280

Regression

In this chapter we tackle how to conduct regression analyses
in Stata. We concentrate on ordinary least squares (OLS) regres-
sion, which requires a reasonably normally distributed, interval
level dependent variable, and logistic regression, which requires a
dichotomous or binary dependent variable. We briefly introduce
commands for multinomial logistic and ordered logistic regression
models, the parallel family of commands for binary, multinomial
and ordered probit, and Poisson or negative binomial models for a
count dependent variable (see Box 8.1).

Among all of this we also look at the characteristics and effects
of the independent variables. The majority of these techniques
can be used on independent variables in any of the regression
models mentioned above with more or less ease of interpretation!
We will also discuss ways of dealing with categorical independent
variables, non-linear associations, interaction effects, as well as
regression diagnostics.

ORDINARY LEAST SQUARES REGRESSION

To carry out a bivariate regression use the regress (or reg)
command, immediately followed by the Y (dependent) variable
and the X (independent) variable.

regress Y X

There are a number of variables in the example data set that
are suitable for regression. In this example we will use monthly
income (fimn) as our dependent variable, but considering only
those in paid employment. We could use an i f statement so that our
regressions are only done where jbstat==2. Another way would
be use a keep command so that only those people in employment

wo
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are kept in the active data set: keep if jbstat==2. We will use
the latter.

It is usual for income distributions to be positively skewed (or
skewed to the right), in which case a natural logarithm transforma-
tion usually helps to bring the distribution closer to normality. As




282 Regression

we have done before in Chapter 5, we can check the skewness of
the original income variable and the transformed variable:

gen ln _inc=1ln(fimn)
tabstat fimn 1n_inc, s(sk kur)

gen ln_inc=1ln(fimn)

tabstat fimn In_inc,s(sk kur)

stats | fimn ln_inc
__________ e
skewness | 2.473931  —-.5381867
kurtosis | 18.37824 3.587047

We can see from the output that the skewness and kurtosis of the
variable has been considerably reduced and brought much closer
to normality by the transformation. We will now use the ln_inc
variable as our dependent variable.

First, we will use a bivariate regression to see if age is a significant
determinant of income.

#

regress ln_inc age

reg 1ln_inc age

Source | 8s  af MS Number of obs = 4973 g

----------- o F( 1, 4971) = 44.96 = -
Model | 21.1283285 1 21.1283285 Prob > F = 0.0000
Residual | 2336.13556 4971 .469952838 R-sguared = 0.0090
———————————— e Adj R-squared = 0.0088
Total | 2357.26389 4972 .474107781 Root MSE = .68553
ln_inc | Coef. Std. Err. t P>lt| [95% Conf. Intervall
__________ e
age | .0052946 .0007896 6.71 0.000 .0037465 .0068426
cons | 6.517582 .0313587 207.84 0.000 6.456105 6.579059

The regression output is relatively concise; check the equivalent
output in SPSS if you don’t believe us. In the upper right-hand side
is the information concerning the number of observations used
in the model as the regress command uses listwise deletion (Le.
only cases with non-missing values on all the variables in the model
will be included) and model ‘At’ statistics. The most commonly
used ‘fit” statistic in OLS regression is R? (R-squared on the output).
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This indicates the amount of variance in the dependent variable
explained by the independent variables; the higher the value,
the more explanatory power the model has generally. Also in the
upper right-hand corner are an T statistic and its associated
value, which becomes more useful when you are working with
nested models or adding blocks of independent variables. At this
stage, we suggest you do not to concern yourself with the adjusted
R? and mean squared error statistics (rdj R-squared and Root
MSE respectively on the output). The upper left-hand side of the
output presents the sums of squares details as you would get from
ANOVA. The lower panel of the output shows the regression
coefficients, standard errors, £ values, p values and 95% con-
Adence intervals of those coefficients in each row. The bottom row
starting with _cons is the intercept or constant for the model.
We see that even though the coefficient for age is 0.005 and is
significant (r = 6.71 and p = 0.000) this isn’t a very good model
(bivariate models often are not), as the R? value is very low at 0.009
_less than 1%. It may be that the association between the depend-
ent variable and the independent variable is not linear. Previous
research informs us that age often has a curvilinear relationship
with income in that income initially increases with age and then
decreases. We can check if this is the case in these data with a
scatterplot with age as the X variable and /n_inc as the Y variable.

gscatter 1ln_inc age
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Capturing this type of non-linear association often requires the
addition of a squared term of the independent variable.

gen agesg=age*age

or

gen agesg=age+r2

If we rerun our regression with the transformed income vari-
able and the age variable plus its square we see that our model fits
much better; R? is now 0.067 (6.7%). The significance of the age
terms (age and agesq) tells us that We were correct to assume g
curvilinear relationship.

regress ln_inc age agesg

e

reg 1ln_inc age agesq

Source | SS ar MS  Number of obg
————————— L B( 2, 4970)
Model | 159.233417 2 79.6167087 Prob > F
Residual | 2198.03047 4970 .442259657 R-squared
e Adj R-squared
Total | 2357.26389 4972 -474107781 Root MSE
In_inc | Coef. std. Err. t P>t] [95% Cconf. Interval]
_________ +,,_,“ﬂ,go,v-W,A__‘ﬁ,uw,__,M-,-‘_ﬁ‘_u__-__WA__w“w_,_w-;
age | .0841962 -0045302  18.59 0.000 .0753149 .0930774
agesq |-.0009989 -0000565 -17.67 0.000 -.0011097 -.000888
cons | 5.113853 -0850617 60.12 0.000 4.947095 5.280612

We can now add some additional predictors of income to our
model. First we add a variable for gender. The current variable sex
is coded 1 = male and 2 = female. We can either recode this to a
dummy variable (0,1) for either males o females or use the xi
command (see also Box 8.2). If we prefix the regress command
with i s and putting an i . in front of our categorical variables of
interest, Stata automatically converts them to dummy variables in
our regression equation. xi expands terms containing categorical
variables into indicaror (also called dummy) variable sets by creat-
ing new variables and then executes the specified command with
the expanded terms.
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xi:regress ln_inc age agesq i.sex

xi:reg 1n_inc age agesq i.sex

3, sex _Isex_1-2 (naturally coded; _Isex_1 omitted)
Source | SS af MS Number of obs = 4973
————————— o e T F( 3, 4969) = 641.84
Model | 658.344919 3 219.448306 Prob > F = 0.0000
Residual | 1698.31897 4969 .341903596 * R-squared = 0.2793
---------- o e Adj R-squared = 0.2788
Total | 2357.26389 4972 L474107781 Root MSE = 58473

agesqg |-.0010799 .0000497 -21.71 0.000 ~.0011774 -.0009824
Isex 2 |-.6342055 .016599 -38.21 0.000 ~.6667469 -.601664

5.322339 .0749894 70.97 0.000 5.175327 5.469352

1
+
age | .0905245 .0039866 22.71 0.000 .0827089 .09834
i
|
i
|

Note that at the bottom of the variable list a new variable
(_Isex_2) has appeared. This is the dummy variable automatically
created by Stata for the original variable sex. The output line
immediately after the command shows how Stata has created
dummy or indicator variables out of the sex variable:

i.sex _Isex_1-2 (naturally coded; _Isex_ 1 omitted)

This line shows at the left that the variable sex was indicated with
an i. prefix in the command line. The next part (_Isex_1-2)
shows that indicator variables have been created (_I) and that
the sex variable has categories valued from 1 to 2 (L1-2). It
then tells you on the right that the category with the value 1 is the
omitted (or reference) category. By default, the dummy-variable
set is identified by dropping the dummy corresponding to the
smallest value of the variable.

So in this case the indicator variable created by Stata is for
females (as females are sex=2) compared to males. The negative
coefficient for the variable Isex_2 shows the mean difference for
women compared to men in logged income. In other words,
women on average earn less than men after controlling (adjusting)
for age. We can also see from the output that the R* value has
increased to 0.279 (27.9%) from 6.7% in the model with just age
and agesq as independent variables. This indicates that age and
sex explain nearly 28% of the variation in logged income for
those in employment.
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Next we enter marital status (mastat) as an independent vari-
able, also using the i. prefix in the following command:

xi:reg 1ln inc age agesqg i.sex i.mastat

xi:reg 1ln_inc age agesg i.sex i.mastat

i.sex _Isex_1-2 (naturally coded; _Isex 1 omitted) N

i.mastat _Imastat_1-6 (naturally coded; _Imastat_1 omitted) LB
Source | 88 4af MS Number of obs = 4973
——————————— e L F{ 8, 4964) = 255.16
Model | 686.879702 8 85.8599628 Prob > F = 0.0000
Residual | 1670.38419 4964 .336499634 R-squared = (0.2914
———————————— e e e Adj R-squared = 0.2902
Total | 2357.26389 4972 .474107781 Root MSE = .58009
In_inc Coef. Std. Err. t P>lt]| [95% Conf. Interval]

I
+

age | .0939282 -0045723  20.54 0.000 .0849645 .1028919
agesqg | -.0011177 .0000548 ~20.40 0.000 ~.0012251 -.0010102
_Isex 2 | -.6489609 0166143 ~39.06 0.000 -.6815323 -.6162895
~Imastat 2 | .2093674 .0314691 6.65 0.000 .147674  .2710608
_Imastat_3 | .310369  .0707913 4.38 0.000 1715867 .4491513
~Imastat 4 | .1887169 .0411138 4.59 0.000 .1081156 .2693181
~Imastat_ 5 | .1691297 .0628323 2.69 0.007 .0459506 .2923088
_Imastat 6 | .0238757 .0263734 0.91 0.365 -.0278279 .0755792
—cons | 5.222049 .0934908 55.86 0.000 5.038766 5.405322

In this example, the reference category for marital status (mastaz)
is ‘married” as that category has the lowest value (1). Remember
that the coefficients for the other dummy variables are all com-
pared to the ‘married’ category. 5o, for example, category 2 ‘living
as a couple’ has a significant coefficient of 0.209 which indicates
that those living as a couple, on average, earn more than those
who are married, after controlling for age and sex.

If you want your reference categories to be something else, you
can change them with the char command (short for ‘character-
istics’). If we wanted to make ‘never married’ the reference
category, then we would use:

char mastat[omit] 6

as the ‘never married’ category has a value of 6. Now we can
rerun the regression command. To restore to the default reference
categories type use:

char mastat[omit]
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We can also use the 1f and bysort commands with regress.
For example, if you were interested in running different regression
models for each sex then you could use the 1 command:

xi:reg ln_inc age agesq i.mastat if sex==
#i:reg ln_inc age agesqg i.mastat 1f sexs=

If you put one or more instances of i. in your command you
must put the xi: first then the bysort command:

#i: bysort sex: reg 1ln_inc age agesqg i.mastat

There are some commands that cannot be combined with by
and/or bysorxt. If you try to combine them, Stata will give you an
error message to this effect.

You could include the indicator or dummy variables by making
them using the tab command with the gen option. For example,
using mastat=1 as the reference category:

tab mastat, gen{mstat)
bysort sex: reg ln inc age agesqg mstatZ-mstaté

Another slight tweak to the process would be to generate the dummy
variables using the tab command but then to drop the reference
category variable and use an * for all the dummy variables.

287
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Purtting an asterisk after the common part of the variable name
tells Stata to include all variables thar start with that common
part; so, mstat* will include all variables that start with mstar, *
is the Stata wildcard notation. So the commands would be-

tab mastat, gen(mstat) -
drop mstatl L
bysort sex: reg 1n inc age agesqg mstat*

As the tab command creates dummy variables for every category
of the mastat variable, if we did not drop the reference category
variable using the * wildcard we would put all dummy variables
into the regression. Stata will produce results but it will decide
which one of the dummy variables to drop and you lose control
over the reference category.

Two of the common options for use with regress are:

® beta, which requests that normalized beta coefficients be
reported instead of confidence intervals;

® level (#), which specifies the confidence level, as a
percentage, for confidence intervals of the coefficients.

Regression diagnostics

Stata comes with a series of graphs to help assess whether or not
your regression models meet some of the assumptions of linear
regression. Using the pull-down menu, these are found at

Graphics — Regression diagnostic plots

Before going on to the diagnostics, we will briefly discuss
regression assumptions. Fuller discussions are available in most
statistical text books, but we suggest reading Berk (2003) for a
general critique of the regression method and its common abuses,
while Belsley et al. (2004), Fox (1991) and Pedhazur (1997) are
good texts for the assumptions and diagnostics (see also Box 8.3).

The main assumptions of OLS regression are as follows:

N

The independent variables are measured without error.

2. The model is properly specified so that it includes all
relevant variables and excludes irrelevant variables.

3. The associations between the independent variables and the

dependent variable are linear.
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4. The errors are normally distributed. Errors are the difference
between predicted and actual values for each case. Predicted
values are also called fitted values. Errors are also called
residuals or disturbances.

5. The variance of the errors is constant; usually referred to as

homoscedasticity. If the errors do not have constant variance

they are heteroscedastic.

The errors of one observation are not correlated with the

errors of any other observation.

7 The errors are not correlated with any of the independent

variables.

N

Then there are a number of what we call ‘technical’ issues that you

need to check:

8. Strange cases or outliers: these may be from coding errors
or may be truly different in which case you may need to

examine them further in detail.
9. Leverage and influence: to determine if any of the cases have

undue leverage or power on the regression line.

289
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10. Multicollinearity: if the independent variables are highly
correlated with one another this may affect the regression
estimates.

The first assumption is extremely difficult to meet, if not
impossible in social research. Measurement error in the independ-
ent variables usually results in underestimating the effects, and the
extent of the underestimation has been shown to be linked to the
reliability of the measure (Pedhazur 1997). We are guilty of violat-

ing this assumption ourselves in the examples in this book. Is the *
GHQ a completely valid and reliable measure of mental well-
being? Not at all, but our models do not take that into account. If ¥

you are interested in combining measurement and effect models
we suggest you delve into structural equation modelling. It’s worth
noting that measurement error in the dependent variable does not
bias the estimates but does inflate their standard errors, which
then gives a higher p value and so a weakened test of significance.

The second assumption, model specification, has to be addressed
theoretically, practically, as well as statistically. In developing
models to test, the theory needs to be complete, and testable,
for the model to be correctly specified. Practical issues such as
data availability may also hinder you in specifying a correct
model. There are commands in Stata that test whether you have
omitted relevant variables. They don’t tell you what they are!
Nor do they tell you if you have included irrelevant variables. We
cover the linktest and ovtest commands as we go through
our example.

The third assumption of linearity is a variation on the second | e
assumption, and we have already discussed ways of dealing with
non-linear associations. There are tests for non-linearity but we
suggest that these are largely unnecessary if you conduct in-depth
univariate and bivariate data analysis before moving on to multi-
variate analysis.

The distribution of the errors/residuals can be easily attended
to after a regression command and the distribution can be visually
inspected in graphs and then formally tested using the normality
tests covered in Chapter 5. We look at the rdplot and gnorm
graphs as well as summary statistics commands such as su
and tabstat combined with appropriate normality tests in our
example.

To see if the variance of the errors is homoscedastic we can
plot the errors (residuals) against the predicted (fitted) values in
a scatterplot. In such a plot we are looking for no discernable
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partern and that the residuals are in an even band across all of the
;:;gedicted values. This is created by the rvEplot command. We
can formally test this using the hettest command.

The sixth assumption of non-correlated errors is difficult to
assess, and with most non-experimental data it is probably safer
<o assume that these exist, rather than that they don’t! Cluster
sampling strategies will almost certainly ‘mean this assumption is
violated. Again, we have fallen foul of this assumption in our
examples as we are using household data and the people who
<hare the same household are probably more alike than those
who don’t. The effect is to underestimate the standard errors of
the coefficients of the independent variables, possibly giving
coefficients statistical significance when they shouldn’t. A com-
mon solution when using cross-sectional data is to use robust
standard errors. This can be done in our regression by either using
vee (robust) as an option or, better, as we know that individuals
are clustered in households in our data, the cluster (hid)
option:

%i:reg 1ln_inc age agesq i.sex i.mastat, ///
cluster (hid)

See what happens to the standard errors, 7 values and p values
compared to the original, partial, output shown below. The
coefficients have remained the same but the standard errors have
increased resulting in lower ¢ values:

age | .0939282 .0050763 18.50 0.000 .0839764 .10388
agesq | -.0011177 .0000608 ~-18.39 0.000 ~.0012369 -.0009985
_Isex 2 | -.6489609 .0166627 -38.95 0.000 -.6816271 -.6162947
age | .0939282 .0045723 20.54 0.000 .0849645 .1028919
agesg | -.0011177 .0000548 ~-20.40 0.000 -.0012251 ~-.0010103
_Isex 2 | -.6489600 .0166143 ~39.06 0.000 -.6815323 -.6163895

The last assumption is linked to model specification, especially
in non-experimental darta. It follows that if there is an omitted
variable that is also correlated with one of the independent vari-
ables then, as the effect of that omitted variable is in the error
term, then the errors will be correlated with the independent
variable. For example, suppose we were investigating children’s
educational attainment with a model that had parents’ education,
social class, residence area and number of siblings as independent
variables. Parents’ income is not available and so is not in the
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model. However, we know that parents’ education and income are
likely to be correlated. Therefore, the error term, which includes
the effect of parents’ income, will be correlated with the included
independent variable parents’ education.

The three technical issues are discussed more as we work
through our example.

We suggest that you adopt a systematic approach to regres-
sion diagnostics, and as the diagnostic commands to be used after
every regression are generic you could easily copy and paste a
set of diagnostic commands into a do file after each regression.
This way you know that you haven’t missed anything. Such an
annotated do file is shown in Box 8.4.
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A feature of the estimation procedures in Stata is the post-
estimation commands; type help postest for an introduction.
However, there is usually more specific information about post-
estimation commands in the sections on the estimation commands,
such as regress, themselves. Many of the post-estimation
commands we cover here are straightforward to apply after a
regress command, but the results can be obtained in other ways
(no surprise there, then!) and most is done through the predict
command and its options.

We now follow on from our regression example where we
had income with a logarithmic transformation as the dependent
variable and then age, age squared, sex, and marital status as

295




296

Regression

independent variables in a sample of employed people. While
these independent variables explain almost 30% of the variance
in logged income, we are not expecting this to be a satisfactory
model as we all could think of a number of other factors that
would have an effect on income. However, let’s proceed with the
diagnostics for that model using the do file commands in Box 8.4,

First, we use the two tests of model specification: 1inktest
and ovtest. These tests use a similar process whereby new vari-
ables are created and then tested in the model. The 1inktest
results are more transparent as they are displayed as a usual
regression output, whereas the ovtest produces just a single test
statistic and its p value. We have annotated the do file to indicate
what to look for in these test results so you can see that both indi-
cate that we have omitted variables, which is not a surprise.

** Model Specification **
linktest /* performs a link test for model specification

> Look for _hat being sig p<.05 and _hatsq being not
> sig p>.05
> _hatsqg not sig means no omitted vars
> if _hatsqg sig then omitted vars */
Source | Ss  df us Number of obs = 4973
——————————— o e F( 2, 4970) = 1032.16
Model | 691.771172 2 345.885586 Prob > F = 0.0000
Residual | 1665,49272 4970 .335109198 R-gsguared = 0.2935%
—————————— o e Adj R-squared = 0.2932
Total | 2357.26389 4972 .474107781 Root MSE = .57889
ln_inc | Coef. Std. Err. t  P>|t] [95% Conf. Intervall
______________ b e e e
_hat | -2.007193  .7874233 -2.55 0.011 ~3.550891 -.4634963
_hatsg | .2246087 .0587899 3.82 0.000 .1093546 .3398627
cons | 10.03438 2.630634 3.81 0.000 4.877174 15.19158
ovtest /* performs regression specification error test for
> omitted variables
> Look for p>.05 so not to reject hypothesis: model
> has no omitted vars*/

Ramsey RESET test using powers of the fitted values of 1ln_inc
Ho: model has no omitted variables
F(3, 4961) = 44.95
Prob > F = 0.0000

In this next step we use the predict command to create
two new variables: one for the errors or residuals and one for the
standardized residuals. We examine the distribution of the errors

] e
|
1
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or residuals by first visually inspecting two graphs. The rdplot
command needs to be installed, so type £indit xdplot and
follow the instructions (see also Box 8.5). If you haven’t done
this, you can still use histogram res to geta similar graph.
rrhﬁ}ﬁstogran1shovvsthatthereisa10ngerncgaﬁvetaﬂ(n1thechs—
tribution, indicating that it is probably negatively skewed. In the
pnorm graph there is also a departure from the diagonal. You may
also want to add a gnoxm plot here.

predict res,res /* use predict to create

new var res (residuals) */

. . predict stres, rsta /* usgse predict to create
standardized res */
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** Normality of errors **
rdplot /* graphs a histogram of the residuals
> Look for a normal distribution
with no outliers */

[N
1

"’W"

Residuals

200 300 400 500
Frequency

O‘
o -
&

pnorm res /* graphs a standardized normal

Empirical P[i] = i/(N+1)

> probability (P-P) plot of res
Look for plot to be close to
> diagonal */
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Next, we inspect the summary statistics of the two new vari-
ables of the residuals and the standardized residuals using the su
command. We can see that there are cases with standardized resid-
uals considerably larger than 3, or even 3.5. This indicates that we
probably have outliers and that the residuals may not be normally
distributed.

su res stres /* summary statistics for res
Look for mean=0 and no min and max
values »abs 2.5 */

su res stres
variable | Obs Mean Std. Dev. Min Max

res | 4973 -1.47e-10 .579619 -2.696645 2.102549
stres | 4973 -.0000186 1.000119 -4.660335 3.403345

We formally test the distribution of the errors using the normality
tests shown in Chapter 5. These also confirm that the distribution
departs from normality in both skewness and kurtosis.

awilk res /* performs the Shapiro-Wilk W test for
normality on res testing hypothesis of

[V

= normality so-p<-05-rejects */

Shapiro-Wilk W test for normal data
variable | Obs W v z Prob>z

res | 4973 0.98902 29.619 8.889 0.00000

sktest res /* for larger samples
> testing hypothesig of normality so p<.05
rejects */

Skewness/Kurtosis tests for Normality
—————— joint ~-----

tabstat res, si{sk kur) /* to actually see the skew and
> kurt state remember no skew = 0, no kurt = 3 */

variable } skewness kurtosis

e e e e e e e o o o
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The visual inspection of the graph of fitted values (predicted ©
values) against residuals (errors) clearly shows that the variance
of the errors is not constant across the range of fitted values.
Therefore, we have violated the assumption of homoscedasticity.
This is confirmed by the statistical test which rejects the hypothesis
of constant variance. o g

** Homoscedasticity **
rviplot /* graphs residual-versus-fitted plot

> Look for even distribution “no
> pattern” and possible cases of high -
> influence */ £
2 I
|
1_
@
®
o .
= 0
=3
o
[42]
[0}
o -1
_..2_.
_3_
b.b 6 6.5 7 7.5
Fitted values
hettest /* performs Cook and Weisberg test
> for heteroscedasticity testing
> hypothegis of constant wvariance so

\

p<.05 rejects */

Breusch-Pagan / Cook-Weisberg test for
heteroskedasticity

Ho: Constant variance

Variables: fitted values of ln_inc

1

chi2 (1)
Prob > chi?Z

190.58
0.0000

1l




Ordinary least squares regression

For this next part of the diagnostics we create the leverage
and influence values for each case in new variables. The leverage and
Cook’s D values are created using the predict command, and
the dfbeta command automatically produces a DFBETA value
for all the independent variables. We then use the su command to
make a table so that we can see if any of the values are greater than
the critical values. This isn’t the place to engage in a debate on the use
of critical values or cut-offs, but just to say that these are rules of
thumb rather than commandments set in stone. One point to think
about is the effect of having N in the denominator in these calcula-
tions when using samples in the many thousands. In our current
model we have eight independent variables so & = 8, and an estima-
tion sample of 4973 so N = 4973. Accordingly, the critical values
are: leverage, 0.00362; Cook’s D, 0.0008; and DFBETA, 0.02836.
All of the values indicate that there are cases that have undue leverage
and/or influence in this model. The leverage-residual plot clearly
shows that there are quite a few cases with high leverage values.

** Leverage and influence **
predict lev, leverage /* create leverage values
b critical value 2 (k+1)/N */
predict cooks, cooksd /* create Cook’s D stats
critical value 4/N */
dfbeta /* calculates DFBETAs for all the
independent variables
critical value 2/sgroot N */
DFage: DFbeta(age)

DFagesqg: DFbeta(agesq)
DI _Isex_2: DFbeta(_Isex_2)

[V

VARV

(

(
DF_TImastat_2: DFbeta(_Imastat_2)
DF_Tmastat_3: DFbeta(_Imastat_3)
DF_Imastat_4: DFbeta(_Imastat_4)
DF_Imastat_5: DFbeta(_Imastat_5)
DF_TImastat_6: DFbeta(_TImastat_6)

su lev cooks DF* /* gummary stats for inspection and
> checking against critical values */

Variable | Obs Mean Std. Dev. Min Max

lev 4973 .0018098 .0024166 .0006241 .0229986

cooks 4973 .0001882 .0005523 1.84e-14 .0227647
DF_Imastat_2 4973 -2.97e-07 .0128734 ~.1459199 .1329711
DF_Imastat_3 4973 ~-3.84e-07 .0125399 -.2566079 .1986158
DF_Imastat_4 4973 ~-3.33e-07 .0129498 -.2335146 .1920423

DF_Imastat 5 4973 2.39e-08 .0123927 -.197925 .2329337
DF_Imastat_ 6 4973 -1.03e-06 .0135859 ~.1608311 .1074181
DFage | 4973 -2.23e-06 .0158038 -.3712751 .1422175
DFagesqg | 4973 2.53e-06 .0158053 -.1336512 .4085968
DF_Isex_ 2 | 4973 2.31e-06 .0142373 -.0704291 .0673829

lvr2plot /* graphs & leverage-versus-squared-residual plot
> Look for cases with large leverage values */
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Finally, we examine whether any of the independent variables
are collinear as a check for multicollinearity. As a precursor to
regression you should be looking at the bivariate associations
between potential independent variables which would give an
early warning about issues of multicollinearity. The vif com-
mand produces the variance inflation factor and the tolerance,
which is simply the reciprocal of the variance inflation factor and
preferred by some users. Our results show that there is collinearity
between age and age squared, but is to be expected as they have an
almost perfect linear correlation! All of the other independent
variables have variance inflation factors less than 10 or tolerances
greater than 0.1, which shows that multicollinearity does not
exist.

** Multicollinearity **
vif /* calculates the variance inflation factor for ind vars

> Look for VIF > 10 or 1/VIF (tolerance) < 0.1 */
Variable | VIF 1/VIF
_______________ e e e
age 46.83 0.021356
agesq 43 .17 0.023162
_Imastat_6 1.70 0.58652¢
_Imastat_2 | 1.16 0.861387
_Inmastat_3 | 1.06 0.946293
_Imastat_4 | 1.03 0.972071
_Isex 2 1.02 0.980591
_Imastat_ 5 1.01 0.986029
_____________ e

Mean VIF | 12.12

drop res stres lev cooks DF* /*otherwise error after next
regesgion! */
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So, what does all this mean for our regression model? In terms
of model specification, it is not surprising that these results indi-
cate that we have omitted variables; no one would think that age,
sex and marital status alone would satisfactorily explain varia-
tions in income. Some of the omitted variables could be education,
work experience, and sector of industry, for example. The errors
or residuals are well dispersed beyond the normal distribution,
with some standardized residuals beyond 3.5. The error terms are
also heteroscedastic, which is more than likely linked with the
poor model specification. A good number of cases have large
leverage and/or influence which could be linked to the outliers
seen in the residuals, but not necessarily so. However, we are
confident that we do not have multicollinearity, which is at least
one thing going for this model at this stage. Clearly, quite a lot
more work needs to be done before we obtain a more satisfactory
model.

LOGISTIC REGRESSION

Logistic regression (also called logit or, to distinguish it from other
types of categorical dependent variables, binary logit or binary
logistic regression) is used for regression with a dichotomous
dependent variable. Stata’s logit command has the same general
format as regress. The dependent variable should be a 0/1
dichotomy; for analytic purposes a 0 is referred to as a failure
and 1 as a success, regardless of the substantive meaning of the
variables. For more discussion on the details and application of
logistic regression, see Long (1997), Long and Freese (2006), or
Menard (2002).

Many users prefer the logistic command to logit. Results
are the same regardless of which you use, but the logistic com-
mand reports odds ratios (Box 8.6) rather than logit coefficients
by default.

In this example, we will look at the outcome of whether or not
a person has a first degree or higher, derived from the variable
educ (for the variable educ, higher degree = 1, first degree = 2).
Therefore, to construct the dichotomous or binary variable:

recode educ (1/2=1) (3/maxz=0),gen(degree)

We will also use the whole sample of the example data. So, if we
were following on from the above example looking at income as
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the dependent variable in a sample of those working, we would
need to open the data again. And not forgetting to recode the
missing values as well!

As the sample contains people aged 16 and older, it is unlikely
that the younger people in the sample would have had the oppor-
tunity to gain a degree so we’ll restrict this analysis to those aged
25 and older by using the command

drop if age<é$

First, we will examine if sex and age are determinants of hav-
ing a degree:

xi:logit degree i.sex age

xi:logit degree i.sex age

1.sex _Isex_1-2 (naturally coded; _Isex_ 1 omitted)
Tteration 0: log likelihood = ~-2301.563
Tteration 1: log likelihood = -2189.489
Tteration 2: log likelihood = -2180.6155
ITteration 3: log likelihood = -2180.5053
Iteration 4: log likelihood = -2180.5053
Logistic regression Number of obsg = 8390
LR chi2(2) = 242.12
Prob > chi2 = 0.0000
Log likelihood = -2180.5053 Pgseudo R2 = 0.0526
degree | Coef. Std. Brr. z P>|z| [95% Conf. Intervall
_________ e e e
Isex_2 | -.4637623 .0830406 -5.58 0.000 -.6265189 -.3010057
age | -.0406401 .0030834 -13.18 0.000 -.0466835 -.0345967
cons | -.423095 .1381117 -3.06 0.002 -.693789 -,152401

Compare the output from the logit command above with the
output from the logistic command below. You can see that
odds ratios are presented instead of coefficients but the z and p
values are identical, as are the model fit statistics reported in the
top right-hand panel.

xi:logistic degree i.sex age

_— o i 4
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. ®l:logistic degree 1.sex age
i.sex _Isex_1-2 (naturally coded; _Isex_1 omitted)
Loglstic regression Number of obs = 8390
LR chi2 (2) = 242.12
Prob » chi2 = 0.0000
Log likelihood = ~2180.5053 Pgeudo R2 = 0.0526
degree | 0dds Ratio Std. Err. z P>|z| [95% Conf. Intervall
_Isex 2 | .628913  ,0522253 -5.58 0.000 .5344491  .7400735
age | .9601746  .0029606 -13.18 §.000 .9543894 .9659949

Using the or option with the logit command will give you the
same results as using the logistic command, such as:

logit degree i.sex age, or
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Even though these results indicate that women are less likely to
have a degree than men (odds ratio 0.63) and that as age increases
the likelihood is reduced (odds ratio 0.96), it is unlikely that the
gender difference is constant with all values of age, as we know

“that in the past much fewer women went to university. It is there-
fore possible that there is an interaction between age and sex in
that the effect of age varies across sexes. For more details on inter-
action effects in logistic regression, see Jaccard (2001). We can test
this by including an interaction term as described in Box 8.2:

S

T

o
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xi: logistic degree i.sex*age

xi:logistic degree i.sex*age

.9677965 .0038777 ~8.17 0.000 .9602261 .9754266
.9819062 .0062061 -2.89 0.004 L9698176 U9941455

age

i.sex _Isex_1-2 (naturally coded; _Isex_1 omitted)
1.sex*age _IsexXage_# (coded as above) l
Logistic regression Number of cbs = 8390
LR chi2 (3) = 250.61
Prob > chi2 = 0.0000 i
Log likelihood = -2176.2561 Pgeudo R2 = (.0544
degree ] Odds Ratio Std. Err z P>]zi [95% Conf. Intervall
_____________ PO P
Isex_2 t 1.324136 .356577 1.04 0.297 7811104 2.244672 ’
| i
[

The results indicate that the interaction term (_IsexXage_2) has
a significant coefficient which tells us that the effect of age varies
across sexes or, conversely, the effect of sex varies with age

"To get a clearer picture of what this means it’s a good idea
to graph interaction effects. We can easily do this by using the
predict post-estimation command to calculate predicted, or
fitted, values.

predict vhat,xb

Then use the pull-down menu: |

Graphics — Twoway graph

Then create two plots in a similar way to that described in
ox 6.7 but with the following entries:
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Plotd: X axis = age, Y axis = yhat, iffin tab — sex==

Plot 2: X axis = age, Y axis = yhat, iffin tab — sex==2

Legend tab - select Override default keys and type 1 ‘men’
2 ‘women’ in the box.

Add titles as you wish.

The graph shows that with increasing age both men and
women are less likely to have a degree than younger people. But
when looking at the effect of age on each sex, you can see that at
age 25 there is little difference in the likelihood of having a degree
but that the gap increases as age increases. Therefore, the gender
gap increases as age increases, which makes substantive sense
from what we know about recent history of university admissions
and accessibility. It is worth noting that the Y-axis units are in

logit (log of the odds). Compare this with the results shown in
Box 8.7.

Predicted values of the log odds of having a degree by sex and age

® men £ women

Linear prediction
!
()
i

20 40 60 80 100
age

OTHER REGRESSION COMMANDS

Basic regression commands in Stata generally have the same struc-
ture in that the command is followed by the dependent variable
and then a list of independent variables. There are many other
regression models; if you wish to extend your knowledge of
regression models with categorical or count dependent variables,
then we recommend you use Long (1997) or Long and Freese
(2006).
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Box 8.7: ?os‘tf‘e‘sﬁmatiﬁn command .
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e yhat_, sex == male
e Yhat_, s€X == female

Here in brief are some of the more common regression
commands:

®* mlogit — multinomial logit regression for nominal
dependent variables with three or more categories. Note that
there is not a mlogistic command. Relative risk ratios are
reported if the rrr option is used.

¢ ologit — ordered logit regression for an ordinal dependent
variable. Again, there is #ot an ologistic command, but if you
wish to show odds ratios then use the ox option.

® probit — binary probit regression. Probit is the other main
method for analysing binary dependent variables. Whereas
logit (or logistic) regression is based on log odds, probit uses
the cumulative normal probability distribution.

¢ mprobit — multinomial probit regression. Probit for nominal
dependent variables with three or more categories.

®* oprobit — ordered probit regression. Probit for an ordinal
dependent variable.

¢ poisson - Poisson regression for a count (non-negative
integers) dependent variable.
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by e

nbreg - negative binomial regression for a count variable -
that is overdispersed. A Poisson distribution is a special case -
of the negative binomial family, and a dependent variable
with a true Poisson distribution can also be estimated using
the nbreg command.

s
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DEMONSTRATION EXERCISE

In Chapter 3 we manipulated the individual level variables and
saved a new data set called demodatal.dta. In Chapter 4 we
merged a household level variable indicating the region of the
country onto the individual level data and saved the data with a
new name demodata2.dta. In Chapter 5 we examined the variables
we are using for their distribution, measures of central tendency
and, for continuous variables, their normality. In Chapter 6 we
examined differences in mean GHQ scale scores across groups in the
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factors but did not formally test for differences. The dichotomous
indicator was tested using the tab command and measures of
association. Correlations between the GHQ scale and interval
level factors were produced. In Chapter 7 we formally tested
tor differences of mean GHQ scores and proportions above the
threshold of the dichotomous GHQ indicator between groups.

At this stage of this demonstration we use multivariate OLS
regression with the GHQ scale as the dependent variable and then
use multivariate binary logistic regression with the dichotomous
GHQ indicator as the dependent variable. In these models we use
all of the factors we are interested in to assess their net effects on
mental well-being.

In this first regression model we use the xi: prefix as we have
a number of categorical independent variables which need to be
converted into indicator or dummy variables. We also use the age
categories to see if the association with age is linear or non-linear.

xisreg ghgscale female i.agecat i1i.marst2 ///
i.empstat i.numchd i.region2

In the output below we have put the significant coefficients in bold
for easier identification. These results indicate that women have
on average higher GHQ scores by 1.05 points. The second age
category (33-50 years) has significantly higher GHQ scores than
the reference (youngest) category (18-32 years), whereas the third
category (51-65 years) is not significantly different from the refer-
ence category. This suggests that the association is non-linear
and possibly could be better defined with a quadratic term for
age. The dummy variables for marital status categories show that
those who are married are not significantly different from the
reference category (single) but those who are separated or divorced
(category 3) and widowed (category 4) have significantly higher
GHQ scores than those who are single. Most of the people in this
sample are married, so it may be more appropriate to use the mar-
ried category as the reference, and we will change this in the next
regression model. For employment status, three of the categories
(unemployed, long term sick and family care) have significantly
higher GHQ scores than the reference category (employed). Those
with one or two children in the household have significantly
higher GHQ scores than those with no children, but those with
three or more children are not significantly different from those
with no children.

.
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xil:reg ghgscale female 1.agecat 1.marst2 1.empstat ///
i.numchd i.region2

i.agecat _Tagecat_1-3 (naturally coded; _Iagecat_1 omitted)

1.marst2 _Imarst2_1-4 (naturally coded; _Imarst2_1 omitted)
i.empstat _JTempstat_1-6 (naturally coded; _Iempstat_1l omitted)
i.numnchd _Inumchd_1-3 (naturally coded; _Inumchd_1 omitted)
i.region2 _Iregion2_1-7 (naturally coded; _Iregion2_1 omitted)
Source | SS af MS Number of obs = 7688
———————————— A F{ 19, 7668) = 35.04
Model | 15242.5628 19 802.240149 Prob > F = 0.0000
Residual | 175575.003 7668 22.8971053 R-squared = 0.0799
————————————— e Adi R-squared = 0.0776
Total } 190817.566 7687 24.8234117 Root MSE = 4.7851
ghgscale Coef. Std. Err. t P>|t| [95% Conf. Intervall
female 1.051762 .1179439 8.%92 0.000 .8205601 1.282965
_Tagecat_2 .3340761 .1366896 2.44 0,015 0661272 .602025
_Iagecat_3 ~.075252 .1838687 -0.41 0.682 -.435685 .285181
_Imarst2_2 .1601081 1709917 0.94 0.349 -.1750823 .4952986
_Imarst2_ 3 1.597959% .2581717 6.19 0.000 1.091871 2.104046
_Imarst2_4 1.489015 .4102427 3.63 0.000 .6848276 2.293203
_Tempstat_2 2.912573 .2282301 12.76 0,000 2.465179 3.359966
5.797058

_JTempstat_4 .5919%008 .3422444 1.73 0.084 -~.0789917 1.262793

1.123851  .1904472 5.%0 0.000 .7506226 1.49728
~.2368232 .2823437 -0.84 0.402 -.790294 .3166477

_Tempstat_5
_lempstat_#6

_Inumchd 2 4985591 1438261 3.47 0.001 .2166205  .7804976
_Inumchd_3 .4114755  .2415769 1.70 0.089 ~-.0620813 .8850324
Iregion2 2 -.2086025 .1956044 -1.07 0.286 -.5920406 .1748356
_Iregion2_3 -.172131 .21373 -0.81 0.421 ~.5911002 .2468381
_Iregion2_4 -.2925766 .2381277 ~-1.23 0.219 -.7%93719 .1742188

-.141722  .2164165 -0.65 0.513 -.5659575 .2825135
L4176472 02944849  1.42 0.156 -.1596238 .9949182
-.2650218 .2430078 -1.09 0.275 -.7413834 .2113399
9.322474 .2124677 43.88 0.000 8.90598 9.738969

_Iregion2_5

_Iregion?_6

|
N
|
i
[
|
|
|
l
|
_Tempstat_ 3 1 5.155082 .3274935 15.74 0.000 4.513105

|
|
E
|
|
|
|
|
|
|
_Iregion2_7 |
|

cons

There are no significant differences for the dummy variables
for region of the country compared to the reference category of
London. However, if you examine the coefficients more closely
you can see that category 6 (Wales) is 0.417 higher than the
reference category and category 4 (Northwest) is 0.292 lower than
the reference category. This difference might be significant, but is
not tested in this model. We can, however, test this with a post-
estimation command:

test _Iregion2 6= _Iregion2 4

313
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test _TIregion2_6= _Iregion2 4

{ 1) - _Iregion2 4 + _Iregion2 6 = 0
£ B
F{ 1, 7668) = 5.84 &
Prob > F = (.0157

oy wE

The output above tests for a difference between the two coeffici-
ents and the p value of the test is less than 0.05 which suggests
that they are different. However, for a variable such as region2 we
might want to see if the regions are significantly different from the
overall sample mean rather than choose a reference category.
From our observations above, we need to adjust some of the
variables and commands to re-estimate this regression model.
First, we wish to capture the non-linear nature of the associ- & |
ation between age and GHQ score by adding a squared age term
to the model. Therefore, we need to create a new variable for ‘
the squared value of age. o

gen ageld=age*2

Next, we want to change the reference category for marital status
to married (category 2). s

char marst2 [omit] 2

Finally, we want the coefficients for the region categories to be
compared to the overall or grand mean in the sample. To do this
we need to have downloaded the %13 command/prefix (see Box 8.7).
Dummy variables that indicate differences from the grand mean
are usually referred to as effect coding, and this is done by
prefixing the regression command with xi3: and then prefixing
the region variable with e. (rather than i.). So, the new regres-
sion looks like this:

xi3:reg ghgscale female age age2 i.marst2 ///
i.empstat i.numchd e.region2

. xi3:reg ghgscale female age age?2 i.marst2 ///

i.empstat i.numchd e.region?
1.marst?2 _Imarst2_1-4 (naturally coded; _Imarst?2_2 omitted)

i.empstat _Tempstat_1-6 naturally coded; _Tempstat_1 omitted)

[,

(
.numchd _Inumchd_1-3 (naturally coded; _Inumchd_1 omitted)
(

e.region2 _Iregion2_1-7 naturally coded; _Iregion2_1 omitted)

vog
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Source | Ss af MS Number of obs = 7688
———————————— e F( 19, 7668) = 35.66
Model | 15491.6833 19 815.351754 Prob > F = 0.0000
Residual | 175325.883 7668 22.8646169 R-sguared = .0812
————————————— o e Adj R-squared = 0.0789
Total | 190817.566 7687 24.8234117 Root MSE = 4.7817
ghgscale | Coef. Std. Err. t P>it] [95% Conf. Intervall]
____________ o e e e e o o
female | 1.045367 ,1179395 8.86 0.000 .814173 1.27656

age | 1502465 .0342705 4.38 0.000 .083067 .2174259

age2 I -, 0018732 .000422 ~-4.44 0.000 -.0027005 ~.001046
_Imarst2_ 1 | -.0464479 .1816749 -0.26 0.798 -.4025804 .309684¢6
_Imarst2_ 3 | 1.415416 .2165824 6.54 0.000 .990855 1.839977
_Imarst2_ 4 | 1.438633 .3810207 3.78 0.000 .6917286 2.185538
_fempstat 2 1 2.973164 .2288571 12.%9 0.000 2.524541 3.42178¢6
_Tempstat_3 | 5.182441 .3275309 15.82 0.000 4.540391 5.824491
_Tempstat_4 ] . 7544566 .3465094 2.18 0.029 .0752034 1.43371
_Tempstat 5 | 1.166145 .19029512  6.13 0.000 L7931224 1.539168
_Tempstat_6 | .1311709 .3059574 0.43 0.668 ~.4685892 .730931
_Inumchd 2 | 4154971 .1458797 2.85 0.004 .129533  .7014611
_Inumchd_ 3 | .2894564 .2449152 1.18 0.237 -.1906445 .7695572
_Iregion2_2 | ~.1058743 .1047368 -1.01 0.312 -.3111871 .0994386
_Iregion2_ 3 | -.0641072 .1273939 -0.50 0.615 ~-.3138341 .1856197
_Iregion2_4 1 -.196559 1551697 -1.27 0.205 ~.500734 .1076161
_Iregion2_5 | -.0411748 .1305821 ~0.32 0.753 -.2971515 .2148019
_TIregion2_6 | .5126046 .2130926 2.41 0.016 .0948849  .9303244
_Iregilon2_7 | ~-.1743432 .1608996 ~-1.08 0.279 -.4897504 .141064
cons | 6.794737 665037 -10.22--8.008 5.491082- 8.098391

The significant coefficients for both the age and age2 variables
indicate that we were correct to model a non-linear association,
and the positive coefficient for the age variable and the negative
coefficient for the age2 variable show that the association first
increases with age and then decreases in an inverted U shape.

The categories of marital status show that those separated
or divorced and those widowed have significantly higher GHQ
scores than those who are married. If you examine the dummy
variables for marital status you can see that now category 2
(_Imarst2_2) is missing and is therefore the reference category.

The dummy variables for employment status were not altered
but you can see that the coefficient for category 4 (_lempstat_4)
is now significant, which it wasn’t in the first regression model.
The coefficient is larger, which may have resulted from the better
specification of other variables in the model.

The categories of the region2 variable now show differences
from the grand mean of the sample. Now they indicate that
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category 6 (_Iregion2_6) has significantly higher GHQ scores than
the sample average. You can see that even though the coefficients
now show difference from the grand mean, one of the categories is
still missing. If you wish to find the difference for this category
then you can rerun the regression omitting another category of the
regionZ variable. Omitting category 2 produces the following

extract of results:

_Iregion2_1 | .0694538 ,1555509

_Iregion2 3 | -.0641072 .1273939
_Iregion2_4 | -.196559 1551697
JIregion2_5 | ~.0411748 .1305821
Iregion2 6 | .5126046  .2130926
_Iregion2_7 | ~.1743432 .160899¢

0.
.50
.27
.32
.41
-1.

-0
-1
-0
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.205
L753
.016
.279

-.2354686
-.3138341
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Alternatively, you can add the coefficient from all the other cate-
gories, and then the difference from zero is the omitted coefficient.
For example, from the extract, 0.06945 - 0.06410 — 0.19655 —
0.04117 + 0.51260 — 0.17434 = 0.10587. The difference from
zero is —0.10587 (as with effect coding all the differences add to
zero, see Box 8.10) which, if you check the previous output, is the
coefficient for category 2 (_IregionZ_2).

Now we run a logistic regression using the binary GHQ indi-
cator (d_ghq) and the same independent variables as on p. 312.

xi3:logistic d ghg female i.agecat i.marst2 ///
i.empstat i.numchd e.region2

xi3:logistic d_ghg female i.agecat i.marst2 ///
i.empstat i.numchd e.region2
i.agecat _Tagecat_1-3 (naturally coded; _lagecat_1l omitted)

i
i.marst? _Tmarst2_1-4 naturally coded; _Imarst2_2 omitted)

(

i.empstat _Tempstat_1-6 (naturally coded; _Tempstat_1 omitted)

i.numchd _Inumchd_1-3 (naturally coded; _Inumchd 1 omitted)
e.region2 _Iregion2_1-7 (naturally coded; _Iregion2_ 1 omitted)
Loglstic regression Number of obs = 7688
LR chiz (19) = 339.92
Prob > chi2 = 0.0000
Log likelihood = -3536.4272 Pgeudo R2 = 0.0459
d_ghg | 0dds Ratio Std. Err. z P>|z| [95% Conf. Intervall

1.389437 .0920517 J000  1.220242 1.582093
9136479 0672408 - 220 .7909223 1.055417
7308843 .0755579 .002  .5968326 .8950448

.906441 .0862042 .302 752296 1.09217

female

_Iagecat_2

_Tagecat_3
_ITmarst?2_1

N
fes]
o o O O O O O O
[es)
[
(=)

1
+
| 4
| 1
| 3.
| i.
_Imarst2_3 | 1.733206 .1806035 5. 1.413036 2.125921
_Imarst2_4 | 1.521458 .2964534 2.15 031 1.038496 2.229026
_Tempstat_2 | 3.248623  .3395573 11.27 000 2.646847 3.987217
_Tempstat_3 | 5.355798  .7744645 11.61 000 4.034019 7.11067
_Tempstat_4 | 1.39944 .2578951 1.82 0.068 .975194 2.008249
_Tempstat_5 | 1.406923 .1355923 3.54 0.000 1.164758 1.699437
_Tempstat_6 | .8380977 .1500266 -0.99 0.324 .5900955 1.190329
_Inumchd 2 | 1.175711 .0914464 2.08 0.037 1.009472 1.369326
_Inumchd 3 | 1.041569  .1355878 0.31 0.754 .8070155 1.344295
_Iregion2_2 | . 9657438 .055782 ~0.60 0.546 .8623746 1.081503
_Iregion2 3 | .9555518 . 0665694 ~0.65 0.514 .8335937 1.095353
_Iregion2_4 | .9810842 .0826423 -0.23 0.821 .8317729 1.157198
_Iregion2_5 | .9029198 .0653833 -1.41 0.158 . 7834493 1.040609
_Iregion2_6 | 1.344802 .1439638 2.77 0.006 1.090274 1.658751
_Iregion2 7 | . 8339696 .076168 ~1.99 0.047 .6972819 . 997452
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The results of the logistic regression show similar associations to
those in the OLS regression models. One noticeable difference is
the association with age. In the OLS models the association was
non-linear and best captured with a quadratic term, but the above
output, using dummy variables for the age categories (shaded),
shows a decreasing likelihood of being over the GHQ threshold
with age, thus suggesting that a linear term can capture the associa-
tion. Using the interval-leve] age variable produced the tollowing
coefficient in the logistic regression (other output omitted):

B
&

d_ghg | 0dds Ratio gtg. Err. z P>|z| [95% Conf. Intervall i
__________ +__.‘._....._..___...‘.__.___..__~_._..__.‘__.__.......__._.__...__._.__....-_.-.-_,.‘-_. &

female | 1.386245 -0918595 4,93 0.000 1.217405 1.578501 1
age | .9895113 -0030573 -3 .41 0.001 -9835373 .9955217 ’




