Manipulating
data

SORTING DATA

Often you need to sort data; that is, to organize the cases or rows
according to the categories of one or more variables. There are a
number of reasons for wanting to do this, the main ones being:
(1) preparing data to be merged with other data sets (more on that
later); and (2) if you want to produce statistics separately for differ-
ent groups — men and women or different countries, for example.

To sort your data, type sort followed by the variable or vari-
ables you want to sort by. If you want to sort by sex:

sort sex

The command will sort the data by the categories of the variable
sex from the lowest to the highest. Now if you want to know the
descriptive statistics of some variables by sex, you can examine
them by using the prefix command by. A colon (:) must follow the
variable or variables by which you sorted (and by which you want
to have your output organized). For example, if you wanted the
mean age for men and women you would use the command:

by sex: su age

If you have not sorted your data and try to use the by command
then Stata will return the error message (in red): not sorted.

There is more detail on the command su to produce descriptive
data and alternative commands in Chapter 5.

In the latest versions of Stata, the by and sort prefix
commands can be combined into one prefix command, bysort,
which can be used when organizing results by groups. For the
same example of the mean ages of men and women you could use

95

96 Manipulating data

bysort sex:su age

As with the by command, it is necessary to place a colon (:) after
the variable(s) to sort on.

bysort sex:su age

age | 4833 43.37099 17.98608 16 94

~> gsex = female

Variable | Obs Mean Std. Dev. Min Max

age | 5431 45.5511 18.82718 16 97

The bysort command can also be used with as many vari-
ables as you need to create the subgroups you are interested in.
The bysort variable(s) should generally refer to a categorical
variable or variables. For example, if you were interested in
extending the previous example and wanted to know the mean
ages of men and women but further broken down by their marital
status you would use 8

bysort sex mastat: su age

The order of the two variables after bysort determines how the
output is presented. The above command produces the (partial)
results shown below with the mean ages of men by their marital
status; this would be followed by the mean ages of women by their
marital status. This is because in the variable sex, men are coded 1
and women coded 2.

bysort sex mastat:su age L

7
o

age | 2947 48.60333 15.08131 18 94

-> sex = male, mastat = living a
Variable | Obs Mean Std. Dev. Min Max
———————————— +————.——-————;—————--——‘———————*_—-—-___.—__._,..»—_
age f 334 33.45808 12.36032 17 91
-> gsex = male, mastat = widowed
Variable | Obs Mean Std. Dev. Min Max
_____________ +———».—-_—--—.-—___—-.‘--.-——-_—..w»___.—_—_y_..,..“_.______.
age f 169 73.70414 10.53543 35 91
~-> sex = male, mastat = divorced
Variable | Obs Mean Std. Dev Min Max
_____________ +—___.—~_—-_—_--.-.___—-y—.—-__—-—.__._.—.__..___—_._._.___..
age f 150 47.88667 12.97056 23 82
etc

If you wanted to organize your results so that you could more
easily compare the mean ages of men and women within each
category of marital status, then you may find it better to use

bysort mastat sex: su age

This produces the (partial) results shown below where you can see
that the mean ages for both men and women are shown for those
who are married, cohabiting, etc.

bysort mastat sex :su age

~> mastat = married, sex = male
Variable | Obs Mean Std. Dev. Min Max

age | 2947 48.60333 15.08131 18 94

-» mastat = married, sex = female
Variable | Obs Mean Std. Dev. Min Max

age | 3062 45.84651 14.6874¢6 18 89

Sorting data

97

98 Manipulating data

Figure 4.1
Merging and
appending data

The command after bysort mastat sex: could be a range of
operations that we haven’t covered yet. It is possible to have separ-
ate estimations for groups you have specified using many statistical
functions, such as correlations, regressions, and #-tests, just to name
a few., But it is worth noting that using the bysort command
does mean some restrictions on other commands you can use,

MERGING AND APPENDING DATA

There may be times when you will want to join two or more data
files with one another. There are two main ways — merging and
appending. Figure 4.1 illustrates the basic difference between
them. Merging adds one file horizontally to the right of another
file in the spreadsheet, and appending adds one file vertically to
the bottom of another file. The data file that is already open in
Stata is referred to as the master data and the data file to be added
is referred to as the using data. In both the merge and append
commands you will specify the data to be added by using
data.dta part of the command.

For example, you might need to merge your data files if you
have follow-up data on the same set of respondents, and this
would add more variables to the rows containing the master data.
If your study was collecting data from two or more locations
where the data are entered then you might need to append all the
data files together into one large data file.

Merging data
The mexrge command is best illustrated with an example. Here,
we have a small data file from 2004 (called 2004data.dta) that
contains information on five people’s age (age04), income in units
of 10,000 (inc04) and marital status (mstat04); each person has
an identifying number (id).

MERGING APPENDING

1[Data 1 "—“-h! Data 2 j Data 1

Data 2

|

Merging and appending data

id age04 inc04 mstat04

1 25 55 married

2 24 66 single

3 23 45 divorced

4 24 27 married

5 32 100 cohabiting

id age0s inc0S mstat05
1 26 57 married

2 25 78 single

3 24 32 divorced
4 25 59 divorced
5 33 200 married

You have data on age, income and marital statas from the same
five people in 2005 (called 2005data.dta) and want to merge these
data with the 2004 data.

You would end up with a file that was organized like this:

hid age04 | inc04 | mstar04 age0S | inc0S | mstat05
1 25 55 married 26 57 married
2 24 66 single 25 78 single

M 3 23 45 divorced 24 32 divorced
4 24 27 | married 25 59 divorced
5 32 100 | cohabiting | 33 200 | married

99

100

Manipulating data

The data from the year 2005 is added to the right of the 2004 data
for all cases. Another thing to note when you merge files is the
naming of the variables. If the variables in both the 2004 and
2005 data had simply been called age, inc and mstat, then when
you attempted to merge them Stata would not return an error
message but use the values for the variable from the master data!
So you must ensure that your variables have unique names before
you merge data files.
To do this step-by-step proceed as follows:

.

Make sure both data files are sorted on the variable you

wish to merge by - in this example, the id variable is used as

it is common to both data files. If you regularly merge data

then we recommend that you get into the habit of sorting on

the merge variable before you save your data. This way you

know the data is sorted and then can omit the first stage of

the do file example below.

2. Open the data file that is to be the master data — in this case
the 2004 data.

3. Merge the 2005 data on to the 2004 data.

4. Save the new data file under a new name.

The do file to do this would look like this:

cd datafolder /* set default folder */
use 2005data,clear /* open 2005 data */
sort id /* sort by id ready
to merge */
save 2005data,replace /* save sorted 2005
data */
use 2004data,clear /* open 2004 data */
sort id /* sort by id ready

. to merge */
merge id using 2005data /* merge on 2005 data

by id */

sort id /* ensure soxrted by
id */

save newdata, replace /* save as new file */

Alternatively, you can use the soxrt option in the merge com-
mand which means the do file would be:

Y

e
o

ey

B

Merging and appending data 101

cd datafolder

use 2004data,clear

merge id using 2005data, sort
save newdata,replace

Rarely is real-world data as straightforward as the above
example, and it is more than likely that any follow-up data will
have respondents who have dropped out of the study. To add a
further twist, it is also possible that new people have entered the
study. This is the case in many of the household-based surveys
when a child reaches a certain age to be included in the study.
Stata produces a variable called _merge that will help you deter-
mine how many cases have dropped out, entered or remained in
the data.

To extend the previous example, suppose you now have two
sets of data — one from 2001 and one from 2002 — with the same
variables as before, but not all of the people are in both years. The
2001 data are:

id age01 incO1 mstat01

1 35 45 married

2 24 66 single

3 28 25 divorced

4 24 27 married

5 32 100 cohabiting

6 42 35 married

7 26 14 single

8 38 23 married

9 40 8S cohabiting
10 44 27 divorced

The 2002 darta are:

102 Manipulating data

id age02 inc02 mstat02 e
1 36 57 married -
3 29 32 divorced
4 25 59 divorced E
S 33 200 married _
7 27 14 single °
8 39 23 married %
9 41 85 cohabiting

11 18 10 single ¥

12 21 15 single =

If you merged these two files you would end up with a file that
was organized like this: 1

id age01 | incO1 | mstat01 age02 | inc02 | mstat02 -
1 35 45 married 36 57 married -
2 24 66 | single “ . . ~ g
3 28 25 divorced 29 32 divorced
4 124 27 | married 25 25 divorced -
S 132|100 | cohabiting | 33 120 | married It
6 42 35 married B
7 26 14 single 27 14 single =

8 38 23 | married 39 24 | married e

9 40 85 cohabiting | 41 80 cohabiting
10 | 44 27 | divorced . . . E
11 . . . 18 10 single -
12 . . . 21 15 single -

Merging and appending data 103

Figure 4.2
_merge values
The _merge
T] T T T e e e variable
Data 1 1
i te L e
master Data 2
‘using’ 3
2

In this case, you can make use of the new variable _merge which
will have been created and placed at the end of your data file after
merging the two data files — the bottom of your list of variables.
The variable _merge is very important. It gives you information
on the success of your merge. There are three codes associated
with _merge (see Figure 4.2):

_merge = 1, observations/cases from your master data;

_merge = 2, observations/cases from your using data;

_merge =3, observations/cases from both your master and using
data.

You should be very careful with merges that do not equal 3. Those
coded 1 in this case refer to cases lost from 2001 to 2002, while
those coded 2 refer to cases that appear only in 2002 and not in
2001. Merges that equal 3 mean that the observation/case was
present in both years.

The do file for this merge would look like this:

cd datafolder /* set default folder */

use 200ldata,clear /* open 2001 data */
merge id using 2002data, sort /* merge on 2002
data by id */

ta _merge /* inspect _merge
variable */
drop _merge /* drop _merge not

needed? */

sort id /* ensure sorted by id */
save newdata, replace /* save as new file */

104 Manipulating data

If you run the above do file, part of your results should look like
this:

ta _merge

_merge | Freq. percent Cum.
____________ P e £
1] 3 25.00 25.00 ‘
2 | 2 16.67 41.67 X
3 ’ 7 58.33 100.00 -
_____________ e
Total] 12 100.00

Seven cases were in both the master and using data (_merge = 3),
3 cases were in the master data only (_merge = 1), and 2 cases
were in the using data only (_merge = 2). We recommend that you
tabulate the _merge variable to check your merges, especially
when you first attempt this type of data manipulation. The mezrge
command has a number of options that allow you to keep only the
cases for some of the _merge values, but to start with you should
view the tabulated results and then decide if you wish to delete
any of the cases. Remember to drop the _merge variable if it is no
longer needed or rename it if you need to keep it but have other =
merges to perform, because if you don’t Stata will return an error
saying that the _merge variable already exists.

In these simple examples we have only used one variable (id) 1
to uniquely identify cases in both data sets, but the merge
command can specify more than one variable if a combination
of variables is what uniquely identifies each case (which is often °
the case in large-scale data sets). For example:

merge id 1 id_2 id 3 using otherdata, sort

Using the sort option in this way implies that the matching vari-
ables (id_1, id 2 and id_3) uniquely identify the same cases in
both data sets. There are other options to the merge command

when this situation doesn’t apply, but these are quite advanced
techniques.

Merging data files of different levels
(hierarchical data structures)

Merging files of different levels is quite common when, for ex-
ample, you have data from individuals (in an individual level data

Merging and appending data 105

file) and data from the households in which the individuals live (in
a household level file). Another example would be an individual
level data file on people’s experiences of and attitudes to crime and
data at neighbourhood level on crime rates and police efficiency.
Again, this process is best illustrated with an example. In this one
you have an individual level data file (each row is data from a per-
son) and a household level data file (each row refers to data about
the household).

In the individual level file (individual.dta), there is a person
identifier (id) which uniquely identifies each individual and a
household identifier (hid) which uniquely identifies each house-
hold; as you can see, most households have more than one person.
In these data, three people live in household 1, two people in
household 2, one person in household 3, one person in household
4, and three people in household 5.

id hid age inc mstat
1 1 25 55 married
2 1 24 66 single
3 1 23 45 divorced
4 2 24 27 married
5 2 32 100 married
6 3 54 78 single
7 4 33 0 single
8 S 21 74 single
9 5 33 0 single
10 5 21 77 single

The household level file (household.dta) has information on
household size and region of the country. The variable that is
common to the individual level file and the household level file is
bhid. In order to match data from the household level file onto the

108

Manipulating data

individual level

identifier is present in each file type.

—

I

hid hhsize region

1 3 south T

2 2 north |
‘ 3 1 east j
| 4 1 west
LS 3 north /

When you merge these files by their common identifier (hid)

will end up with a file that has the househol

merged on to each individual:

file, you would need to make sure that 2 common

you

d characteristics

T hid | age inc mstat hbsize | region
1 1 25 55 married | 3 south
2 1 24 66 Msingle 3 south |
3 1 23 45 divorced | 3 south <,
i 4 2 24 27 married | 2 north #
5 2 32 100 married | 2 north
6 - 3 54 78 single 1 east |
7 4 33 0 single 1 west
8 5 21 74 single 3 north
9 5 33 0 single 3 north
10 | 5 21 77 single 3 north

The do file for this merge woul

d look similar to the one for

merging the individual data files, but this time sorting on /id as it
is the common variable to merge on.

ey

sy

vy

o ot

iy

Merging and appending data 107

To have Stata merge on multiple rows of the master data, the
commands merge or joinby can be used. Both commands tell
Stata to match on all possible pairs between the master and using
data on the common variable(s) (in this case hid) and give pretty
much the same results. The joinby command, however, does not
automatically generate the _merge variable as with the merge
command. This is because Stata only matches the possible rows of
dara. If you specify the option unmatched (both) (shortened to
unm(b) below) to the joinby command then a _merge variable
is generated with the same features as with the merge command.
There are a number of other options to the joinby command for
more complex matching situations.

cd datafolder /*set default foldexr*/

use household,clear /*open household
data*/

sort hid /*sort by hid*/

save household, replace /*save sorted data*/

use individual,clear /*open individual
data*/

sort hid /*sort by hid for
merge*/

joinby hid using household,unm(b} /*join hhold
data by hid*/

ta _merge /*inspect _merge*/
drop _merge /*drop _merge*/

sort hid id /*sort by hid and id*/
save newdata,replace /*save as new file*/

In this example, all cases will have a value of 3 on the _merge vari-
able, but often that is not the case in real-world data. Some
respondents may have provided individual data but not house-
hold data. In this case, they would be _merge = 1 as they are in
the master data (the individual level file) but not in the using file
(the household level file). Conversely, if there is household data
but no matching individual level data then these households
would be _merge = 2 as they are in the using data but not in the
master data.

For merging housing and individual data using the merge
command, see the demonstration exercise later in this chapter.

—_-——

108 Manipulating data

Appending data

The append command is also best illustrated with an example,
In this example you have collected a small set of data from town A
(called townAdata.dta) and another researcher has collected
similar data from town B (called townBdata.dta). Both sets of
data contain information on five people’s year of birth (yob),
employment status (empstat) and income in units of 10,000 (inc),

and each person has an identifying number (id). Here are the

T

town A data: g

751’ yob empstat inc -
101 1968 employed 45)
102 1973 not working 66 ¥
103 1974 employed 45 ;
104 1980 student 14 ~
105 1963 employed 80 ¥

Here are the town B data: ;
id yob empstat mc E
201 1977 employed 57 e
202 1960 employed 78 -
203 1982 not working 32 %
204 1975 not working 59 »
208 1968 employed 91 | M

There are three issues to deal with before you can append
these data. e

1. You need to make sure that the person identifier variable (id)
has different values in both sets of data. It would have been
easy for both data collectors to use the numbers 1 to 5. In

Merging and appending data 109

this example, the people in town A have identifiers 101 to
105 and those in town B have 201 to 205.

2. You need to make sure that the variable names are identical
in both sets of data, otherwise Stata will treat them as
different variables and put the data in different columns
(see Box 4.1).

3. You should consider adding a new variable to each set
of data that indicates what town the people come from.

In each set of data this technically will not be a variable as
the values are constant for all people in the data, but after

the data files are appended it will vary depending on which
town the people are from.

110

Manipulating data

After you create a new variable for the town {

with a file like this:

where 1 =
town A and 2 = town B) and append the sets of data you end up

[;; ‘T;ob empstat Tlnc .touw
| 101 1968 employed 45 i 1
102 1973 not working ¢:66
{103 1974 employed 45
104 1980 student 14
105 1963 employed N 80 1
_201 1977 employed 57 2
202 1960 employed 78 2
L%p3 1982 not working 32 2
204 1975 | not Wo;king 59 L 2
L%OS 1968 employed _23__*_M~L3;w*~“~_J

The do file to append these sets of data would look like:

cd datafolder

use townBdata,clear /*
gen town=2 /%
save townBdata,replace /*
use townAdata,clear /*
gen town=1l /%
append using townBdata /*
sort id /%
save newdata,replace /%

Eolder */

/* set default

open town B data */
new variable

town */

save data */

open individual

data */

new variable

town */

append town B

data */

ensure sorted

by id */

save as new file */

f—

ey
¥

mr

1

Longitudinal data 111

LONGITUDINAL DATA

Longitudinal data comes from surveys or studies that have collected
information from the same source on more that one occasion.
This type of data is also regularly referred to in the social sciences
as ‘panel’ data because the data is observational rather than
experimental. The definitions of ‘longitudinal’ and ‘panel’ data
are often blurred at the edges and sometimes the terms are used
interchangeably as the surveys tend to be more complex than
a simple panel. For a fuller discussion on types of longitudinal
data, see Frees (2004), Singer and Willett (2003) and Wooldridge
(2002).

One important concept to emphasize, before we tackle data
manipulation, is the difference between balanced and unbalanced
panel data. In a balanced panel, there are data at all points of time
for all individuals (or other source of data) in the panel. In an
unbalanced panel, the number of individuals at each point of time
may change as some drop out or some new people enter the study.
We have illustrated this in Figure 4.3. In the top half of the figure
we show a balanced panel of five people who are present at all
three data collection points. In the lower half we show an unbal-
anced panel that starts with five people at the first time point, By
the time of the second data collection there are four left in the

Drop out

Figure 4.3
Balanced and
unbalanced

panels

112 Manipulating data

panel with one person (shaded light grey) dropping out of the
study. At the third data collection, there are again five people
in the study but only three are original members (dotted) as one
more person (shaded dark grey) has dropped out but two new
people (stripes) have joined the study.

Most large longitudinal studies have fairly complex rules
about who stays in, leaves or enters the study as time goes on.
These are sometimes known as ‘following rules’ and need to be
thoroughly understood before using the data for any project. As a
general rule, panel studies based on families or households have
more complex following rules than those based on a cohort with
some common characteristic, such as a birth cohort that are born
in the same week. The dynamics of modern family life - partnering,
marriage, births, deaths, separation and divorce — naturally
require more complex following rules than a tightly defined
cohort of individuals. However, even what may appear to be
straightforward cohort studies have developed into far more
complex studies.

Longitudinal data may come from a variety of data scurces.
We often see graphs or charts of a country’s economic indicators
such as gross national product, unemployment or public spend-
ing for a number of years to show a trend over time. These are
longitudinal data, and a data set could very well contain similar
information from a number of countries. Similarly, within a given
country, data over time could be collected from county or state ¢
level, hospitals, schools or police forces.

Longitudinal data need some consideration to enable them to
be used for analysis. This primarily rests with the structure of the
data required by Stata. For many types of analysis, Stata requires
the data to be in unit/time format (although some types of analysis
can be done in wide format). Unit is the source of the data - &
person, country, etc. — and time is the interval between data col-
lection. So, for example, for the individual data from the British
Household Panel Survey (collected yearly) the data format would
be person/year and for monthly country level data it would be .
country/month format. In the first example, each row in the data |
spreadsheet would contain data from one person for one year of
data collection. Therefore, each person has as many rows of data
as the number of years they have been in the survey.

In the example data below there are four people, with id =
001, 002, 003 and 004. Person 001 has three years’ worth of
data, which can be seen from the identifier appearing in three

i
e

Longitudinal data 113

rows of data, and the time variable (year) shows that these data
are for 2001, 2002 and 2003. Person 002 has only one year’s
data, for 2002. Person 003 has five years’ data, but with data
missing for 2002. Person 004 has three years’ data, but not from
consecutive years.

id year age mstat
001 2001 16 single
001 2002 17 single
001 2003 18 single
002 2002 67 widowed
003 1999 27 single
003 2000 28 married
003 2001 29 married
003 2003 31 separated
003 2004 32 separated
004 1999 44 married
004 2002 47 married
004 2004 49 divorced

One important thing to note when your data are organized in
person/year (or more generally unit/time) format is that the id
number does not uniquely identify a particular row of data. It is
the combination of the id and the year variable that is unique to
each row of data.

When your data are arranged in person/year format it is pos-
sible to easily see the changes to other variables over time. In
the above example, you can see that person 001 is 16 years old
in 2001 and is single. They stay in the study for two more years,
2002 and 2003, as they age to 17 and 18 years old and they stay

114 Manipulating data

single at all three tme points. It is worth noting here that in real
survey data the age variable may not increase as uniformly as we
have shown here, as survey dates may differ from year to year.
Person 003 stays in the study for five time points from 1999 to
2004, but data from 2002 is missing. In that time they age from
27 t0 32 and their marital status (mstar) shows that they married
between the 1999 and 2000 interviews, then separated between ..
the 2001 and 2003 interviews.

Stata has a number of features that make it easy to manipulate
longitudinal data and to gain insights into your data structure.
Here, we demonstrate some of the basic features you may need to
start getting a handle on manipulating longitudinal data. Stata
contains many more complex features for use with longitudinal
data which can be employed when you are comfortable with the

basic techniques. More details on these advanced techniques can E
be found in Rabe-Hesketh and Skrondal (2008).

<
_nAND wn

E

These two features are commonly used in conjunction with a
generate command to give you some information about the
structure of your data. They will help you answer questions such
as ‘How many people are in the study at all time points?’ and
“What is the distribution of the number of times people are in the
study?’ E

To start, the data from each time point need to be appended to
each other with a time variable specified similar to that described
earlier in the chapter with the example for the town A and town B
data, but instead of generating the town variable you need to gen-
erate a time variable. To illustrate the use of _n and _N we will
continue with the example data described immediately above.
Before the _n and _N features are used to generate new variables,
the data must be sorted on the id and year variables.

We then use the generate command and the =n and N
features to make two new variables (seq and fot) in the data:

sort id veaxr
by id: gen seqg
by id: gen tot

Hon
2o

These commands would produce the following results:

nand ¥ 115

id year age mstat seq tot
001 2001 | 16 single 1 3
001 2002 17 single 2 3
001 2003 18 single 3 3
002 2002 67 widowed 1 1
003 1999 27 single 1 5
003 2000 28 married 2 5
003 2001 29 married 3 5
003 2003 31 separated 4 5
003 2004 32 separated 5 5
004 1999 44 married 1 3
004 2002 47 married 2 3
004 2004 49 divorced 3 3

Using combinations of the year, seq and tot variables, you can
find out some core information about your data. For example,
from the above small data set, you can tabulate the year vari-
able conditional on the seq variable equalling 1 and you will get
the number of people by their first year in the study.

ta yvear if seg==1

vear | Freq Percent Cum

_________________ e

1999 { 2 50.00 50.00

2001 l 1 25.00 75.00

2002 ! 1 25.00 100.00

______________ e
Total | 4 100.00

116 Manipulating data

This shows that two people were first observed in 1999 then
one each in 2001 and 2002. Other combinations can tell you the
distribution of the individuals’ number of years in the study:

ta tot if seg=s=

ta tot if seqg==

tot | Freq Percent Cum
___________ e
1 1 25.00 25.00

3 2 50.00 75.00 %

5 | 1 25.00 100.00 =
___________ e

Total | 4 100.00 g

This shows that one person was in the study at only one time

point, two people were observed three times and one person was &
observed five times.

The following command identifies the last year in the study for

each person: P
ta year if seg==tot g
ta year if seg==tot .
E
vear | Freq Percent Cum ’ |
_______________ e |
2002 | 1 25.00 25.00 P
2003 ’ 1 25.00 50.00
2004 , 2 50.00 100.00 %
___________ +...__.._,_q_...,.._.,.___.___b__._."__,_,___.......__.,.____‘_.__
Total | 4 100.00

The last year in the study for each person is identified when seq =
tot, so this tells you that one person was last observed in 2002,
another in 2003 and the other two people last observed in 2004.
While all this information is useful, none of it tells us what
years the people were in the study between their first and last
observation. There is a potential maximum of six observations in
these data as the earliest date is 1999 and the latest is 2004, but no
one was observed six times. One person (id 003) was observed five
times, but is missing for 2002. There are ways of using the year

More advanced data handling 117

variable in conjunction with the _n and _N functions to identify
these breaks in observations as Stata can look within the rows
with the same id value to see if numbers are sequential or not.

However, these techniques are beyond the scope of this book
and we just want to draw your attention to them and to some
other capabilities that you may want to progress on to. The com-
parative ease of handling longitudinal data is one of the main
reasons why many people change to using Stata. If you too take
the route to longitudinal data analysis then there are many books
available; we would also suggest taking a course as some of
the issues are best worked out in the classroom as they can take
a lirtle time to get your head around.

MORE ADVANCED DATA HANDLING

Two other more advanced data handling commands to be aware
of are reshape and expand. These are both very powerful com-
mands. Very briefly, reshape allows you to change data from

118 Manipulating data

wide to long format and vice versa. The MOSt COmMmon use is to
change wide files into long files as Stata has far more capability
using long files. You need to invest some time in ensuring the data
and variables are correctly formatted, because then the command
is rather simple.

For example, we have a small data set as seen in the Datg
Editor:

ghgd3

dhgst

]

i Pg

[y
i

S

LS NS UNVE RFOUR NS S)
ru

There is the id variable and then three variables ghq91, ghg92 and
ghq93. This is the format of the variable names that Stata needs to
perform the reshape command; a common prefix and a numeric
suffix. Stata will interpret this as the same measure (ghg) taken at
times 91, 92 and 93. Then we use the reshape command and
specify we want these data changed to long formar. After long
we put the common variable prefix, ghq, then after the comma tell
Stata that the identifier variable is id.

reshape long ghg,i(id)

ey

reshape long ghg,i(id)
(note: § = 91 92 93)

Data wide ~»
Number of obs. 5 -»
Number of variables 4 >
J variable (3 values) -

xij variables:
ghg91 ghg92 ghg93 -»

More advanced data handling 119

The output tells us that the number of observations has changed
from 5 to 15: five people observed three times each, even taking
into account missing values. The number of variables has changed
from 4 1o 3: id, ghg and a new variable _j. It also tells us that _j
has three values. This is the “time’ variable, and we expect this
to be 91, 92 and 93. If we look in the Data Browser we see the
following:

T
3 1
4 E
7 3 a1 2z
7 3 2z 28
L . - -
10 4 a1 15
A1 4 9z 17
12 4 a3 18
13 5 a1 7
gy 5 az

Obviously these reshaping techniques can get very comp-
licated, but at this stage we would just like you to be aware of
some of Stata’s capabilities. Compare reshape with the xpose
command that we mention in Chapter 7.

The other command is expand. This command tells Stata
to add rows of data for each case so that there are as many rows
for each case as in the specified variable. The specified variable
is usually a time variable so that after the expansion each row
represents a time point. In this simple example we use a variable
years. The first case (id=1) has a value of 3 in years, so after the
expansion there will be three rows of data. If the value of years
was 1, less than 1 or missing then only the original single row of
data would remain.

120 Manipulating data

The expansion is done by:

expand vears

sort id

expand vears B
(7 observations created) B
Now the data look like this: ¥

oz 1 50 3

3 1 &0 3

A 2 o z -
5 N 70 2
6 74 5

. . e o

e N 74 5

8 3 74 5

1 E 74 5

You can see that each case now has the same number of rows as
the value of the years variable. You could now use this to change
the age at each observation to match the one-year increase in time
by using:

Demonstration exercise 121

bysort id: gen seg= n-1
replace age=age+seqg

Now the data look like this:

(ST VR T]
[T RV RTINS I YT T

We used the _n function to make a new variable seq but
instead of starting at 1 we used _n-1 so the count started at 0 for
each id. Then we replaced the old values for age with new values
of age plus the seq value. Again, this is just a very brief indication
of the data manipulation capabilities of Stata.

DEMONSTRATION EXERCISE

In Chapter 3 we manipulated the individual level variables
and saved a new data set called demodatal.dta. In this part of
the exercise we merge the individual data file with household
level data in the hhexampledata.dta data set to add the region
of country variable.

First, we need to ensure that the household level data set is
correctly sorted ready for the merge as we are using a step-by-step
approach rather than the soxt option in the merge command.
The data are opened and then inspected.

use hhexampledata.dta, clear
keep hid region
su hid

122 Manipulating data

su hid
variable | Obs Mean Std. Dev. Min Max
_________ e e e o e o o e e e e o SSS e T s e
hid | 5511 1396185 219476.6 1000209 1761811

From this output you can see that in the hhexampledata.dta file
there are data on 5511 households as each has its own unique

identifier (bid).

Next we examine the region variable prior to collapsing the

categories into the ones we want to use in our analyses.

ta region
ta region, nol

tab region

region / metropolitan
area

inner london

outer london

r. of south east

gsouth west

east anglia

east midlands

west midlands conurbation
r. of west midlands
greater manchester
merseyside

r. of north west

south yorkshire

west yorkshire

r. of yorks & humberside
tyne & wear

r. of north

wales

gscotland

| Freg Percent Cum
e
| 247 4.48 4.48
| 348 6.31 10.80
| 990 17.96 28.76
) 493 8.95 37.71
] 208 3.77 41.48
| 399 7.24 48.72
| 240 4 .35 53.08
| 263 4.77 57.85
l 242 4.39 62.24
i 131 2.38 64.62
| 247 4.48 69.10
| 151 2.74 71.84
| 205 3.72 75.56
| 175 3.18 78.73
| 144 2.61 81.35
| 216 3.92 85.27
| 281 5.10 90.36
| 531 9.64 100.00
e e
| 5,511 100.00

rem

g

i

Demonstration exercise 123

tab region,nol

region / |
metropolita |
n area | Freg Percent Cum
____________ e
1 247 4.48 4.48
2 | 348 6.31 10.80
3| 990 17.96 28.76
4 493 8.95 37.71
5 | 208 3.77 41.48
6 | 399 7.24 48.72
7| 240 4.35 53.08
8 | 263 4.77 57.85
9 | 242 4.39 62 .24
10 | 131 2.38 64.62
11 | 247 4.48 69.10
12 | 151 2.74 71.84
13 | 205 3.72 75.56
14 | 175 3.18 78.73
15 | 144 2.61 81.35
16 | 216 3.92 85.27
17 | 281 5.10 90.36
18 | 531 9.64 100.00
____________ e
Total | 5,511 100.00

As you can see from the output, there are 18 categories in the
region variable. We recode this variable into a new variable
(region2) which has seven categories: London, South, Midlands,
Northwest, North and Northeast, Wales, and Scotland.

recode region (1/2=1) (3/5=2) (6/7=3) ///
(9/11=4) (12/16=5) (17=6) (18=7), ///
gen{region2)

lab var region2 “"regions 7 categories®

lab def region 1 "London® 2 "South" ///
3 "Midlands® 4 "Northwest" 5 "Noxrth and ///
Northeast” 6 "Wales" 7 "Scotland®

lab val region2 region

tab region2

124 Manipulating data

tab region2

regions 7

categories
London |
South |
Midlands |
Northwest | 620 11.25 69.10 -
North and Northeast | 891 16.17 5.27 =
Wales | 281 5.10 90.36
Scotland | 531 9.64 100.00 &
____________________ e
Total | 5,511 100.00

The two variables hid and region2 are kept then sorted on the
hid (household identifier) variable and then saved with a new

-
file name. z
keep hid region2 -
sort hid o

save hhdatal, replace

P—

Next, we open the individual level data set saved from
Chapter 3 (demodatal.dta) and sort by the matching variable
(hid) before merging the household level data.

%

use demodatal, clear
soxrt hid

merge hid using bhhdatal
ta _merge

merge hid using hhdatal.dta
variable hid does not uniquely identify
observations in the master data

ta _merge

_merge | Freq. Percent Cum.
____________ e
2 | 1,092 11.80 11.80

3 l 8,163 88.20 100.00
_____________ e

Demonstration exercise

Stata gives a warning that the hid variable does not uniquely
identify cases in the master (individual) data. We would expect
this because individuals in the same household will have the same
hid value. The merge command creates a new variable _merge in
the data. To inspect the cases involved in the merge process we
tabulate the _merge variable (see Figure 4.2). From this output
you can see that none of the cases were only in the master data
(the individual level file) as there is no value 1 in the _merge vari-
able. _merge=2 indicates how many cases were only in the using
data file, which means there were no cases in the individual file to
match onto. This is to be expected as we dropped cases from the
individual file as we are only concerned with working age respon-
dents. _merge=3 indicates that there were 8163 cases in both the
master and using files. This corresponds to the number of individ-
uals in the demodatal.dta file - see the output from this demon-
stration exercise in Chapter 3 or summarize the pid variable to
check.

su pid

Variable | Obs Mean Std. Dev. Min Max

_________ o e et s s o o e o e ot e e e e

pid | 8163 1.47e+07 2640230 1.00e+07 1.91e+07

Now we only want to keep the 8163 individual cases with
matched household data and then we have no more use for the
_merge variable so we drop it from the data set.

keep if _merge==
drop _merge

Check the new data set before saving under a new name
su _all

compress
save demodata2.dta, replace

125

126 Manipulating data

su _all

Variable

pid

ghgscale
d_ghg
female

age |
agecat |
marst2 |
empstat |
numchd |
~~~~~~~~~ +
region2 |

compress

save demodataZ.dta,

(note:

|
i
hid |
f
|
1

1.00e+07
1000381

1.91e+07
1761811
36

Mean Std. Dev
1.47e+07 2640230
1393652 220058.3
10.76407 4.987117
.1870625 .389987
.5205194 .49%96094
39.32733 13.08993
1.867083 . 7574497
1.917677 .5949101
1.93235 1.64757
1.431092 .6140945
3.435869 1.816138
replace

file demodata2.dta saved

file demcdata?.dta not found)

[—

&




