and recode it:
generate degreel=educ
recode degreel 1/2=1 3/max=0

(b)  Recode educ and make the new variable at the same time:
recode educ (1/2=1) (3/max=0), ///
gen {(degreel)

SEEETEE | PLrmEe PR ramnaw B TR B CORemE B



Dummy variables 59

{c) Lkegenerateandreplacecmnnmnd&
gen degree3=1 if educ<=2
replace degree3=0 if educ>=3 & ///
Imissing (educ)

(d) Use the generate command in one line:
gen degreed=educ<=2 if Imissing(educ)

It is very important in (c) and (d) to have the imissing (educ)
element at the end ~ note that one is a & and the other is an 1 £, If
you make another variable (degreeS) where you omit this part
from (d), and then do a frequency distribution on both, you will
see that they are different.

gen degreeS=educ<=2
tabl degreed degreeb

tabl degreed degreeb

-> tabulation of degreed

Freq. Percent Cum.
9,173 92.72 92.72

720 7.28 100.00
9,893 100.060

Freq Percent Cum
 osas 92.99 9399
720 7.01 100.00
026 10000
Where have the missing values gone? Without the

Imissing (educ) element of the command, Stata has put all the
missing values into the 0 category of the dummy variable degree 5.
This is because Stata recognizes missing values (dot, .a, etc.) as a
very high number and every time we use < or > we must ensure
that we tell Stata not to include missing values!




60  Manipulating variables

You may wonder why, in (d), Stata knows to make a variable &
coded 1 and 0. Nowhere in the code are 0 and 1 explicitly stated,
like in the other examples. This has to do with how Stata under-
stands double and single equal signs. In (d), we are setting a con-  ©
dition and if it is met, Stata logically assigns 1 to the condition and
0 to the cases were the condition is not met. See Box 3.3 on double
and single equal signs for more information on this topic. =

Now we have created five variables measuring whether or not
someone has a degree. We don’t need all these. We can get rid of &
the redundant variables using the command drop.

drop degreel degreel degreel degreeb w

&



Labelling variables

Often when we want to include nominal (categorical) vari-
ables in statistical estimations, it is necessary to create a series of
dummy variables from the original variable. This is done easily by
combining the tab and gen commands. For example, if we
wanted to create a series of dummies for the job status variable:

tab jbstat, gen(jobstat)

If you look at the bottom of your variable list, you will see that a
number of dummy variables have been created (jobstat1, jobstar2,
jobstat3, etc.). You can do a frequency distribution of these
variables like any other variable. You will see that they are all
dichotomized into a 0/1 format.

LABELLING VARIABLES

From our previous example on page SO we have a new marital
status variable (mastat2). Having done the frequency distribution
(tab) of the variable, we can see that there are no labels attached
to the values of the variable. Now we want to label the variable
and values so that we don’t forget which each number stands for.
Labeling in Stata is a bit different for those used to labeling vari-
ables in other statistical software packages. There are essentially
three steps:

1. Create a label for the variable itself.
2.  Define a label for values.
3. Attach that label to a specific variable.

We first label our variable:

label var mastat2 “simpler marital status”

Now our variable mastat2 has a label ‘simpler marital status’. If
you tab mastat2 you will see this new label and it will also be
in your variable list.

Now we want to label the values of the categories of mastai2.
To do this use the command label define. First, we have to
define a name for our labels. We are calling these labels ‘marital’.

lab def marital 1 “partnered” 2 “prev married” ///
3 “gingle”

61




62  Manipulating variables

If you make an error when you are using this command and try
to do it again, you will likely get a message that the labels
have already been defined. Stata will not let you overwrite
labels unless it is sure that you actually want to! You can assure L
Stata that you intend to overwrite labels by adding the option
modify. Try:

lab def marital 1 “partnered” 2 “prev married” ///
3 wgingle”, modify

It is important to realize that at this point you have defined a label,
but this label is not yet attached to any variable categories. The
label exists separately from any variable. If you type 1abel list
you will see all the labels in your data set. The label for ‘marital’
will be there with all the category values defined as we have
entered them above.

Now we must attach these category labels to the variable using
the procedure label value.

lab val mastat2 marital

L
i

This tells Stata to attach the values we assigned to the label ‘mar-
ital’ to the variable mastat2. Once value labels have been defined
they can be applied to other variables. If we now tabulate the new &
marital status variable we get:

ta mastat?

simpler | :
marital |
status | Freq Percent Cum
—————————————— e b
partnered | 6,683 65.18 65.18 '
prev married | 1,489 14.52 79.70 s
single | 2,081 20.30 100.00 o
______________ R
Total | 10,253 100.00 i 8

This may seem like a nonsense way of doing labels, but it does |
have one really great benefit. If you have numerous variables with & & |
the same codes (e.g. ‘yes’ and ‘no’), it is very easy to label them.




Labelling variables

We have created some dummy variables earlier in the chapter:

one for self-employed women and one for degrees. To label them
all, we would just define a label:

lab def vesno 1 “yves” { wnow

and then attach these values to our dummy variables:

lab val feml vesno
lab val degreed vesno
. etc

If you were using multiple dummy variables in your data set, you
can easily see how quick it would be to label them all.

For ways of changing a number of variable names at once, see
the commands in Box 3.4,

63




64  Manipulating variables




More on generating new variables 65

MORE ON GENERATING NEW VARIABLES

Stata has a second, ‘extended’ generate command that allows you
to create numerous types of variables from your existing data
both for analysis and for data management. The command is
egen and as you get more familiar with Stata then you will prob-
ably find yourself using this command more and more as it is very
powerful. There are a considerable number of uses for egen so we
cannot cover all of them here. Instead we use a few examples to
illustrate its utility. Remember that you can type help egen to
find out all of the ways to use the command.

The group function of egen creates a new variable by com-
bining categories of two or more variables. Let’s take a simple
example of two variables both with only two categories. First we
make a variable that indicates those who are married compared
to all others:

recode mastat (1=1) (2/max=0), gen(married)

We have included the (1=1) for clarity but it is not strictly neces-
sary for this recode. Now we want to create a new variable that
has the following four categories: married men, married women,
unmarried men, and unmarried women. If we crosstabulated the
variables married and sex we would see that:

ta sex married

ta sex married

| RECODE of mastat
| (marital status)

sex 0 1] Total
________ e
male | 1,886 2,947 | 4,833
female | 2,369 3,062 | 5,431
e e
Total | 4,255 6,009 i 10,264

From this table we can see the numbers in each of the four
categories we are interested in, but we don’t have them in a single
variable. The long way to do this would be to use the gen and
replace commands with 1 f statements such as:




66  Manipulating variables

gen sexmarl=]l if sex==l&married==

replace sexmarl=2 if sex==l&married==1
replace sexmarl=3 if sex==2&8married==0
replace semmarl=4 if sex==2&married==1l

gen sexmarl=1l if sex==l&married==0
(8378 missing values generated)

replace sexmarl=2 if sex==l&married==
(2947 real changes made)

replace sexmarl=3 if sex==2&married==0
(2369 real changes made)

s

replace sexmarl=4 1if sex==2&married==
(3062 real changes made)

s

Then if we label the categories and tabulate the new variable:

lab def sexwar 1 “unmarried men” /// “
2 "married men” 3 “ummarried women” ///
4 “married women”

lab val sexmarl sexmar

ta sexmarl

lab def sexmar 1 “unmarried men” ///
2 "married men” 3 “unmarried women” /// A
4 “married women”

lab val sexmarl sexmar

ta sexmarl

sexmarl | Freq. Percent Cum .

__________________ e .
unmarried men | 1,886 18.37 18.37
married men | 2,947 28.71 47.09
unmarried women | 2,369 23.08 70.17
married women | 3,062 29.83 100.00
______________________ e

Total | 10,264 100.00

If you compare the categories of this new variable with the
crosstabulation of sex and married above you can see the new
categories represent each cell of the crosstabulation. However,
using the egen command considerably shortens this process:

i !




More on generating new variables 67

egen sexmar2=group(sex married)
ta sexmar?

ta sexmar?

group (sex

married) Freg Percent Cum
__________ e
1] 1,886 18.37 18.37
2| 2,947 28.71 47.09
3| 2,369 23.08 70.17
4 | 3,062 29.83 100.00
__________ e
Total | 10,264 100.00

We ordered our replace commands to re-create the process that
the egen group command uses to make its categories so that
youcaneaﬁbrunnpmftheremﬂm.Thmisduutheﬁnnca&goryof
the first variable in the list is taken first and then groups are made
with that and the categories of the second variable. So, in the
sex variable 1 = men and 2 = women, and in the married variable
0 = unmarried and 1 = married. Therefore the categories of the
IwwvmmHeME1:nwnmmmnm¢2:nmnmmﬁat3:Wmnm
unmarried, 4 = women married. So we can use the label ‘sexmar’
with this variable as well:

lab val sexmar2 sexmar
ta sexmar?

ta sexmar?

group (sex |

married) | Freq. Percent Cum.
____________________ e
unmarried men | 1,886 18.37 18.37
married men | 2,947 28.71 47.09
unmarried women | 2,369 23.08 70.17
married women | 3,062 29.83 100.00
e
Total | 10,264 100.00

Obviously, this gets more complicated if the variables have more
than two categories and if you use more than two variables, It’s




68  Manipulating variables

important to understand how Stata orders categories of variables
in a list; not only for this command but for many others as well
such as the by and bysort commands that we cover in Chapter 4.

The second function of egen we cover here is rownonmiss.
This function tells Stata to look across a number of variables and,
for each case (row), create a new variable that shows how many &
non-missing values there are. Non-missing means any value which L

has not being designated as missing (. or .a, .b, etc.). Remember
that you need to have coded the values to missing prior to using = §
this command. In this example, we take three General Health =
Questionnaire (GHQ) items, ghqa, ghqb and ghqd, to show how
this command works by creating a new variable called obs. Then
to show the frequencies of the new variable we need to tabulate it:
egen obs=rownonmiss {ghga ghgb ghgd)
ta obs
egen obs=rownonmissg (ghga ghgb ghqd)
ta obs ?é’ :
obs | Freqg. Percent Cum.
______ e o
0 | 530 5.16 5.16 -
1 1 0.01 5.1 )
2 | 14 0.14 5.31 B
3| 9,719 94 .69 100.00
—————— o : |
Total | 10,264 100.00 »
This table shows us thar 9719 people answered all three questions, ] [
14 answered two (note that this doesn’t show you which two), '
I answered only one question, and 530 did not answer any of the
three questions. Another way of looking at this is that those given !
a zero on the variable obs are missing on all three questions. To
show this, we tabulate the three variables for those who have a zero: :
tabl ghga ghgb ghgd if obs== N

womE

tabl ghga ghgb ghgd if obg==

-> tabulation of ghqga if obg==0 Lo
no observations

W

A | BURseRs T mosemes e



More on generating new variables 69

-> tabulation of ghgb if obg==
no observations

-> tabulation of ghgd if obs==
no observations

This confirms that those 530 cases have not answered any of the
three questions.

The values of obs can be used in a number of ways when
creating and manipulating variables, especially when creating
scales (see below) and deciding how many questions need to be
answered to be included. It may also be used to select cases
for analysis or to manage data sets when some cases are kept
or dropped.

We carry on using the three GHQ items to demonstrate
another function of egen. This function, rowmean, creates a new
variable with a value of the mean of the variables specified. The
default method for this function creates a mean for any cases that
have at least one non-missing value. So, a mean might be created
for someone who has only answered one of the questions. You
need to decide if that is something you wish to do. So, we will use
the obs variable created by the rownonmiss function to refine
the variable creation. We start with the default method:

egen meanl=rowmean (ghga ghab ghgd)

egen meanl=rowmean (ghga ghgb ghagd)
(530 missing values generated)

Stata tells us that the new variable, meanl, has been created with
530 missing values. Refer back to the table of obs and see that 530
cases were missing on all three questions and these are the ones
that are missing on this new variable. While you are looking at the
table of 0bs, you can see that one person answered only one of the
three questions. If we wanted to exclude that person from having
a mean then we can use the values of obs to condition the
rowmean function by restricting it to only those who answered
two or three questions:

egen meand=rowmean (ghga ghgb ghgd) if obs>1

egen mean2=rowmean (ghga ghgb c¢hgd)if obs>1
(531 missing values generated)




70 Manipulating variables

The output shows 531 missing values in the new variable, mean2,
which reflects the inclusion of the person who only answered one
question. To follow this example through to its logical conclusion
we now use the rowmean function and the values of the obs
variable to calculate a mean for only those who answered all
three questions:

egen mean3=rowmean(ghga ghgb ghgd) if obs==

egen mean3=rowmean (ghga ghgb ghgd) if obs==3
(545 missing values generated)

Now for the new variable, mean3, there are 545 missing values,
14 more than in mean2, which shows that the 14 people who only
answered two questions are now given missing values. We now
show the descriptives of all three newly created mean value variables:

su mean®
su mean®

Variable | Obs Mean Std. Dev. Min
meanl ! 9734 1.976645 4311008 1
meanz | 9733 1.976643 .4311229 1 4
means 1 9719 1.976198 .4302754 1 4

This output shows the different number of non-missing observa-
tions in each of the mean score variables. The relatively small
number of cases that did not answer all three questions means that
their exclusion has very little effect on the mean scores for the
sample. However, there are other reasons why you may want to
exclude these cases or you may be happy to include them.

CREATING A SCALE

It is often useful to create a scale out of a number of variables in a
data set to measure a more general concept. You may, for exam-
ple, have 10 different variables that measure depression, but find
that they can be grouped together to form a single overall measure o
of depression. There are, mathematically, many ways to create a =
scale, but one common way is to simply add up the variables to :
create a summed scale.




Creating a scale 71

We have a number of GHQ (Goldberg and Williams 1988)
measures in our sample data set. If we add these up and create a
summed measure, we would do it like this:

gen ghg= ghga+ ghgb+ ghgc+ ghgd+ ghge+ ///
ghgf+ ghgg+ ghgh+ ghgi+ ghagj+ ghgk+ ghgl

This command might look a little cumbersome, so let’s use the
egen command to do the same thing:

egen obs2=rownonmiss {ghga~ghgl)
egen ghg2=rowtotal (ghga~ghgl) if obs==12

Compare the two:
su ghg ghg2

su ghg ghg?

Variable | Obs Mean Std. Dev. Min Max
hhhhhhhhh _}~~._._.....—__._.._—.__..._...._...._,____—-__.._._._,.._.._,..._..._..4—_.—
ghg | 9613 22.77125 4.914182 12 48

ghg2 | 9613 22.77125 4.914182 12 48

Be careful how you use the rowtotal function in egen as it does
different things with missing values in some circumstances
between version 9 and 10, so it would be best to check using help
egen. In this example it’s not a problem as we are using the obs2
variable to determine which cases to add across the variables.

The variables used to make up this scale all have values from 1
to 4 with high values that are associated with an undesirable char-
acteristic, such as being depressed, being under strain, or having
lessened ability to face problems. So the resulting scale has a
minimum of 12 and a maximum of 48. You should note that
individuals who are missing on even one of the composite items
are given a ‘missing’ value in the overall scale because of the
condition obs2==12.

The GHQ is a well-established scale and we can be fairly
confident of its reliability and validity. But what if we are working
with data that are less familiar?

It is very important that you are familiar with the variables in
your proposed scale and that they are all in the ‘same direction’.




72 Manipulating variables

The difference between Stata and other statistical software pro-
grams is that if you were making a satisfaction scale in SPSS, for
example, it would be important that all the variables used to
create this scale all have the same ‘direction’ of measurement. If
some are coded in the opposite order (to measure dissatisfaction,
for example), you would have to recode these items so that all the
measures were in the same direction (i.e. measuring the extent of
satisfaction). Stata, however, has the ability to examine variables
and ‘reverse score’ items that it thinks are reverse coded using the
command alpha. The default setting in Stata is to empirically
determine the relationship and reverse the scorings for any that
enter (i.e. are correlated with other items) negatively. We will
return to this topic shortly.

But how do you know if it is a good scale? There are several
ways of assessing the reliability of a scale. One of the most com-
mon is the Cronbach’s alpha, which is what the scaling command
alpha is based upon. For all proposed scale items, alpha com-
putes the inter-item correlations (or covariances) for all pairs of
variables in the variable list. The command will also return a
Cronbach’s alpha statistic for the new scale. Cronbach’s alpha
statistic ranges from 0 to 1, with values closer to one indicating a
‘better’, more nternally consistent scale. It should be noted, how- &

z

e

ever, that scales comprised of a hi gh number of variables will have
higher alpha values than scales with the same inter-item correla-
tions but with fewer variables. So the number of items in a scale E
must be kept in mind when assessing alpha value. However, in
general, a value of about 0.70 or higher is generally considered -
acceptable for a scale. g

Let’s try a different set of variables — those that assess opinions {
on women and their role in the home and workplace. To find our E
how good our measure is, we can ask Stata to report a reliability = |
coefficient for us: o
alpha opfama opfamb opfamc opfamd opfame /// |

opfamf opfamg opfamh opfami . |
or

alpha opfama-opfami

Note that if you use the latter of these rwo alpha commands, the
variables must be in this order in your variable list.




Creating a scale

alpha opfama-opfami

Test scale = mean (unstandardized items)
Reversed items: opfamc opfamd opfame opfamh
opfami

Average interitem covariance: .204454
Number of items in the scale: 9
Scale reliability coefficient: 0.6958

We are given an alpha of 0.695 8, which is a little on the low side
for a nine-item scale. We can also see that Stata has listed a num-
ber of reversed items. This means that Stata has decided that these
five items are ‘negatively” scored compared to the other items in
the scale, and as such, has ‘reverse coded’ them to fit in with the
theme of the scale.

Let’s examine the items as they were asked to the survey
respondents,

opfama: A pre-school child is likely to suffer if his or her
mother works.

opfamb:  All in all, family life suffers when the woman has
a full-time job.

opfamc: A woman and her tamily would all be happier
if she goes out to work.

opfamd:  Both the husband and wife should both contribute
to the household income.

opfame:  Having a full-time job is the best way for a woman
to be an independent person.

opfamf: A husband’s job is to earn money; a wife’s job is to
look after the home and family.

opfamg:  Children need a father to be as closely involved in
their upbringing as the mother.

opfamb:  Employers should make special arrangements to
help mothers combine jobs and childcare.

opfami: A single parent can bring up children as well as
a couple.

The response categories for all items were: (1) strongly agree, (2)
agree, (3) neither agree nor disagree, (4) disagree and (5) strongly
disagree.

As the items are, if a person strongly agreed that pre-school
children suffered if a mother worked (opfama), he or she would

73




74  Manipulating variables

get a score of 1. However, such a person would be unlikely to
strongly agree with the statement that a woman and her family
would be happier if she worked (opfamc). In this case, the respond-
ent might strongly disagree with such a statement, giving a score
of 5. However, both these opinions reflect a tendency to be ‘con-
servative’ in opinions about gender roles in a family. Stata has
picked up that people who answered in certain ways on items like
opfama and opfamb (where high scores reflect more ‘liberal’ opin-
ions about gender roles) were likely to have ‘reversed’ scores on
items opfamc, opfamd, opfame, opfamhb, and opfami (where high
scores reflect a more ‘conservative’ orientation). As the items that
were ‘reverse scored’ were more conservative, this means that higher
scores on our new scale are associated with more liberal opinions.

But does Stata always get it right? It is the case that the five
items highlighted by Stata as being reverse coded are ‘opposite” in
direction to opfama, opfamb, and opfamf. But you could argue
that agreeing with opfamg may also indicate more liberal views.
Stata, however, hasn’t picked this up.

The problem isn’t something with Stata. The algorichm with
which Stata works to decide which items should be reverse coded
relies on the item’s correlations with the other scale items. If it is
negatively correlated, it becomes reverse coded.

Let’s create a correlation matrix of these items:

. corr opfam*
{cbs=9510}

|  opfama opfamb opfamc opfamd optame opfamf opfang opfamh opfami
,,,,,,,,, e e .
opfama |
opfamb | 0.6465 1.0000
opfame | -0.2798 ~0.3550 1.0000

|

|

|

I

opfamd -0.1230 -0.1620 0.3192 1.0000

opfanme -0.1059 ~0.1797 0.3327 0.3610 1.0000

opfamf 0.4375 0.5438 -0.2455 -0.1043 -0.0756 1.0000

opfamg 0.1456  0.1215 -0.0225 0.0883 0.0496 0.0959 1.0000

opfamh | ~0.1892 -0.1825 0.1746 0.1729 0.1606 -0.2193 0.1356 1.0000

opfami | -0.287%1 -0.2698 0.1406 0.1312 0.0860 -0.1895 —0.1476 0.2153 1.0000

You can see from this matrix that the reverse coded items .. .
(opfame, opfamd, opfame, opfamh, opfami) are negatively cor- .
related with opfama, opfamb and opfamf (and positively with the
other ‘reverse coded” items). On the other hand, opfamg does not
follow this general pattern, which is why it wasn’t reverse coded
by Stata.

There are a couple possible reasons for this. The most likely is
that it is not a good item for your scale — that it somehow does not




Creating a scale 75

“fit” as well as the other items. You can check this by using the
option item:

alpha opfama-opfami, item

alpha opfama-opfami,item

Test scale = mean{unstandardized items)

average
item-test item-rest inter-item

Item | Obs  Sign correlation correlation covariance alpha
opfama | 9628 + 0.6949 0.5465 .172436  0.6301
opfamb | 9662 + 0.7466 0.6127 .1618418 (0.6131
opfamc | 96490 - 0.5667 0.4340 .2053443  0.6604
opfamd | 9646 - 0.4510 0.2786 .2201311  0.6863
opfame | 9648 - 0.4481 0.2639 .2198141  0.6896
opfamf | 9652 0.6375 0.4588 .1808333  0.6498
opfamg | 9657 + 0.2283 0.0726 .2533817  0.7152
opfamh | 9645 0.4424 0.2746 .2222064  0.6866
opfami | 9648 - 0.5297 0.3319 .2040992 0.6788

Of particular interest is the last column labelled ‘alpha’. It would
be better labelled as ‘alpha if item removed’, because that is what
it is telling us. If we look down to opfamg, we can see that
the alpha of the scale would improve to 0.7152 if we took this
item out. Alpha can only tell us this information for items one at
a time — it won’t tell us the effect on alpha of removing two or
three items at once. .

So it seems that opfamg isn’t such a great measure for our
proposed scale. And if we look at it, we can see that the item is
somewhat different from the other items because it is asking
about general child upbringing, rather than issues pertaining
specifically to employment.

[t should be stressed that you should always check the items in
your scale and make sure that they make theoretical sense. The
mathematical techniques involved in scale construction do not do
this for you!

So what happens if we take out opfamg?

alpha opfama opfamb opfamc opfamd opfame opfamf opfamh ///
opfami, item

Test scale = mean(unstandardized items)




76 Manipulating variables

average N
ltem-test item-rest inter-item oy
Item | Obs Sign correlation correlation covariance alpha
________ +_-_w_,_n_-_____-_-_<__~____n_A____-_*_____-____-_*_m____
opfama f 9628 0.6880 0.5338 .2231625  0.6574 :
opfamb f 9662 + 0.7448 0.6076 .20819%2  0.6384
opfamc [ 9640 - 0.5771 0.4419 .2618421  0.6824
opfamd ’ 9646 - 0.4773 0.3036 L2777641 0.7062 i
opfame ] 9648 - 0.4684 0.2815 .2786443  0.7112 ¥
opfamf 1 9652 + 0.6393 0.4534 .2327838  0.6764
opfamh ! 9645 - 0.4754 0.3078 .2790421  0.7050 N
opfami } 9648 - 0.5191 0.3129 .2656042 0.7083 f
_______ +M-_-n-_“_Aw_wn____,*_-‘ﬂ__~______-,__w_Q_-____“___h“*__A
Test scale 2533817 0.7152

We can see that the alpha has improved and that no further
removal of individual items will increase our alpha.

As we haven’t created the scale variable yet, we could ask Stata
to create it for us after it computed the reliability using the gen
option.

alpha opfama opfamb opfamc opfamd opfame Iy
opfamf opfamh opfami, gen{famscalel)

The gen option tells Stata to create a new variable (we have
named it famscalel). Unless we tell Stata otherwise, it will go
ahead and reverse code items. If you are ever in a position where
you don’t want Stata to do this, typing the option asis will tell
Stata not to reverse code any items. You can also use the option

&
std to get Stata to create the new variable in standardized form (a £
mean of 0 and a standard deviation of 1).

It is very important to note how Stata handles missing data in 4 p

the alpha command. In other commands that we have talked
about so far in this book, cases are deleted from the analysis if
they are missing on at least one of the variables under considera-
tion. So when we tab sex age, if a case is missing on the age
variable, it will not be included in the tabulation. It is deleted
‘casewise’. Similarly, we could create the scale just by simply
adding up all the variables using the gen command (after reverse

-

coding manually). Now, the cases where there was missing data £
on one or more of the scale items would not be included. The =
default in the gen option, however, is to create a score for every
observation where there is a response to at least one scale item. In L

other words, a scale value could be created for someone who

Fl el




Creating a scale 77

answered only one of the eight opfam variables. The score is
calculated by dividing the summative score over the total number
of items available for the specific case.

If you find this objectionable (we do!), you may want to
employ the option casewise so that cases with any missing values
on the scale items are deleted. Let’s see how this changes our results.

alpha opfama opfamb opfamc cpfamd opfame ///
opfamf opfamh opfami, gen(famscale2) casewise

alpha opfama opfamb opfamc opfamd opfame ///
opfamf opfamh opfami,gen(famscale2) casewise

Test scale = mean (unstandardized items)
Reversed items: opfamc opfamd optfame opfamh

opfami
Average interitem covariance: .25400916
Number of items in the scale: 3
Scale reliability coefficient : 0.7166

The results suggest a slightly better alpha. But we also know that
cases are only included if respondents answered all the items in
our scale.

If you don’t want to be so stringent, you can set an alternative
minimum number of items that must be non-missing in order for
the scale to be constructed. Let’s say we decided that a person
must have answered at least five of the eight items in order to be
included in the scale, we would use the option min.

alpha opfama opfamb opfamc opfamd opfame 777
opfamf opfamh opfami, gen(famscale3) min(5)

When we create a scale, we are just really adding up items
and, as such, we would rightly expect that if we are adding up
8 items, all of which have values of 1 to 5, our scale will have
a minimum of 8§ and a maximum of 40. People who score 8 would
be very conservative, while those around the 40 mark would
be rather liberal.

recode opfamc opfamd opfame opfamh opfami ///
(1=5) (2=4) (3=3) (4=2) (5=1)




78  Manipulating variables

gen famscaled= opfama+ opfamb+ opfamc+ ///
opfamd+ opfame+ opfamf+ opfamh+ opfami

However, if we summarize our new variables (famscalel,
famscale2 and famscale3) and compare them with famiscaled created
by manually reverse coding and using gen to add the items (note
the use of the wildcard * that saves typing all the variables). We get:

su famscale* =

Variable | Obs Mean Std. Dev Min Max
___________ e .
famscalel ] 9718 -~.5544141 .6009038 -4 2 y
famscale? [ 9515 ~.5526143 -5954785 -2.75 1.25
famscalel j 9657 ~.5529802 .5968845 -2.75 2
famscaled ] 9515 25.57909 4.763828 8 40 k

What is happening?

In order to understand these values, you need to understand how
Stata constructs the scale with the alpha command. When an item %;
is ‘reverse scored’ it isn’t recoded so that 1 becomes 5, 2 becomes
4, etc. What happens is that a negative sign is placed in front of all )
the original values so that the original values are changed to: B
Variable E
opfama E
opfamb
I — E
opfamc
optamd
- 5-4-3-2 1 E
— -
+ 12345 ,,
— -

opfamb

opfami




Creating a scale 79

This logic produces an overall total, for those who answered all
eight items, with a minimum of =22 and a maximum of 10. If we
divide these scores by 8 (the total number of items), we get —2.75
and 1.25 which match the minimum and maximum values in the
data shown for famscale2 which used the casewise option so
that only cases with data on all eight items were included.

The theoretical minimum and maximum values for famscalel,
created using the default settings for the gen option, are —5 and §
as it is possible for respondents to answer just one item and be
included in the scale. You can see from the Obs column that there
are about 200 more cases in the famscalel variable than in the
famscale2 variable,

Determining the theoretical minimum and maximum values of
the scale is a little more complex for famscale3, which used the
option min (5) to tell Stata to use only cases that have answers
to five or more items. If we take the five lowest possible scores
which are the five reverse coded items then we get —25/5 = -5 as a
minimum. The five highest possible scores are the three unaltered
items and two reverse coded items: 5+5+5-1-1 so 13/5 = 2.6
is the maximum. You can see that the actual minimum and
maximum values in the data fall short of these extremes.

However, if we correlate all four scales we see that they are
mathematically equivalent for the cases that were included on
cach pair of scales. The decision rests with you, as the analyst, as
to how many answers you need for someone to obtain an overall
scale score.

pwcorr famscale*, obs

| famsca~1 famsca~2 famsca~3 famsca-~4

e
famscalel | 1.0000
| 9718
famscale? | 1.0000 1.0000
{ 9515 9515
famscale3 | 1.0000 1.0000 1.0000
| 9657 9515 9657
famscaled [ 1.0000 1.0000 1.0000 1.0000
! 9515 9515 9515 9515

For an account of using a scale in an applied research project,
see Box 3.5.




80  Manipulating variables

;

oy

1

;w 5 Fy 5@\3

Iz




Demonstration exercise 81

DEMONSTRATION EXERCISE

In this demonstration exercise we use some of the techniques
covered in this and each of the subsequent chapters to conduct a
series of data analyses exploring the question of social variations
in mental health among working age adults. Our measure of men-
tal health is the 12-item General Health Questionnaire, which is a
scale that can be constructed in a number of ways. In this demon-
stration we start by using the GHQ in the form of a scale that
ranges from O to 36, with higher scores indicating poorer mental
health. The factors we are interested in using are sex, age, marital
status, employment status, number of own children in the house-
hold and region of the country.




82  Manipulating variables

We start by opening the example data file (exampledata.dta)
from our default directory. Before opening the data file we
increase the memory available to Stata to 50 Mb using the set
mem command:

version 10

set mem 50m

cd “C:\project folder”
use exampledata.dta

Next we use the keep command to retain only the individual
level variables we need for this analysis and then recode all the
negative values to missing. We keep the individual identifier (pid)
and the household identifier (4id) so that we can match on house-
hold level information in the next chapter. E

keep pid hid ghg* sex age mastat jbstat nchild
mvdecode all,mv(-9/~1) i

Stata returns the output below. You can see that after the mvde-
code command, Stata tells you how many missing values were
assigned for each variable. For example, the variable jbstat had
352 missing values while the variable ghg/ had 580 missing
values. From this you can deduce that the variables pid, hid, sex,
age, mastat and nchild do not have any missing values.

g
mvdecode _all,mv{-9/-1)

jbstat: 352 missing values generated e
ghga: 536 missing values generated E

ghgb: 536 missing values generated
ghgc: 545 missing values generated ;g
ghgd: 534 missing values generated =
ghge: 535 missing values generated _
ghgtf: 546 missing values generated ?5“
ghgg: 534 missing values generated N
ghgh: 532 missing values generated oo
ghgi: 534 missing values generated E

ghgj: 577 missing values generated
ghgk: 587 missing values generated g
ghgl: 580 missing values generated o
We now create the GHQ scale from the 12 items in the data ]

set. The items are coded from 1 to 4 but we want to make a scale
that goes from 0 to 36, so we need to recode all the 12 GHQ items




Demonsiration exercise 83

to go from 0 to 3. Note the use of the wildcard (*) to save listing
every item. Another way to do this would be to use the dash as the
items are in order in the data set (Le. recode ghga-ghgl) We
then check the internal consistency of the scale using the alpha
command. In this example we use the item option to give us
some more information.

recode ghg* (4=3) (3=2) (2=1) (1=0)
alpha ghag*,item

The output shows the changes made to each of the GHQ items
then the details of the scale internal reliability check. The overall
alpha value (0.8631) is reported at the bottom right of the table;
all the signs are positive and all items have similar item-rest corre-
lations, The right-hand column shows that the overall alpha value
would not be increased by dropping any item. We should be rea-
sonably happy with the internal reliability of this scale.

recode ghg* (4=3) (3=2) (2=1) (1=0)
(ghga: 9728 changes made)
(ghgb: 9728 changes made)
(ghgc: 9719 changes made)
(ghgd: 9730 changes made)
(ghge: 9729 changes made)
(ghgtf: 9718 changes made)
{ghgg: 9730 changes made)
(ghgh: 9732 changes made)
(ghgi: 9730 changes made)
(ghgi: 9687 changes made)
(ghgk: 9677 changes made)
(ghgl: 9684 changes made)
alpha ghg*,item
Test scale = mean (unstandardized items)
average
item-test item-rest inter-item
Item | Obs Sign correlation correlation covariance alpha
_________ e e e e
9728 + 0.5891 0.511¢9 1517366 0.8548
9728 + 0.6413 0.5325 .1408634 0.8541
9719 : 0.5092 0.4116 .1539663 0.8603
9730 + 0.4798 0.3983 .1580361 0.8607
9729 + 0.6981 0.5990 .1361276 0.8489
9718 + 0.6835 0.5943 .1403709 0.8489
| 9730 + 0.6220 0.5429 1487009 0.8527
9732 + 0.5680 0.4970 .154532 0.8561
9730 + 0.7721 0.6895 .1299578 (.8415
9687 + 0.7324 0.6497 .135947 0.8447
9677 + 0.6483 0.5638 .1450927 0.8511
| 9684 + 0.6220 0.5479 .1499576 0.8528




84

Manipulating variables

The command creates the scale using the gen command. As
we have shown in this chapter, you could use the alpha com-
mand with a gen option but we prefer to construct the scale
manually in this example.

gen ghgscale=ghga+ghgb+ghgec+ghgd+ghge+ghgf ///
+ghgg+ghgh+ghgi+ghagi+ghgk+ghgl

lab wvar ghgscale “ghg 0-36~7

su ghgscale

In this part of the output, Stata lets us know that in creating the
scale 651 missing values have been generated in the new variable
(ghgscale). This is because the gen command only creates a new
variable for those cases that have non-missing values on all 12
items. The next line labels the new variable and then we use
the su command to display the descriptive statistics of the new
variable, which shows that we have 9613 cases with a new
scale score. There is further discussion of descriptive statistics
commands in Chapter 5.

gen ghgscale = ghga+ghgb+ghgc+ghgd+ghge ///
> +ghgf+ghgg+ghgh+ghgi+ghgj+ghgk+ghgl
{651 missing valueg generated)

lab var ghgscale “ghg 0-36~"
su ghgscale

Variable | Obs Mean Std. Dev. Min Max
ghgscale | 9613 10.77125 4.914182 0 36

We now construct another variable based on the GHQ items.
This one uses a coding of 0~0-1-1 for each of the items and then
adds up the items to a maximum of 12. Then a threshold of 4 or
more is used to make a dichotomous indicator. First we recode all
the 12 GHQ items and then sum them to create a new variable
called d_ghg.

recode gha* (0/1=0) (2/3=1)

gen d_ghg=ghga+ghab+ghge+ghgd+ghge+ghaf ///
+ghgg+ghgh+ghgi+ghgj+ghagk+ghgl

ta 4d_ghg




The tabulation shows us that the recode and summing have been
done correctly. Now we recode the J _ghq variable into a dichotom-

ous indicator where 1 equals those with 2 GHQ score of 4 or
more:

recode d_ghg 0/3=0 4/12=1
ta d_ghg

Freqg. Percent Cum.
7,829 81.44 81.44
1,784 18.56 100.00
9,613 100.00

The tabulation of the dichotomous GHQ indicator shows that
18.56% of the current cases in the data set are over the threshold.

As we are interested in variations of mental health for those
aged 18 to 65, we use the keep command to retain only those
cases within that age range. Compare this use of the keep
command - keeping cases — with the other use earlier in this

Demonstration exercise

85



86

Manipulating variables

example when it was used to keep variables. Similarly, the drop
command can be used to drop variables or cases depending on
how the command is formatted. We then produce descriptive
statistics of the age variable to see how many cases we have left
in our data.

keep if age>=18 & age<=65
su age

The output shows how many cases (observations) are deleted
from the data set after implementing the keep command. From
the descriptive statistics for the variable age, we see that now we
only have 8163 cases in our data. Remember that there are no
missing cases in the age variable.

keep if age»>=18 & age<=65
(2101 observations deleted)

sSu age

Variable | Obs Mean Std. Dev. Min Max

e P

age | 8163 39.32733 13.08993 ig 65

Next we recode the age variable into three categories and use
the gen option in the recode command to create a new variable
called agecat. We then label the new variable and its categories.
We then use the tab command to produce a frequency table of the

new variable to check if our recode and labelling have come out
correctly.

recode age (18/32=1) (33/50=2) ///
(51/65=3),gen(agecat)

lab var agecat “age categories”

lab def agelab 1 “18-32 years” ///
2 ™33-50 vears” 3 ®*51-65 vears”

lab val agecat agelab

tab agecat

After the recode command, Stata tells us that there are 8163 (all
cases) differences between the original variable age and the newly
created variable agecat. As we numbered the categories of agecat
1,2, and 3 and there is no one in the data under 18 years of age, it

e

3

e E

e

e

¢

wme



Demonstration exercise

is not surprising that for all cases the values of age and agecar are
different. The frequency table produced from the tab command
shows the number and percentage of the cases in each of the three
age categories.

recode age (18/32=1) (33/50=2) ///
(51/65=3) ,gen(agecat)
(8163 differences between age and agecat)

lab var agecat “age categories”

lab def agelab 1 “18-32 vears” ///
2 "33-50 years” 3 “51-65 vyears”

lab val agecat agelab

tab agecat

age |
categories | Freq. Percent Cum.
_____________ e
18-32 years | 2,956 36.21 36.21
33-50 vears j 3,336 40.87 77.08
51-65 vears } 1,871 22.92 100.00
Total I 8,163 100.00

Our next step is to recode the sex variable into a dummy vari-
able that indicates female cases. We use the recode command
with the gen option again. We label the new variable and its cat-
egories, then produce a frequency table to check our recode.

tab sex

tab sex,nol

recode sex (1=0) (2=1),gen(female)
lab var female “female indicator”
lab def sexlab 0 “male” 1 “female”
lab val female sexlab

tab female

We see the frequency table of the sex variable but we need to
see what numbers lie underneath the category labels of male and
female. We use the tab command with the nol option.

87



88  Manipulating variables

ta sex
sex | Freg Percent Cum
__________ e
male | 3,914 47.95 47.95
female | 4,249 52.05  100.00
__________ e
Total | 8,163 100.00
ta sex,nol
sex | Freg Percent Cum
__________ e
1| 3,914 47.95 47 .95
2| 4,249 52.05 100.00
__________ e
Total | 8,163 100.00

recode sex (1=0) (2:1),gen(female)
(8163 differenceg between sex and female)

lab var f
lab def s
lab val £
ta female

female |
indicator |

To reduce the number of
the marital status variable (

marst2 and h

married/cohabiting, 3 = sepa

need to see wha

command with

emale “female indicator”
exlab 0 "male” 1 “female”

emale sexlab

Freq Percent Cum
3,914 47.95 47.95
4,249 52.05 100.00
8,163 100.00

variable and label the new variable and its categories.

marital status categories, we recode
mastat) into a new variable call
ave four categories, where 1 = single, 2
rated/divorced and 4 = widowed. We
ttheca&gomesandthenunﬂxxﬁg;m%intheoﬂg—
inal marital status variable (mastat). We do this by using the tab
the nol option. We then recode, create the new

%
B

-
i




Demonstration exercise 89

tab mastat

tab mastat,nol

recode mastat (6=1) (1/2=2) (4/5=3) ///
{3=4),gen(marst2)

lab var marst2 “marital status 4 categories”

lab def marlab 1 “single” 2 ™“married” ///
3 “gep/div” 4 “widowed”

lab val marst2 marlab

tab marst2

The output for these commands is similar to that above. The exact
process and commands you use to recode variables may vary from
this, but we strongly advise you to have a system that allows you
to check your recoding as you go along,

tab mastat

marital status | Freq. Percent Cum.

_________________ e

married | 5,132 62.87 62 .87

living as couple | 654 8.01 70.88

widowed | 189 2.32 73.20

ivorced | 397 4.86 78.06

separated | 172 2.11 80.17

never married | 1,619 19.83 100.00

__________________ e
Total | 8,163 100.00

marital |

status | Freq. Percent Cum.
__________________ o
1| 5,132 62.87 62 .87

2 | 654 8.01 70.88

3 189 2.32 73.20

4 | 397 1.86  78.06

5 172 2.11 80.17

6 | 1,619 19.83 100.00
_________________ o




90  Manipulating variables

recode magtar (6=1) (1/2=2) (4/5=3) ///
(3:4),gen(marst2)
(7509 differences between mastat and marst2)

lab var marst? ‘marital status 4 Categorieg”

lab def marlab 1 “single” 2 “marriedr /77
3 “sep/div” 4 *widowed”

lab val marst? marlab

tab marst?2

marital |
status 4 |
categories | Freg Percent Cum N
___________ T |
single | 1,619 19.83 19.83
married | 5,786 70.88 90.71
sep/div | 569 6.97 97.68
widowed | 189 2.32 100.00
___________ e ;
Total | 8,163 100.00

We now create the employment status variable:

ta jbstat

ta jbstat,nol

recode jbstat (1/72=1) (3=2) (7=3) (6=4) /¢
(9=4) (5=5) (8=5) (4=6) (10=.), gen (empstat)

lab var empstat “employment status”

lab def emplab 1 Temploved” 2 “unemployed” //; 5
3 “longterm sick” 4 “studying” /// -
5 “family care” § “retired”

lab val empstat emplab E

ta empstat

Y

ta jbstat

current labour force f

status | Freq. Percent  Cum,

self employed | 731 9.26  9.26
in paid employ | 4,844  61.39 70 gc

e

e




Demonstration exercise

unemployed | 505 6.40 77.05
retired | 403 5.11 82.16
family care | 900  11.41 93.56
ft student | 202 2.56 96.12
long term sick/disabled | 244 3.09 89.21
on matern leave | 13 0.16 99.38
govt trng scheme | 22 0.28 99.656
something else | 27 0.34 100.00
_________________________ b
Total | 7,891 100.00
ta jbstat,nol
current |
labour |
force |
status | Freq Percent Cum
__________ b
1 731 9.26 9.26
2 | 4,844 61.39  70.65
3| 505 6.40 77 .05
4 | 403 5.11 82.16
5 | 900 11.41 93.56
6 | 202 2.56 96.12
7 244 3.09 99.21
8 | 13 0.16 99.38
9 | 22 0.28 99.66
10 | 27 0.34 100.00
___________ b
Total | 7,891  100.00
recode jbstat (1/2=1) (3=2) (7=3) (6=4) ///

> (9=4) (5=5) (8=5) (4=6) (10=.) ,gen (empstat)
(6260 differences between jbstat and empstat)

lab var empstat “employment status”

lab def emplab 1 “employed” 2 “unemployed” ///

> 3 “longterm sick” 4 “studying”
> 5 “family care” 6 “retired”

lab val empstat emplab

/177

21




92  Manipulating variables

ta empstat

employment |
status | Freq. Percent Cumn. E
______________ e e
employed | 5,575 70.89 70.89
unemployed | 505 6.42 77.31
longterm sick | 244 3.10 80.42
studying | 224 2.85 83.27 P
family care | 913 11.61 94.88 =
retired | 403 5.12 100.00
______________ L
Total { 7,864 100.00

Next we collapse the variable for number of children into
fewer categories:

su nchild
recode nchild (0=1) (1/2=2) (3/9=3), ///

gen (numchd )
lab var numchd “children 3 categories”

lab def chdlab 1 “none” 2 “one or two” /77 e
3 “three or more” B
lab val numchd chdlab

su nchild

Variable | Obs Mean Std. Dev. Min Max .

nchild | 8163 .6659316 1.019895 0 9

recode nchild (0=1) (1/2=2) (3/9=3), ///
gen (numchd)
(6508 differences between nchild and numchd)

lab var numchd “children 3 categories”

lab def chdlab 1 “none” 2 “one or two” /7
3 “three or more”

lab val numchd chdlab

ta numchd




Demonstration exercise 93

children 3 |
categories | Freq. Percent Cum.
______________ e
none | 5,182 63.48 63.48
one or two | 2,443 29.93 93.41
three or more | 538 6.59 100.00
______________ el

Total | 8,163 100.00

When we have completed our recoding we produce descriptive
statistics for all the variables that we will use in our future analyses.

su ghgscale d_ghg female age agecat marst?2 /77
empstat numchd

We can use the output of descriptive statistics to see if our vari-
ables have the right number of categories and cases (observations).
The output below shows that some of the variables have fewer
valid observations than the 8163 in our total sample. This is due
to the GHQ items, employment status and marital status variables
having a number of people who did not respond to the questions
and so have been coded as missing values.

su ghgscale d_ghg female age agecat marst? /77
empstat numchd

Variable | Obs Mean Std. Dev. Min Max
_________ e ___
ghgscale | 7714 10.76407 4.987117 0 36
d ghg | 7714 .1870625 .389987 0 1
female | 8163 .5205194 .4996094 0 1
age | 8163 39.32733 13.08993 18 65
agecat | 8163 1.867083 1574497 1 3
__________ e
marst2 | 8163 1.917677 .5949101 1 4
empstat | 7864 1.93235 1.64757 1 6
numchd | 8163 1.431092 .6140945 1 3

Finally, we use the keep command again to retain only the
variables we wish to use in further analyses. The oxrder command
lets us order the variables in the data set if this is something you
prefer. The compress command stores the data set in the smallest




94  Manipulating variables

amount of space, and then the save command saves our new data
set to our default directory for future use.

keep pid hid ghgscale d_ghg female age ///
agecat marst2 empstat numchd

order pid hid ghgscale d_ghg female age /// —
agecat marst2 empstat numchd -

compress

save demodatal.dta,replace

keep pid hid ghgscale d_ghg female age /// .
agecat marst2 empstat numchd Pl

order pid hid ghgscale d_ghg female age ///
agecat marst?2 empstat numchd

compress
ghgscale was float now byvte

save demodatal.dta,replace
(note: file demodatal.dta not found)
file demodatal.dta saved

LRI SY

P




