Understanding Social Preferences with Simple Tests Author(s): Gary Charness and Matthew Rabin Source: The Quarterly Journal of Economics, Vol. 117, No. 3 (Aug., 2002), pp. 817-869 Published by: Oxford University Press Stable URL: https://www.jstor.org/stable/4132490 Accessed: 20-03-2020 12:46 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms Oxford University Press is collaborating with JSTOR to digitize, preserve and extend access to The Quarterly Journal of Economics This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES WITH SIMPLE TESTS* GARY CHARNESS AND MATTHEW RABIN Departures from self-interest in economic experiments have recently in models of "social preferences." We design a range of simple experimenta that test these theories more directly than existing experiments. Our expe show that subjects are more concerned with increasing social welfare-sa to increase the payoffs for all recipients, especially low-payoff recipie with reducing differences in payoffs (as supposed in recent models). Sub also motivated by reciprocity: they withdraw willingness to sacrifice to ac fair outcome when others are themselves unwilling to sacrifice, and so punish unfair behavior. I. INTRODUCTION Participants in experiments frequently choose actions do not maximize their own monetary payoffs when those ac affect others' payoffs. They sacrifice money in simple barg environments to punish those who mistreat them and sh money with other parties who have no say in allocations. One hopes that the insights into the nature of nonself-in ested behavior gleaned from experiments can eventually plied to a variety of economic settings, such as consumer re to price changes, attitudes toward different tax schem employee response to changes in wages and employment tices. To facilitate such applications, researchers have beg develop formal models of social preferences that assume are self-interested, but are also concerned about the payo others. Different types of models have been formulated. "Di * This paper is a revised version of the related working papers [Charn Rabin 1999, 2000]. We thank Jordi Brandts, Antonio Cabrales, Colin Cam Martin Dufwenberg, Ernst Fehr, Urs Fischbacher, Simon Gaichter, Edwa ser, Brit Grosskopf, Ernan Haruvy, John Kagel, George Loewenstein, Ro Nagel, Christina Shannon, Lise Vesterlund, an anonymous referee, and participants at Harvard University, Stanford University Graduate School ness, University of California at Berkeley, University of California at Sa the June 1999 MacArthur Norms and Preferences Network meeting, th Russell Sage Foundation Summer Institute in Behavioral Economics, the 2000 Public Choice meeting, the April 2000 Experimental Symposium at nion, and the January 2001 ASSA meeting for helpful comments. We al Davis Beekman, Christopher Carpenter, David Huffman, Christopher M and Ellen Myerson for valuable research assistance, and Brit Grossk Jonah Rockoff for helping to conduct the experimental sessions in Barcelo financial support, Charness thanks the Spanish Ministry of Education D101-7715) and the MacArthur Foundation, and Rabin thanks the Russe Alfred P. Sloan, MacArthur, and National Science (Award 9709485) Foun o 2002 by the President and Fellows of Harvard College and the Massachusetts In Technology. The Quarterly Journal of Economics, August 2002 817 This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 818 QUARTERLY JOURNAL OF ECONOMICS ence-aversion models" assume that players are motivated to reduce differences between theirs and others' payoffs; "social-welfare models" assume that people like to increase social surplus, caring especially about helping those (themselves or others) with low payoffs; reciprocity models assume that the desire to raise or lower others' payoffs depends on how fairly those others are behaving. In this paper we report findings from some simple experiments that test existing theories more directly than the array of games commonly studied. We then fit our evidence to a simple, stylized model that encapsulates variants of existing models as special cases, and formulate a more complicated new model to capture patterns of behavior that previous models do not explain. A major motivation for our research was a concern about pervasive and fundamental confounds in the experimental games that have inspired recent social-preferences models. Most notably, papers presenting difference-aversion models have argued that Pareto-damaging behavior-such as rejecting unfair offers in ultimatum games, where subjects lower both their own and others' payoffs-can be explained by an intrinsic preference to minimize differences in payoffs. But this explanation is almost universally confounded in two ways: first, opportunities for inequality-reducing Pareto-damaging behavior arise in these games solely when a clear motivation for retaliation is aroused. Second, the only plausible Pareto-damaging behavior permitted is to reduce inequality. Difference aversion has also been used to explain helpful sacrifice-such as cooperation in prisoner's dilemmas-as a taste for helping those with lower payoffs. But here again two confounds are nearly universal: the games studied only allow efficient helpful sacrifice that decreases inequality, and only when a motive for retaliation is not aroused. All of these confounds mean that the tight fit of these models may merely reflect the fact that in many of the games studied their predictions happen both to be the only way that subjects can depart from self-interest, and to be the same as the predictions of reciprocity.1 To provide a more discerning examination of social preferences, our games offer an array of choices that directly test the role of different social motivations, by testing a fuller range of 1. The analysis articulated in developing these models, on the other hand, usefully demonstrates that the interpretations of authors (such as Rabin [1993]) that helpful sacrifice is based on positive reciprocity are misleading-since such helpful sacrifice is for the most part as strong when no positive feelings are aroused. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 819 possible departures from self-interest, by eliminating confou within games, and by inviting crisp, revealing comparisons a games. Our data consist of 29 different games, with 467 p pants making 1697 decisions. In Section II we provide a simple linear, two-person mode preferences that assumes that players' propensity to sacrific another player is characterized by three parameters: the w on the other's payoff when she is ahead, the weight when sh behind, and the change in weight when the other player misbehaved. This embeds difference aversion, social-welfare erences, and other preferences as identically parsimoniou tractable special cases of a more general model. By way o shift parameter, it also embeds a simple form of reciproc Section III we explain our experimental procedures and r results. We interpret our results without invoking inten based reciprocity in Section IV, and with reciprocity in Secti We analyze our results both by comparing the percentage of that different models explain, and with regression analysis o best-fit parameter values of the model of Section II. Our findings suggest that the role of inequality reduction motivating subjects has been exaggerated. Few subjects sac money to reduce inequality by lowering another subjects' pay and only a minority do so even when this is free. Indeed observed Pareto-damaging behavior more often when it incre inequality than when it decreased inequality. While this comp son is itself confounded by other explanations, our data stro suggest that inequality reduction is not a good explanati Pareto-damaging behavior.2 By contrast, difference-ave models do provide an elegant insight into players' willingn sacrifice when ahead of other players. Yet social-welfare pref ences provide an even better theory of helpful sacrifice. By iting far greater concern for those who are behind than those are ahead, they also predict helpful sacrifice by those with h payoffs. By positing a concern for efficiency, however, welfare preferences predict that even if players are behind t may sacrifice small amounts to help those ahead. Unlike d ence aversion, therefore, social-welfare preferences can ex the finding in our data that about half of subjects make ineq 2. Other recent papers similarly providing data that calls into questi role of inequality reduction in Pareto-damaging behavior include Kagel an [1999] and Engelmann and Strobel [2001]. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 820 QUARTERLY JOURNAL OF ECONOMICS ity-increasing sacrifices when these sacrifices are efficient and inexpensive.3 To test the role of reciprocity, we study simple response games where Player B's choice follows a move by Player A to forgo an outside option, and compare B's behavior with his behavior given the same binary choice where A either forwent a different outside option or had no option at all. Our data replicate recent experimental evidence that positive reciprocity is not a strong force in experimental settings.4 But subjects exhibited a form of reciprocity we call concern withdrawal: they withdraw their willingness to sacrifice to allocate the fair share toward somebody who himself is unwilling to sacrifice for the sake of fairness. Subjects also significantly increased their Pareto-damaging behavior following selfish actions by A. Overall, straightforward interpretation of specific games and summary descriptive statistics show that social-welfare preferences explain our data better than does difference aversion, and that subjects clearly behave reciprocally. Our regression analysis indicates that a B who has a higher payoff than A puts great weight on A's payoff. However, if B has a lower payoff than A and no reciprocity is involved, the weight on A's payoff is close to 0. When A has mistreated B, B significantly decreases positive weight or puts negative weight on A's payoff. While most of our data and our formal tests concern twoplayer games, in Section VI we discuss results in the five threeplayer games. These games provide some evidence for a multiperson generalization of social-welfare preferences, and further demonstrate the role of reciprocity by showing that subjects' preference between two allocations is for the one where an unfair first mover gets a lower payoff. We also demonstrate that subjects are not indifferent to the distribution of material payoffs among other people. Our experiments add to other recent evidence in providing raw data for developing better models of social preferences. Since there are clearly many forces at work in subjects' behavior, researchers are faced with the decision as to how complex a model 3. Andreoni and Miller [20001, Charness and Grosskopf [2001], and Kritkos and Bolle [1999] find similar results, with significant numbers of participants opting for inequality-increasing sacrifices to help others. 4. One exception we find to this pattern is that positive feelings reduce difference aversion when self-interest is not at stake. We return to this finding in our concluding discussion. We also note that McCabe, Rigdon, and Smith [2000] find, in one simple game, significant and statistically significant evidence of positive reciprocity. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 821 to formulate, trading off progress on applicable models a the quest for psychological and empirical accuracy. Our perspective is that too much will be lost if experimentalists too quickly to calibrating highly simplified models that prevalent phenomena such as reciprocity. At this stage, ought to be developed that help interpret psychologically and empirically prevalent patterns of behavior common broad array of games. In this spirit, in Appendix 1 we develop a multiperson m of reciprocal-fairness equilibrium that combines social-w preferences and reciprocity. We presume that players are vated to pursue social welfare, but withdraw the willing give others their social-welfare shares when these others being unfair, and may even sacrifice to punish them. Desp complexity, this model clearly omits many factors that play in laboratory behavior, and hence is unlikely to fit the tightly. Rather, it is meant to provide incremental conceptu calibrational progress in understanding the nature of so preferences. For those who instead feel it is more urgent to develop s pler and more applicable models, our analysis in the body paper shows that an equally parsimonious alternative m explains behavior in our data better than difference-aver models. The alternative essentially reverses the weight that ers put on the payoffs of others doing better than them strongly negative to weakly positive, reflecting a willing pursue social efficiency when it comes at a small cost t worst-off player.5 That said, we do not believe this paper establishes de tively that previous interpretations of nonself-interested be have been wrong.6 Rather, our analysis clarifies clear con 5. This means, of course, that the more parsimonious model that ass players ignore the payoffs of others who are ahead of them performs as difference-aversion models. We do not think our simple alternative will a good fit for the broad set of games economists should care about. It o does not explain rejections of unfair offers in ultimatum and bargainin which is the primary source of difference-aversion models beginning with [1991]. Our claim is merely that-once we start examining a broader a games-it will provide a better fit than difference-aversion models. Dif aversion models predict rejections in the ultimatum game. But they mak predictions than pure self-interest in other games that are simpler, mo nostic, and (we would contend) more economically relevant than the ult game. 6. Indeed, while our analysis stresses that our data contradict differenceaversion models, we do not think we have conclusively disproved these models. This is for (at least) two reasons. First, some of the differences from earlier This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 822 QUARTERLY JOURNAL OF ECONOMICS in the previous research supporting those interpretations. More than our specific findings and interpretations, in fact, we hope that this paper helps move experimental research away from studying the existing, manifestly misleading, menu of games and toward a wider range of simpler and more diagnostic games. We conclude in Section VII with a discussion of some of the issues raised by this program and with some suggestions for new directions of research. II. SocIAL PREFERENCES In this section we outline a simple conceptual model of social preferences in two-person games that embeds different existing theories of social preferences as different parameter ranges, and allows for the estimation of these parameter values in our empirical analysis below.' Letting ITA and TB be Player A's and B's money payoffs, consider the following simple formulation of Player B's preferences: UB(TA,qTB) = (p r + ?r's + s0 q) ? -TA + (1 -p-r--'s-s-0q) 'rB, where r = 1 if 'rB > iTA, and r = 0 otherwise; s = 1 if ITB < 7A, and s = 0 otherwise; q = - 1 if A has misbehaved, and q = 0 otherwise. This formulation says that B's utility is a weighted sum of her own material payoff and A's payoff, where the weight B places on A's payoff may depend on whether A is getting a higher or research in both our design and in our results--especially the relative lack of Pareto-damaging behavior-demand caution in extrapolating results from our experiments. Second, it is clear that subject behavior is heterogeneous, and that there are subjects who exhibit some degree of difference aversion in some circumstances. Fehr and Schmidt [1999], for instance, have argued that only 40 percent of subjects need be difference-averse to explain the phenomena they explain. This is arguably consistent with our data. More generally, insofar as the existing literature has emphasized the existence of difference aversion as a force among some subjects, our evidence suggesting that it is weaker and rarer than very opposite forces may not contradict what has been found so far. 7. By "conceptual," we mean that one major component of preferences-the motive to punish unfair behavior-is left underspecified. The model in Appendix 1 develops the additional framework needed to fully formalize our assumptions about reciprocity. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 823 lower payoff than B and on whether A has behaved unfai parameters p, u, and 0 capture various aspects of socia ences. The parameter 0 provides a mechanism for modelin procity, which we shall return to below. The parameters p allow for a range of different "distributional preferenc rely solely on the outcomes and not on any notion of reci We begin by discussing purely distributional preferences, may be appropriate either in contexts where reciprocity i not to motivate subjects or when modelers are looking for proxy for full-fledged preferences that include reciprocity One form of distributional preferences (consistent w psychology of status) is simple competitive preferences. T be represented by assuming that a < p - 0, meaning th B always prefers to do as well as possible in comparis while also caring directly about her payoff. That is, pe their payoffs to be high relative to others' payoffs.9 A mo lent hypothesis about distributional preferences is wha "difference aversion," and is exemplified by Loewenstei man, and Thompson [1989], Bolton and Ockenfels [2000 Fehr and Schmidt [1999]. This approach is related to e theory as classically formulated, as these models assum people prefer to minimize disparities between their ow tary payoffs and those of other people. Difference aversio sponds to a < 0 < p < 1. That is, B likes money, and pre payoffs are equal, including wishing to lower A's payoff w does better than B. Fehr and Schmidt [1999] and Bolton and Ockenfels [2000] show that difference aversion can match experimental data in ultimatum games, public-goods games, and some other games where many subjects sacrifice to prevent unequal payoffs. Yet there is considerable experimental evidence that does not match these models. Andreoni and Miller [2002], for instance, test a menu of simple dictator games where many subjects give money to subjects already getting more money, which is the opposite of difference aversion. Moreover, they interpret participants who equalize payoffs to be pursuing (what we are calling) social-welfare preferences rather than difference aversion. Our 8. Another way of writing this utility function that some readers might find more intuitive is to break it down into two cases: when 'rB iTAr, UB(ITA, 'TB) = (1 - p - Oq)Irr + (p + Oq)TA; when TrB - :ITA, UB(ITA, TB) (1 a- - Oq)rTB + (o + Oq)rwA. 9. Assuming that a - p says that the preference for gains relative to the otherperson is at least as high when behind as when ahead. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 824 QUARTERLY JOURNAL OF ECONOMICS notion of social-welfare preferences subsumes the different cases examined by Andreoni and Miller [2002], by letting the parameters take on the values 1 > p _ a > 0.10 Here, subjects alwaysprefer more for themselves and the other person, but are more in favor of getting payoffs for themselves when they are behind than when they are ahead.11 Social-welfare preferences are the twoplayer case of the more general notion, related to the ideas presented in Yaari and Bar Hillel [1984], that players want to help all players, but are particularly keen to help the person who is worst off.12 Since social-welfare preferences assume that people always prefer Pareto improvements, they cannot explain Pareto-damaging behavior such as rejections in the ultimatum game. Of course, reciprocity is a natural alternative explanation for Pareto-damaging behavior. Several models have assumed that players derive utility from reciprocal behavior, and so are motivated to treat those who are fair better than those who are not.13 Roughly put, these models say that B's values for p and u vary with B's perception of player A's intentions. Any reciprocal model must embed assumptions about distributional preferences. Rabin [1993] and Dufwenberg and Kichsteiger [1998] concentrated on modeling the general principles of reciprocity, and employed simplistic notions of fairness and distributional preferences. Falk and Fischbacher [1998] combine difference aversion and reciprocity into a model where a person is less bothered by another's refusal to come out on the short end of a split than by a refusal to share equally. Roughly put, they assume that B has preferences u < 0 < p < 1 when they feel neutral or positive toward another person, but that B's values for p and a diminish if A's behavior suggests that A assigns the 10. It is also natural to impose a 1/2, which says that B is not moreconcerned about A's payoff than his own when A is getting a higher payoff. Note that when p = V = 1/2, UB(,A, rTB) = (IA + rB)/2, so that B puts equal weight on each player's material reward. 11. Earlier studies by Frohlich and Oppenheimer [1984, 1992] similarly find that subjects reach agreements that tend to maximize total payoffs, while observing an income floor for individuals in the group. They also find statistical relationships between choices and partisan political preferences. 12. A fourth possibility (which could be labeled "equity aversion") that also fits into our framework would be to assume that a person puts more weight on a person when that person is ahead rather than behind. 13. Studies demonstrating reciprocity that cannot be explained by distributional models include Kahneman, Knetsch, and Thaler [1986], Blount [1995], Charness [1996], Offerman [1998], Brandts and Charness [1999], Andreoni, Brown, and Vesterlund [1999], and Kagel and Wolfe [1999]. Other studies, such as Bolton, Brandts, and Katok [2000] and Bolton, Brandts, and Ockenfels [1998], yield more equivocal or negative evidence regarding reciprocity. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 825 weight p - 0 to B's well-being. Importantly, Falk and Fischbac assume that B does not resent harmful behavior by A if it se to come only from A's unwillingness to come out behind r than A's selfishness when ahead. That is, B retaliates against behavior implying that A's p is too small, but not against behavior indicating that a is small or negative. An alternative hypothesis about reciprocal preferences follows naturally from social-welfare preferences: people have preferences 1 - p > a > 0 when they feelpositive or neutral toward other players, but when these others pursue self-interest at the expense of social-welfare preferences, then they decrease these weights. Reciprocity can be captured simply (and crudely) by assuming that 0 > 0: when q = - 1, indicating that A has "misbehaved" by violating the dictates of social-welfare preferences, this essentially assumes that B lowers both p and a by amount 0. In Appendix 1 we define the solution concept reciprocal-fairness equilibrium, combining social-welfare motivations and intentions-based reciprocity in a model of social-preferences in multiperson games. But the remainder of the paper concentrates on testing the simple model of this section. After explaining our experiments and presenting our results in the next section, in Section IV we discuss the fit of our data with different distributional models by assuming that 0 = 0, and in Section V we explore the role of reciprocity in our data by considering our model when 0 is not restricted. III. EXPERIMENTAL PROCEDURES AND RESULTS We report data from a series of experiments in which participants made from two to eight choices, and knew that they would be paid according to the outcome generated by one or two of their choices, to be selected at random. A total of fourteen experimental sessions were conducted at the Universitat Pompeu Fabra in Barcelona, in October and November 1998, and at the University of California at Berkeley, in February and March 1999. There were 319 participants in the Barcelona sessions and 148 participants in the Berkeley sessions. No one could attend more than one session. Average earnings were around $9 in Barcelona and $16 in Berkeley, about $6 and $11 net of the show-up fee paid. In Barcelona, 100 units of lab money = 100 pesetas, equivalent to about 70 cents at the contemporaneous exchange rate; in Berkeley, 100 units of lab money = $1. Experimental instructions are provided in Appendix 2. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 826 QUARTERLY JOURNAL OF ECONOMICS We conducted no pilot studies and report all data from experiments conducted for this project that were played for financial stakes.14 We designed the Berkeley games after examining the Barcelona results, and modified several games after observing earlier results.15 Students at Pompeu Fabra were recruited by posting notices on campus; most participants were undergraduates majoring in either economics or business. Recruiting at Berkeley was done primarily through campus e-mail lists. Because an e-mail sent to randomly selected people through the Colleges of Letters, Arts, and Sciences provided most of our participants, the Berkeley sessions included students from a broader range of academic disciplines than is common in economics experiments.16 Games 5-12 in Barcelona were played in one room, while comparison games were played in a simultaneous session in another room. The groups in the separate rooms were randomly drawn from the entire cohort of people who appeared. Parallel sessions were impractical in Berkeley, but some effort was made to run sessions at similar times of day and days of the week, to make the subject pools in different treatments as comparable as possible. In all games, either one or two participants made decisions, and decisions affected the allocation to either two or three play- 14. We also collected survey responses from Barcelona students about how they would behave in hypothetical games, some of which suggested greater difference aversion than for the games we ran for stakes, and hence to contradict our results. Since the first draft of this paper was circulated, we have run additional related experiments (for another paper) whose analysis we had not intended to and do not include in this paper. Although these are heavily confounded with reciprocity interpretations, we note that in these new data we observed a rise in the percentage of responding subjects exhibiting difference-averse behavior in three of the conditions we report on here. But by and large the new data seem to qualitatively and quantitatively support the conclusions of this paper, and we do not have data in our possession that we believe broadly contradicts any of our interpretations in this paper. 15. Specifically, Barc4 was designed after the Barc3 results were observed and was chosen to eliminate the possibility that B could believe that A's choice to enter was motivated by an expectation of higher payoffs. In addition, after the fourth Berkeley session we deleted two planned games: 1) A chooses (375,1000) or gives B a (350,350) vs. (400,400) choice, and 2) A chooses (1000,0) or gives B a (800,200) vs. (0,0) choice. We added two games: 1) A chooses (750,750) or gives B a (800,200) vs. (0,0) choice, and 2) A chooses (450,900) or gives B a (400,400) vs. (200,400) choice. With these exceptions, we designed the entire set of games in Barcelona before conducting any experiments, and designed the entire set of Berkeley experiments after we gathered results in Barcelona and before conducting any experiments in Berkeley. We did not use the results of the survey games for design purposes. 16. As a result of recruiting a smaller number of participants through an advertisement in The Daily Californian, our pool of participants also included a few colorful nonstudents. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 827 ers. In two-player games, money was allocated to players based either solely on a decision by B, or on decisions o and B. In three-player games, money was allocated to p B, and C, based either solely on a decision by C, or on dec both A and C. Participants were divided into two groups s opposite sides of a large room and were given instruc decision sheets. The instructions were read aloud to th Prior to decisions being made in each game, the outcome f combination of choices was publicly described (on the blac to the players. In games where more than one player had choices, were played sequentially. Player A decision sheets were co then B decisions were made, and the sheets were collected two cases, A decision sheets were collected, and then C Following Bolton, Brandts, and Ockenfels [1998], Bo Brandts, and Katok [2000], and Brandts and Charness each game was played twice, and each participant's role across the two plays. Participants were told before their f that they would later be playing in the other role, but (to age reputational motivations) were assured that pairin changed in each period. Except in the case of Games 1-4, participants played than one game in a session. Games were always present participants one at a time, and decision sheets were col before the next game was revealed. In the sessions wit 5-12, each participant played two games. In the Berke sions, each participant played four games. Participants kn the payoffs in only some of the games would be paid, mined by a public random process after all decisions we One of two outcomes in Games 1-4, two of four in Gam and two of eight in Games 13-32 were paid. Some aspects of our experimental design may disc comparing our results with those of other experiments. O role reversal and multiple games in sessions may have g different behavior than had each participant played just o in one game. In addition, whereas many experiments h ers make the same decision repeatedly, we had each pa make each type of decision only once. Finally, to maxi amount of data in response games, a responder (B or C told before she made her own decision about the decisions of the first mover (A). The responder instead designated a contingent choice (the strategy method of elicitation), after being told that her decision only affected the outcome if A opted to give the This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 828 QUARTERLY JOURNAL OF ECONOMICS responder the choice, so that he should consider his choice as if A's decision made it relevant for material payoffs." We do not believe that the use of either role reversal or the strategy method is an important factor in our results. Table I reports our results, organizing the games by their strategic structure and the general nature of the trade-offs involved. We label the twelve Barcelona treatments Barcl to Barcl2, where the number indicates the chronological order the game, and label the twenty Berkeley treatments as Berkl3 Berk32. In parentheses next to the game is the number of ticipants in the session. The x in Barcl0 and Barcl2 signify t C was not told her allocation before her choice, in a design mea to discourage her from comparing A's and B's payoffs with own.18 This array of games was chosen to provide a broad range simple tests that have some power to differentiate among vario social preferences. The seven dictator games isolate distrib tional preferences from reciprocity concerns, and variously all a responder to sacrifice to decrease inequality through Pare damaging behavior, to sacrifice to increase inequality and t surplus, and to affect inequality at no cost to himself. Th provide a useful range upon which to test the value of p and The twenty response games have an even wider range o options by B and a wide range of options by A. There are ga where entry by A hurts B and where entry helps B, and wh this help or harm is or is not compatible with difference avers or social-welfare preferences. We use these games as further te of the distributional models by examining both B and A behavi and can examine reciprocity by seeing how B's response depe on the choice A has forgone. To aid inferences about reciprocit we have many sets of games where B's choices are identical, A's prior choice (or lack thereof) is varied. In the next two sections we analyze our results to highlig 17. See Roth [1995, p. 323] for a hypothesis that this strategy method p sibly induces different behavior than does a direct-response method in wh players make decisions solely in response (when necessary) to other pla decisions. Cason and Mui [1998] and Brandts and Charness [2000] conduct test where it does not seem to matter much; Shafir and Tversky [1992] and Cr [2000] find some difference in the propensity to cooperate in a prisoner's dilem using the two methods. 18. We took pains to ensure that participants did not think that their beha ior influenced x. Participants were told that the actual value of x, to be rev at the end of the experiment (it was actually 500), was written on the back piece of paper that was visibly placed on a table and left untouched until th of the experiment. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 829 TABLE I GAME-BY-GAME RESULTS Two-person dictator games Left Right Berk29 (26) B chooses (400,400) vs. (750,400) .31 .69 Barc2 (48) B chooses (400,400) vs. (750,375) .52 .48 Berkl7 (32) B chooses (400,400) vs. (750,375) .50 .50 Berk23 (36) B chooses (800,200) vs. (0,0) 1.00 .00 Barc8 (36) B chooses (300,600) vs. (700,500) .67 .33 Berkl5 (22) B chooses (200,700) vs. (600,600) .27 .73 Berk26 (32) B chooses (0,800) vs. (400,400) .78 .22 Two-person response gamesB's payoffs identical Out Enter Left Right Barc7 (36) A chooses (750,0) or lets B choose .47 .53 .06 .94 (400,400) vs. (750,400) Barc5 (36) A chooses (550,550) or lets B .39 .61 .33 .67 choose (400,400) vs. (750,400) Berk28 (32) A chooses (100,1000) or lets B .50 .50 .34 .66 choose (75,125) vs. (125,125) Berk32 (26) A chooses (450,900) or lets B .85 .15 .35 .65 choose (200,400) vs. (400,400) Two-person response gamesB's sacrifice helps A Out Enter Left Right Barc3 (42) A chooses (725,0) or lets B choose .74 .26 .62 .38 (400,400) vs. (750,375) Barc4 (42) A chooses (800,0) or lets B choose .83 .17 .62 .38 (400,400) vs. (750,375) Berk21 (36) A chooses (750,0) or lets B choose .47 .53 .61 .39 (400,400) vs. (750,375) Barc6 (36) A chooses (750,100) or lets B choose .92 .08 .75 .25 (300,600) vs. (700,500) Barc9 (36) A chooses (450,0) or lets B choose .69 .31 .94 .06 (350,450) vs. (450,350) Berk25 (32) A chooses (450,0) or lets B choose .62 .38 .81 .19 (350,450) vs. (450,350) Berkl9 (32) A chooses (700,200) or lets B choose .56 .44 .22 .78 (200,700) vs. (600,600) Berkl4 (22) A chooses (800,0) or lets B choose .68 .32 .45 .55 (0,800) vs. (400,400) Barcl (44) A chooses (550,550) or lets B choose .96 .04 .93 .07 (400,400) vs. (750,375) Berkl3 (22) A chooses (550,550) or lets B choose .86 .14 .82 .18 (400,400) vs. (750,375) Berkl8 (32) A chooses (0,800) or lets B choose .00 1.00 .44 .56 (0,800) vs. (400,400) This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 830 QUARTERLY JOURNAL OF ECONOMICS TABLE I (CONTINUED) Two-person response gamesB's sacrifice hurts A Out Enter Left Right Barcll (35) A chooses (375,1000) or lets B .54 .46 .89 .11 choose (400,400) vs. (350,350) Berk22 (36) A chooses (375,1000) or lets B .39 .61 .97 .03 choose (400,400) vs. (250,350) Berk27 (32) A chooses (500,500) or lets B .41 .59 .91 .09 choose (800,200) vs. (0,0) Berk31 (26) A chooses (750,750) or lets B .73 .27 .88 .12 choose (800,200) vs. (0,0) Berk30 (26) A chooses (400,1200) or lets B .77 .23 .88 .12 choose (400,200) vs. (0,0) Three-person dictator games Left Right Barcl0 (24) C chooses (400,400;) vs. (750,37 Barcl2 (22) C chooses (400,400;) vs. (1200,0x) .82 .18 Berk24 (24) C chooses (575,575,575) vs. (900,300,600) .54 .46 Three-person response games Out In Left Right Berkl6 (15) A chooses (800,800,800) or lets .93 .07 .80 .20 C choose (100,1200,400) or (1200,200,400) Berk20 (21) A chooses (800,800,800) or lets .95 .05 .86 .14 C choose (200,1200,400) or (1200,100,400) Numbers in parentheses show (A,B) or (A,B,C) money payoffs. our central findings as they pertain to aspects of social ences discussed in the previous section. In our general a we will gloss over many plausibly important issues and a tive hypotheses about what explains the behavior we obs particular games.19 While it is of course somewhat arbit compare models on this set of games, this set clearly o greater variety of games than much of the previous literatu each pair of hypotheses about social preferences, we hav where these preferences make different predictions, and o in our experimental design was to create a diverse list o 19. In Charness and Rabin [1999] we provide endless play-by-play c tary interpreting the results, emphasizing especially how the selection we chose might affect our overall results, and discuss how hypothes arguing against could be reconciled with the observed behavior. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 831 giving scope for the widest array of social motivations to play and providing scope for the models to fail. IV. EXPLAINING BEHAVIOR BY DISTRIBUTIONAL PREFERENCES In this section we compare the power of self-interes distributional models (competitive, difference-averse, and soc welfare) to explain our data. We mostly consider how man servations in our games are consistent with the values of p a permitted by the restrictions for each type of social prefere when excluding reciprocity by imposing the restriction 0 This approach accommodates any parameter values withi relevant range restrictions, permitting individual heterog for these values without estimating specific values for the rameters. At the end of the section we analyze the data positing fixed underlying preferences which subjects implem with error, estimating the best-fit values of p and a. Table II shows the explanatory power of various mod under the appropriate restrictions for p and U.21 As we are n considering reciprocity motivations, which may influence pr ences in response games, it is most appropriate to make comp sons using only the seven dictator games. The first line indic that social-welfare preferences are far more effective tha others in explaining behavior when reciprocity issues are abs Discussing some individual dictator games provides so intuition for our findings. Berk29, in which B chooses be (750,400) and (400,400), shows that a substantial number of subjects refuse to receive less than another person when such refusal is costless, and provides the strongest evidence in our data 20. In the 19 two-person games where both players make a decision, each participant makes a choice (in separate cases) as both a first-mover and a responder. Tracking each person's combination of play might tell us something about both participants' beliefs about other players' choices, and the motivations behind their own choices. This is a potentially important source of evidence, and we present the data in Appendix 3. We discuss these data in Charness and Rabin [1999]. Beyond showing that behavior in the A role is correlated with behavior in the B role, we found relatively little of interest. Observed correlations appeared typically to be compatible with many different models. 21. Our determination of which choices are consistent with which models, upon which we base the following statistics, is shown in Appendix 4. Because we include narrow self-interest as a special case of each of the other distributional preferences, the number of choices consistent with any of these classes of preferences will be at least as large as the number consistent with narrow self-interest in games without exact ties. In the many games in which B's payoffs for his two options are the same; however, each of these models is a restriction on selfinterest, and hence the numbers we report are variously larger and smaller than the numbers for narrow self-interest. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 832 QUARTERLY JOURNAL OF ECONOMICS TABLE II CONSISTENCY OF BEHAVIOR WITH DISTRIBUTIONAL MODELS Total # Narrow Difference Social observations self-interest Competitive aversion welfare B's behavior in the 232 158 140 175 224 dictator games (68%) (60%) (75%) (97%) B's behavior in the 671 532 439 510 612 response games (79%) (65%) (76%) (91%) B's behavior in all games 903 690 579 685 836 (76%) (64%) (76%) (93%) A's behavior, any 671 636 579 671 661 predictions by A (94%) (86%) (100%) (99%) A's behavior, correct 671 466 488 603 649 predictions by A (69%) (73%) (90%) (97%) All behavior, any 1574 1326 1158 1356 1497 predictions by A (84%) (74%) (86%) (95%) All behavior, correct 1574 1156 1067 1288 1485 predictions by A (73%) (68%) (82%) (94%) for difference aversion. But note tha provides the best possible chance of difference aversion, since it eliminat thing else as a countervailing motive subjects exhibiting difference aversion our data.22 In games where pursuing P aversion would require sacrifice, we s Berk23, for instance, which tests the r of participants to reject offers of the matum-game experiments, 0 of 36 B's The remaining two-player dictator ingness to sacrifice to help A. Barc2 an between (400,400) and (750,375) provi aversion. About one-half of B's sacrific deficit with respect to A. Berk8 and B willingness by B to help A, where this difference aversion and social-welfar in behavior between Barc8 and Berkl5 22. And it should be noted that this one-third competitive preferences. 23. However, inducing negative reciprocity m choice did not lead to very high rejection rate evidence that punishment in the ultimatum gam aversion. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 833 less willing (p x .00) to sacrifice 100 to help A by 400 w doing so she receives a lower payoff than A.24,25 In this and the other comparisons in Table II, the propo of observations explained by social-welfare preferences is s cantly higher than the proportions explained by the other types of preferences. Except for the case of unrestricted A ior, all the comparisons between social-welfare prefere the other three categories would be statistically signific .00 if each observation were treated as independent.26 These proportions compare how the distributional mode in explaining all behavior. But when both choices are co with a model, its ability to match the data may merely re lack of predictive power. In this light, perhaps a more test is how well a model matches behavior when it makes a unique prediction. Note that, because each model embeds self interest, it makes a unique prediction only when there is an exac tie in payoffs or when the distributional preference matches sel interest. Table III shows how each model performs in our data in each class of choices among those choices where only one of t two choices is compatible with the model. Again, we see that social-welfare preferences substantially outperform the oth models. Line 1 shows that social-welfare preferences clearly outperform both difference aversion and competitive preferences in dictator games. Of course, one may desire a model that does better than to explain accurately the behavior in dictator games. Distributional models may be appropriate in response games where reciprocity is likely to be aroused, either because reciprocity is relatively weak or because the models are meant to be proxies for reciprocity.27 We discuss the specific findings on the various types 24. Throughout this and subsequent sections, the p-value is approximated to two decimal places and is calculated from the test of the equality of proportions, using the normal approximation to the binomial distribution (see Glasnapp and Poggio [1985]), and assuming that each binary choice is independent. As we generally have a directional hypothesis, the p-value given reflects a one-tailed test, but we use the two-tailed test (and say so) where there is no directional hypothesis. 25. A higher proportion of B's take a 100 percent share in Berk26 than in traditional dictator experiments. But the 22 percent rate observed for even splits is not unusual in a dictator game, and no intermediate split was available. 26. If we assume that each individual's choices are only one independent observation, we can calculate a minimum level of statistical significance by dividing the test statistic by /8, since we can have as many as eight observations for each individual. Doing so, we find statistical significance at p < .05 in each case except for unrestricted A behavior. 27. One possibility, for instance, is that difference aversion may not be literally correct, but may be a parsimonious proxy for complicated intentionsThis content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 834 QUARTERLY JOURNAL OF ECONOMICS TABLE III CONSISTENCY OF BEHAVIOR WITH DISTRIBUTIONAL MODELS WHEN THE PREDICTION IS UNIQUE (Entries are chances taken over total chances.) Narrow Difference Social Class of games self-interest Competitive aversion welfare B's behavior in the dictator 132/206 104/196 49/106 54/62 games (64%) (53%) (46%) (87%) B's behavior in the response 346/479 319/551 350/517 304/363 games (72%) (58%) (68%) (84%) B's behavior in all games 478/685 423/747 399/623 358/425 (70%) (57%) (64%) (84%) A's behavior, any 172/226 212/304 32/32 74/84 predictions (76%) (70%) (100%) (88%) A's behavior, correct 466/671 364/553 181/249 134/150 predictions (69%) (66%) (73%) (89%) All behavior, any predictions 650/911 635/1051 431/655 432/509 by A (71%) (60%) (66%) (85%) All behavior, correct 944/1356 787/1300 580/872 492/575 predictions (70%) (61%) (67%) (86%) of response games in the next section and Table III shows that social-welf narrow self-interest outperform diff tive preferences. Line 3 of both table B behavior. While we have emphasized B's behavior in reaching our strongest conclusions, obviously A's behavior may also be motivated by social preferences. Interpreting A behavior is more problematic, since A's perceived consequences of his choice depend on his beliefs about what B will do. One approach is to make no assumptions about what A believes B will do-and say that A's choice is consistent with a restriction on preferences if his choice is consistent given any belief about what B might do. A stronger, more common, and more tenuous way to interpret A's choices is to assume that A's correctly anticipated the empirically observed responses by B's and hence that A's made a binary choice between that expected payoff and the payoff from the outside option. Appendix 4 presents our classification of A's choices in all the based reciprocity models. However, as demonstrated by Tables II and III, and especially Table IV below, our experiments call into question even this weaker case for difference aversion. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 835 two-player response games using each of these two methods, Tables II and III assess A's behavior using both methods. Referring to Table II, under the liberal interpretation consistency, few choices by A are entirely inconsistent with an the models, but clearly difference aversion and social-we preferences do very well, narrow self-interest does a little w and competitiveness does relatively poorly. The more restr consistency interpretation seems to indicate the superiori social-welfare preferences. However, we urge caution in m this interpretation, as there are more observations where tively implausible parameter values are needed to reconci choices with social-welfare preferences than with differ aversion. The behavior by A's in our experiments helps shed light on the stylized fact, much emphasized over the years, that observed generosity by proposers in ultimatum games is not discernibly inconsistent with narrow self-interest, since "generous" offers are an optimizing response to fear of having their offers rejected by responders. It is not clear what the generalization of this fact would be beyond the ultimatum game, but the hypothesis that first-mover behavior is approximately self-interested is (as with many hypotheses) not sustainable when analyzing games besides the ultimatum game. In our data, 27 percent of A's take the action that, given actual B behavior, involved an expected sacrifice. By this measure, A behavior is less self-interested than B behavior. While this could, of course, be an artifact of misprediction by A's, note that of A's whose sacrifice helps B, 35 percent sacrificed, whereas only 15 percent sacrificed to hurt B's. This difference (179/517 vs. 22/144) is significant atp - .00. Even more directly, note that in the eight games in which A's decision to enter could only lose her money but could help B, 33 percent (92/276) sacrificed. In the two cases where entry by A could not help either player, 19 percent (10/52) entered.28 Tables II and III show that, depending on how one measures it, departures from self-interest are just as common for A's as for B's. The last two rows of Tables II and III tally up the consistency of all choices in two-player games by adding A's choices to B's 28. The eight games where entry could help B are Barc4, Barc6, Barc7, Barc9, Berkl4, Berkl9, Berk21, and Berk25; the two games where it hurts (given B's actual behavior) both are Berk30 and Berk32. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 836 QUARTERLY JOURNAL OF ECONOMICS TABLE IV B's SACRIFICE RATE BY EFFECT ON INEQUALITY Sacrifices/ Probability Class of games chances of sacrifice Games allowing Pareto-damage 59/357 17% Decreases inequality 34/228 15% No effect on inequality 4/35 11% Increases inequality 21/94 22% Games where sacrifice helps A 199/546 36% Decreases inequality 99/212 47% No effect on inequality 8/68 12% Increases inequality 92/266 35% All games 268/903 30% Decreases inequality 133/440 30% No effect on inequality 12/103 12% Increases inequality 123/360 34% Games allowing Pareto damage are 5, 7, 11, 22, 23, 27, Games in which a sacrifice helps A are 1, 2, 3, 4, 6, 8, choices in the second row, and me of the two methods discussed above.29 Table IV shows a useful way to parse our results to help see why difference aversion performs poorly, breaking down both Pareto-damaging and helpful behavior by B into its effects on inequality. Overall, B's engage in Pareto-damaging behavior in 17 percent of their opportunities to do so. More interestingly, in our sample B's are less likely to cause Pareto damage when this decreases inequality than when Pareto damage increases inequality. We do not believe that this would be the pattern more generally, but combined with the overwhelming confound between inequality reduction and Pareto-damaging behavior even in previous research that disentangles Pareto damage from negative reciprocity, this further calls into question the strong link implied by difference-aversion models between sacrifice and inequality-reduction. B sacrifices to help A 36 percent of the time when he has the 29. As the number of participants in each game varied, our percentages in Tables II and III (and elsewhere) could be correspondingly influenced by weighting different games differently. Thus, we also checked these percentages by assigning an equal weight to each game form. We find that the percentages changed very little-with this approach, the penultimate row of Table II becomes 84 percent, 73 percent, 87 percent, 94 percent, and the last row becomes 73 percent, 67 percent, 82 percent, 94 percent. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 837 TABLE V DISTRIBUTIONAL MODELS AS EXPLANATIONS FOR B'S SACRIFICE Sacrifices/ Probability Class of games chances of sacrifice All games where B can sacrifice 213/737 29% When sacrifice is... Consistent with competitive 10/156 6% Inconsistent with competitive 203/581 35% Consistent with DA 108/332 33% Inconsistent with DA 105/405 12% Consistent with SWP 191/478 40% Inconsistent with SWP 22/259 8% Consistent with DA but not SWP 9/120 8% Consistent with SWP but not DA 92/266 35% Games where B can sacrifice are 1, 2, 3, 4, 6, 8, 9, 11, 13, 14, 15, 17, opportunity to do so. There is a signific between helping behavior and whether s decreases inequality, consistent with the p ference aversion and social-welfare pref overall, 34 percent of inequality-increas rifice are taken, however, indicates muc social-welfare preferences than for dif flected in the statistics reported in Tab A final test of the consistency of ou distributional models is to parse results ac different models predict sacrifice behavio where B is indifferent. This can provi strength of the different social motivatio tions conflict with self-interest. Table V also directly compares social-welfare pr aversion when the two models make dif sacrifice.30 Table V shows that B sacrifices 40 percent of the time when doing so is consistent with social-welfare preferences, but only 8 percent of the time when a sacrifice is inconsistent with socialwelfare preferences. The last two rows strongly suggest that social-welfare preferences play a more prominent role in B's decision to sacrifice money, although caution must be used, since in 30. It is clear that competitive preferences do a poor job of explaining sacrifices by B. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 838 QUARTERLY JOURNAL OF ECONOMICS our set of games the average sacrifice needed to promote difference aversion is greater than that needed to promote socialwelfare preferences.31 If interpreted as error-free reflections of stable behavior, these experiments that test distributional preferences when no self-interest is at stake indicate that something like 70 percent of choices can be attributed to social-welfare-maximization, 20 percent to difference aversion, and 10 percent to competitiveness. Results from Charness and Grosskopf [2001], in which a small amount of money was at stake, are perhaps even more telling. While 67 percent of 108 subjects chose (Other, Self) payoffs of (1200,600) over (625,625), only 12 percent chose payoffs of (600,600) over (1200,625). That is, of the two-thirds of subjects who had social-welfare rather than difference-averse or competitive preferences, virtually all were willing to sacrifice 25 pesetas to implement those preferences. Of the one-third of subjects who had either difference-averse or competitive preferences, twothirds were unwilling to sacrifice 25 pesetas to implement those preferences. Our comparisons of models above assume that all behavior reflects stable underlying preferences of the individual, and then analyzes the frequency of different preferences that can explain the data. We turn now to an approach to summarizing our data that assumes that all subjects share a fixed set of preferences, and that observed behavior corresponds to individuals implementing those preferences with error. The likelihood of error is assumed to be a decreasing function of the utility cost of an error. We estimate the population means for p and a in the Section II equations (excluding reciprocity as an explanatory variable by imposing the restriction 0 = 0) by performing maximum-likelihood estimation on our binary-response data using the logit regression 31. Similar evidence from elsewhere also supports our findings about the relative frequency of behavior consistent with social-welfare preferences, difference aversion, and competitiveness. Charness and Grosskopf [2001] found that while about 33 percent of subjects chose (Other, Self) allocations of pesetas of (600,600) over (900,600), about 11 percent of subjects chose (Other, Self) allocations of (400,600) over (600,600). This suggests that about one-third of subjects who chose to equalize payoffs when behind are competitive rather than difference averse. In a variant where each of 108 choosers receives 600 but can choose any payoff for the other person between 300 and 1200, 74 percent chose 1200, 7 percent chose a number between 600 and 1200, 10 percent chose 600, and 8 percent chose a number less than 600. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 839 e u(acttonl)P(action 1) actol + act (action2) P(action 1) = e-y u(acton 1 ey -u(action2) to determine the values that best match predicted probabilit play with the observed behavior. The precision parameter flects sensitivity to differences in utility, where the higher value of y, the sharper the predictions (see McFadden [1 When y is 0, the probability of either action must be 50 per when y is arbitrarily large, the probability of the action yie the highest utility approaches 1. We estimate the values in these equations by imposing ther restrictions on parameters implied by the variety of m that can be encompassed within this framework, using th for B behavior in all games.32 Since we have the same numbe observations in each case, in addition to observing the esti value of y in each of our models, we can compare the loghood values to gain some insight into the explanatory po the parameters and the models. This approach allows us to compare models that make ferent predictions about the parameter values, and to investi the power of different models and the costs of the restriction impose. While the allowance for "noise" in maximizing ut provides a proxy of sorts for the heterogeneity that cer exists among participant's parameter values, it does so o crudely.33 As such, we believe that our regression results pr a strong indication of general patterns in our data and help s among models, but are not adequate for grasping an acc sense of the relative frequency of preferences that describe sets of the subjects. Moreover, while we have chosen a br array of games than any previous papers with which we familiar, as with all previous empirical tests of social-prefer models, the fitted values for these parameters is influenced b choice of games to study. Table VI reports the regression results for a variety of dif ent restrictions on the parameter values. In the first line report how well the pure self-interest model fits the dat rather low level of precision, as measured by either -y log-likelihood, serves as a benchmark for the other mode 32. We follow an approach similar to that used in Charness and Haru [1999]. 33. Estimation of separate p and a values for each individual would be difficult, since the number of observations for each individual is little more than the number of parameters to be estimated. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 840 QUARTERLY JOURNAL OF ECONOMICS TABLE VI REGRESSION ESTIMATES FOR B BEHAVIOR (N = 903) Model Restrictions p a 0 y LL Self-interest p = 0 = 0 - - - .004 -593.4 (9.07) Single parameter-- p = , 0 = 0 .212 .212 - .005 -574.5 "altruism" (7.20) (7.20) (8.65) Single parameter- p = 0 = 0 .118 - .004 -591.5 "behindness aversion" (1.76) (8.53) Single = 0 = 0 .422 - - .014 -527.9 parameter-"charity" (25.5) (11.6) p,a model without 0 = 0 .423 -.014 - .014 -527.7 reciprocity (25.5) (-0.73) (11.6) "Reciprocal charity" = 0 .425 - -.089 .015 -523.7 (27.9) (-2.98) (11.3) p,a model with none .424 .023 -.111 .015 -523.1 reciprocity (28.3) (1.10) (-3.11) (11.6) t-statistics are in parentheses y is the precision parameter, and L Games where A's entry is SWP-misbehavior are 1, 5, 11, 13, 22, 2 next three lines report on three differe additional parameter to account for a pe payoffs of others. On line 2, we investig model that has been employed sporadic economists-that says B cares about a we payoffs and A's payoffs. This model has cl beyond the pure self-interest model, lowe and marginally raising y. The estimation best-fit single parameter has B putting sig on A's payoff. Lines 3 and 4 examine how well a model would fit if we restricted a person's concern for the other to the case where, respectively, she is behind the other or she is ahead. Line 3 imposes the restriction that p = 0, accommodating the model developed by Bolton [1991] to match the data in the ultimatum and other bargaining games. The results show that this model 1) does significantly worse than the simple altruism model, and has no significant explanatory power beyond pure self-interest, and 2) that the best fit value of u is positive, rather than negative as posited by Bolton.34 As argued in different ways above, this too 34. But it is only marginally significant, and it seems clear that it is significantly greater than 0 only because of the imposed restriction that p = 0. In some This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 841 helps indicate that those models built on the assumption that 0 do not usefully organize the data on broad sets of games wh this hypothesis for Pareto-damaging behavior is not confou with other explanations. Line 4 tests the "charity" model, w posits that people only care about the payoff of those others receive less than they do. As can be seen, this model does sign cantly better than altruism or pure self-interest, indicating t there is indeed much less concern for those who are getti better payoff. Indeed, Line 5, in which we estimate the linear distributio model without restrictions, explains the data no better tha charity model does. The estimated value of a is very small insignificantly different from 0, so that the estimate of p is v ally identical whether or not u is included. Along with the sm changes in the log-likelihood and y estimates, we see that nei difference aversion nor social-welfare preferences are sig cantly better models of distributional preferences than the s pler charity model. Overall, the major gains in explanatory power come f allowing p to vary independently of a. In lines 4-6 the lo likelihood is much better, and the precision is much greater. 4 indicates that people tend to be charitable toward those who less fortunate, but feel different when such charity woul increase the minimum of the players' material payoffs. Li and 5 together show that (overall, and absent A's misbehavior is not much of a driving force in our games. Removing the res tion that u = 0 gains us very little: although the likelihood goes down slightly, a significance test gives x2 = .54, far from 5 percent significance level of 3.84. Thus, any explanation nonpecuniary behavior that relies upon u being typically nega seems inadequate. V. THE ROLE OF RECIPROCITY In this section we analyze our results in terms of evidence for reciprocity. We designed our experiments so as to have many examples of games with identical choices for B following different choices by A, or no choice by A. By comparing the selection B makes from identical choice sets as a function of the choice A games either parameter could explain behavior, and hence it appears that a is reflecting the positive value of p in those games. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 842 QUARTERLY JOURNAL OF ECONOMICS previously did or did not make, we gather very direct evidence on the role of reciprocity in explaining responder behavior. We first discuss specific games to give an intuitive sense of the behavior observed. We then present some aggregate statistics examining B's response as a function of A's behavior, and conclude the section with regression analysis estimating the reciprocity parameter 0 in the model of Section II. Our three games in which B chooses between (750,400) and (400,400) are especially informative: Games with the choice between (400,400) and (750,400) (400,400) (750,400) Berk29 (26) B chooses (400,400) vs. (750,400) .31 .69 Barc7 (36) A chooses (750,0) or lets B choose .06 .94 (400,400) vs. (750,400) Barc5 (36) A chooses (550,550) or lets B choose .33 .67 (400,400) vs. (750,400) Most interesting is the difference between Barc7 and Berk29, which is significant at p - .00. This comparison can be seen as testing the relative strength of positive reciprocity versus difference aversion when self-interest is not implicated. In contrast to the 31 percent of B's who choose (400,400) in the dictator game Berk29, only 6 percent do so following a generous move by A.35 Because B's choice between (750,400) and (400,400) is a strong invitation to B to pursue difference aversion, and (as we show below) positive reciprocity is nowhere else a strong motivation in our data, the weakness of difference aversion here indicates that it is not a strong factor when in conflict with other social motivations. The results from Barc5 surprised us, as B's were no more likely than in Berk29 to choose (400,400). Punishment for the unfair entry by A would be free here, yet is not employed. Turning to games where B can sacrifice to help A, consider first those games letting B choose between (400,400) and (750,375). Games with the choice between (400,400) and (750,375) (400,400) (750,375) Barc2 (48) B chooses (400,400) vs. (750,375) .52 .48 35. Note that the dictator version was in Berkeley, not Barc did not run a (400,400) vs. (750,400) dictator game in Barcelona, Grosskopf result of 34 percent vs. 66 percent in the (600,600) vs. game in Barcelona was quite similar to the 31 percent vs. 69 Berk29. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 843 Berkl7 (32) B chooses (400,400) vs. (750,375) .50 .50 Barc3 (42) A chooses (725,0) or lets B .62 .38 choose (400,400) vs. (750,375) Barc4 (42) A chooses (800,0) or lets B .62 .38 choose (400,400) vs. (750,375) Berk21 (36) A chooses (750,0) or lets B .61 .39 choose (400,400) vs. (750,375) Barcl (44) A chooses (550,550) or lets B .93 .07 choose (400,400) vs. (750,375) Berkl3 (22) A chooses (550,550) or lets B .82 .18 choose (400,400) vs. (750,375) The games in which B chooses between (400,400) and (750,375) provides the starkest illustration of our two main findings about reciprocity. A large percentage of B's here are willing to sacrifice to pursue the social-welfare-maximizing allocation when they feel neutral toward A's. There is clearly no evidence of positive reciprocity in comparing Barc2 and Berkl7 to Barc3, Barc4, and Berk21.36 B is in fact less likely to sacrifice in pursuit of the social-welfare-maximizing outcome following kind behavior by A than in the dictator context (the difference is collectively significant in a two-tailed test at p .14). However, we see evidence of concern withdrawal: B is likely to withdraw his willingness to sacrifice to give the social-welfare-maximizing allocation to A if A has behaved selfishly. Comparing within subject pools, the percentage of B's who sacrifice to help A following a selfish action drops from 48 percent to 7 percent (from Barc2 to Barcl) and from 50 percent to 18 percent (from Berkl7 to Berkl3). These differences are both significant at p < .01. The lack of positive reciprocity also shows up when comparing Barc6 to Barc8, the games where B chooses (300,600) vs. (700,500) and (200,700) vs. (600,600), and Berkl5 to Berkl9. Games where B chooses between (300,600) and (700,500) (300,600) (700,500) Barc8 (36) B chooses (300,600) vs. (700,500) .67 .33 Barc6 (36) A chooses (750,100) or lets B choose .75 .25 (300,600) vs. (700,500) 36. We note in passing that this lack of positive reciprocity is consistent with results from trust games (e.g., Berg, Dickhaut, and McCabe [19951) and giftexchange games, which are often interpreted as positive reciprocity. The decision by responders to "return" some money given to them seems typically consistent with the type of sharing we find in dictator games. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 844 QUARTERLY JOURNAL OF ECONOMICS Games where B chooses between (200,700) and (600,600) (200,700) (600,600) Berkl5 (22) B chooses (200,700) vs. (600,600) .27 .73 Berkl9 (32) A chooses (700,200) or lets B choose .22 .78 (200,700) vs. (600,600) The set of games where B chooses between (400,400) and (0,800) provides a confusing picture about the role of positive reciprocity. Games where B chooses between (0,800) and (400,400) (0,800) (400,400) Berk26 (32) B chooses (0,800) vs. (400,400) .78 .22 Berkl4 (22) A chooses (800,0) or lets B choose .45 .55 (0,800) vs. (400,400) Berkl8 (32) A chooses (0,800) or lets B choose .44 .56 (0,800) vs. (400,400) The results from Berkl4, where 55 percent choose (40 (0,800) in contrast to the 22 percent who choose (400, dictator game Berk26, significant at p .01, would seem to indicate positive reciprocity. But the results from Berkl8 call this interpretation into question. We thought B's willingness to sacrifice would be roughly equal to that in the dictator version of the game, but it is much greater, significant at p z .01.37 Our final grouping of games where B's payoffs are identical were meant to test difference aversion as an explanation of Pareto damage in a simplified form of the ultimatum game. Games where B chooses between (800,200) and (0,0) (800,200) (0,0) Berk23 (36) B chooses (800,200) vs. (0,0) 1.00 .00 Berk27 (32) A chooses (500,500) or lets B choose .91 .09 (800,200) vs. (0,0) Berk31 (26) A chooses (750,750) or lets B choose .88 .12 (800,200) vs. (0,0) Zero of 36 subjects chose the (0,0) outcome outside text of retaliation, while 6/58 chose (0,0) in the two t where retaliation is a motive. The difference between Berk23 and each of the other two games is significant separately at p < .06. 37. The only sense we can make of this is that A has unambiguously stated a preference against the (0,800) payoff, reducing B's ability to rationalize taking everything. However, this is a weak explanation, and we are puzzled by this result. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 845 TABLE VII B's RESPONSE AS A FUNCTION OF A's HELP OR HARM Probability Class of games Sacrifices/chances of sacrifice All games allowing Pareto-damage 59/357 17% A has helped B 2/36 6% A has had no play 8/62 13% A has hurt B 49/259 19% All games where sacrifice by B helps A 199/546 36% A helped B 100/278 36% A had no play* 88/202 44% A hurt B in violation of SWP 7/66 11% * We include Berkl8 in this classification, since A's decis But together with Barcll and Barc can sacrifice to hurt A, we find rela ity. In all of these games, B has the following what we felt would be per decision by A. Games where B can punish A for negative reciprocity. As in Barc5, we ings in Berk28 and Berk32. In each action by A could be punished for percent of Bs do so. Doing so cont ences in Barc5 and both social-welfar aversion in Berk28 and Berk32. Th our results: for whatever reason, w stances of retaliatory decreases in benefited the retaliators materially.3 As a first pass at summarizing th Table VII specifies a distributional positive sacrifice in terms of how A when A hurts B, B is more likely t more likely to withdraw willingne difference in Pareto-damaging B b when A hurts B is significant at 38. Perhaps the way our games are frame take-it-or-leave-it aspect of the ultimatum forgone payoff design (e.g., Brandts and S bacher [1999] should also share this problem 80/20 proposals. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 846 QUARTERLY JOURNAL OF ECONOMICS when A hurts B and when A either has no play or helps B is also significant at p : .02. B sacrifices to help A 36 percent of the time when he has the opportunity to do so. The data support the view that positive reciprocity plays little role in helping behavior, and that negative reciprocity, particularly concern withdrawal, does play a role. The table crystallizes the fact that our data show that a nice prior choice by A is less likely to yield nice treatment by B than is no choice by A at all-reducing helping behavior from 44 percent to 36 percent. By contrast, when A has hurt B, helping behavior reduces to 11 percent. Hence, we see that violation of socialwelfare norms plays a stronger role in determining when a person sacrifices to help another player than it plays in determining when a player sacrifices to harm another. While involving only two games and 66 observations, this last comparison forms part of the basis for our incorporation of "concern withdrawal" as the primary form of reciprocity in our formal model developed in Appendix 1. To give a more precise analysis of the role of reciprocity, consider the bottom two lines of Table VI, which remove the constraint on our regression analysis that 0 = 0, the parameter measuring how "social-welfare misbehavior" by A affects B's weight on A's payoff. The level of precision (y) is much higher for each of these reciprocity regressions than for the self-interest model regression. More importantly, lines 5, 6, and 7 together show that reciprocal motivations play a greater role in behavior than do nonreciprocal preferences to either help or hurt those who are ahead.39 Comparing lines 5 and 7 shows that the estimate of 0 is significantly negative; the likelihood-ratio test gives X2 = 9.18 (p ; .00).40 Note that this is much stronger than allowing a to vary; comparing lines 6 and 7, for instance, does not produce a substantial difference: the other parameter values do not change much, and the likelihood-ratio test gives x2 = 1.26 (not significant, p .27). Once one includes reciprocity in the regres- 39. Although our definition of "misbehaved" builds on social-welfare preferences, we note that results are quite similar when q reflects misbehavior by difference-aversion standards, as built into the reciprocity model developed by Falk and Fischbacher [1998]. While games such as Berk28 and Berk32 look highly suggestive to us as indications that it is violations of social-welfare preferences that trigger retaliation, our formal analysis does not support either model against the other. 40. Although the multiple-observation caveat to statistical significance may still apply, a comparison between the likelihood-ratio tests nevertheless indicates that allowing 0 to be nonzero has a much greater impact than allowing a to be nonzero. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 847 sions, allowing for players with lower payoffs to care (po intrinsically about the payoff of the other player has som not much, explanatory power. All said, an analysis over a broad range of games in that reciprocity considerations are an important comp behavior. VI. MULTIPERSON GAMES Although we emphasize two-player distributional preferences throughout the paper, we also ran several games with three players, whose results shed light on the issues discussed in previous sections, and on hypotheses specific to three-player games. While the model discussed in Section II and tested above relates to two-person games, it is motivated by the more general multiperson model that is outlined in Appendix 1. Of special interest in multiperson models are questions about how players feel about changes in the distribution among others' payoffs. We presume that B cares more about A's payoff when A earns less than B than when A earns more. This is the two-player projection of the more general notion that (absent negative reciprocity and in addition to self-interest) people like to improve the payoffs of everybody, but are more concerned about raising the payoffs of those with lower payoffs. In simplified and extreme form, they like to maximize the minimum payoff among players. Barcl0 and Barcl2 offer a test of people's "disinterested" views of fairness. The results indicate that people care about both the total surplus and the minimum payoff among others. In both cases, many subjects chose to increase total surplus at the expense of minimum payoff, while others chose to maximize the minimum payoff. The results in Barcl0 are of special interest in light of our two-player results. Our results above show that about 50 percent of B's choose (400,400) over (750,375), consistent with those subjects being different-averse, self-interested, or competitive. None of these motivations would explain the choice by C's to choose (400,400), suggesting that a good proportion of Bs are choosing (400,400) for "disinterested" social-welfare reasons rather than just to get more money. Barcl0 and Barcl2 together show that social efficiency is not the only distributional driving force, as (1200,0,x) is more socially efficient than (750,375,x), but is chosen much less frequently (p - .01). Bolton and Ockenfels [2000] assume that social preferences extend only to the average payoff of all other players, so that This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 848 QUARTERLY JOURNAL OF ECONOMICS people are unconcerned with the distribution of those payoffs. Bolton and Ockenfels [1998, 2000] provide examples from Gtith and van Damme [1998] and elsewhere, in which players seem relatively unconcerned with the distribution of payoffs among other parties. Because we did not believe that rejections in the ultimatum game are a manifestation of distributional preferences rather than reciprocity, and more generally found it surprising to posit that subjects were indifferent to the allocations among others, we designed Berk24 as a simple and direct test of their hypothesis.41 Berk24 demonstrates that subjects care about the allocation among other parties: 54 percent of the participants sacrificed 25 to equalize payoffs with each of the other players, without changing the difference (zero) between a player's own payoff and the average of other players. Under the assumption that virtually no participants would (without reciprocal motivations) choose (575,575,575) over (600,600,600), these results are consistent with both socialwelfare preferences and Fehr and Schmidt's [1999] difference aversion, but are inconsistent with Bolton and Ockenfels' [2000] difference aversion. Since the sacrifice involved is small, it may be hard to say how strong the motive is. In the context of our other results, however, we are not inclined to call it small: 54 percent is a higher proportion than we found are inclined to sacrifice nothing to eliminate disadvantageous inequality against themselves. Hence, our results suggest that people are more concerned about this aspect of the distribution among other players' payoffs than about equalizing the self-other payoffs in the sense captured by difference-aversion models. Finally, our two three-person response games also offer strong evidence of reciprocity in responder behavior. Berkl6 and Berk20 test the explanatory power of distributional preferences versus reciprocity, disentangled from self-interest. In both games, C receives a payoff of 400 regardless of her choice, and has identical choices among the distribution of the other two players' 41. Kagel and Wolfe [1999] designed a clever variant of a three-person ultimatum game and find a form of insensitivity to third-party allocations when the Bolton and Ockenfels [2000] and the Fehr and Schmidt [1999] models of difference aversion predict high sensitivity to these allocations. The clear interpretation of Kagel and Wolfe's [1999] data is that the observed insensitivity to payoff distributions is due not to the functional form of difference aversion (as claimed by Bolton and Ockenfels [2000]), but rather because difference aversion in any form does not explain the behavior they discussed. Nevertheless, the willingness of participants to assign (as a consequence of a rejection) low payoffs (in their experiment 2) to innocent third parties also goes against social-welfare preferences, and can only be rationalized as a strong willingness to punish the proposer. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 849 payoffs-1200 and 100, or 1200 and 200. While the differe aversion models make different predictions in these two g the evidence shows that all of the models are wrong. Notice the proportion of C's choosing the 1200/400/100 combination the 1200/400/200 combination jumped from 14 percent percent when the choice meant A would get the low payoff in of B. C's were unhappy with A's greed, and chose to give lower payoff irrespective of the distributional consequences, ishing A's 83 percent of the time overall. This difference in c is significant at p .00. Because the differences in distribu consequences of behavior were minor, we do not consider good test of the relative strength of distributional versus rec ity motivations. Rather, it shows that reciprocity can overw distributional concerns in some circumstances. VII. SUMMARY AND CONCLUSION This paper continues recent research delineating the nature of social preferences in laboratory behavior. Our results suggest that the apparent adequacy of recent difference-aversion models has likely been an artifact of powerful and decisive confounds in the games used to construct these models.42 We find a strong degree of respect for social efficiency, tempered by concern for those less well off. Our data are rich and complicated. We have not analyzed them exhaustively, nor incorporated all observed patterns into our formal models. We have not tested for individual differences and correlation across games, and neither our analysis nor our model deals with heterogeneity of subject preferences. Nor does our model capture evidence in the data for what might be called a complicity effect: the mere fact of one player being involved in a decision seems to make the other player more self-interested. Perhaps impulses toward prosocial behavior are diminished when an agent does not feel the full responsibility for an outcome.43 42. Our view that difference aversion is unlikely to prove to be a strong factor in laboratory behavior does not mean that we believe comparable phenomena are unimportant in the real world. Indeed, we suspect the inherent limitations of laboratory experiments prevent full realization of phenomena-such as jealousy, envy, and self-serving assessments of deservingness-that are likely to create de facto difference aversion in the real world. On the other hand, there is also reason to believe that experimental settings may exaggerate difference aversion since the very nature of the careful, controlled designs and use of monetary rewards makes relative payoffs salient. 43. See Charness [2000] for a discussion of responsibility alleviation, and a review of papers with evidence related to the phenomenon. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 850 QUARTERLY JOURNAL OF ECONOMICS One benefit of the sort of simple games we study is that it is easier to discern what subjects believe are the consequences of their actions. But even in our simple games-and inherently in games with enough strategic structure to make reciprocity motives operative--we could not reach sharp conclusions about the motivations of first movers because we could not be sure how they thought the responders would play. Hence, we feel one avenue for experimental research would be to design ways to more directly discern participants' beliefs about the intentions or likely behavior of other subjects.44 Most of our evidence strongly replicates others' findings that positive reciprocity has virtually no explanatory power in many of the conventional games studied. Yet the data from one game call into question the generality of this conclusion. In the game Barc7, the reader will surely recall, A can forgo a (750,0) outcome to give B the choice between (750,400) and (400,400). Only 6 percent of Bs choose (400,400). This is only one game in one session with 36 subjects, but the findings are provocative: together with the fact that 30 percent choose (400,400) following either no move or a nasty move by A, the 6 percent suggests a possible form of positive reciprocity that may be very strong compared with difference aversion. Will subjects who have just been treated kindly engage in petty acts of Pareto damage just to equalize payoffs? Our suspicion is that the answer is broadly "no." Even if researchers eventually conclude that many subjects are difference-averse when neutral, it may be necessary to develop models where positive feelings toward another subject can lead them to be unwilling to harm that subject in pursuit of difference aversion. We are especially keen to understand the behavior of subjects in Barc7 and games like it because we think they are a simplified form of very common social and economic situations: a "wealthy" party can do something for a less well-off party and hope that second party will not take advantage of a chance for petty, lowcost punishment just to hurt her. Indeed, we suspect situations resembling this game are far more common in the real world than in situations resembling the ultimatum game. Such games capture phenomena such as employer-employee bargaining, where any accepted take-it-or-leave-it wage offer by an employer will be followed by opportunities for employees to undermine or to en- 44. For example, Dufwenberg and Gneezy [2000] measure both A's expectation about B behavior and B's expectation about the expectation of A; they find that B's expectation of A's expectation is positively correlated with B's response. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 851 hance the employer's profits. More generally, opportuniti affect another's payoff at small cost to oneself is important e nomically, and suggests that reciprocity motives are like loom large. All said, it is clear that a broad array of additional games and methods would be useful for studying social preferences. Clearly, more research funding is needed. APPENDIX 1: A MORE GENERAL MODEL In Appendix 1 we construct a model that integrates socialwelfare preferences with reciprocity--both concern withdrawal and negative reciprocity-into a multiperson model of social preferences. This model gives an interpretation of the underlying motives that play a role in the two-player games, as well as extending our analysis to more than two players. The model we develop omits the many other factors that seem to play a role in some subjects' choices, and presents general functional forms allowing many degrees of freedom. Moreover, the model is complicated, as it formulates reciprocity as a de facto psychological Nash equilibrium as defined in the framework developed by Geanakoplos, Pearce, and Stacchetti [1989]. All said, we do not see it as being primarily useful in its current form for calibrating experimental data, but rather as providing progress in conceptualizing what we observe in experiments. We first define reciprocity-free preferences in two steps, and add the reciprocity component later. First, consider a "disinterested" social-welfare criterion: W('f1,'fi2, . . . , N) = 8 min [il1,2, ... , TNI + (1 - )(lrr, + ( T2 + 2 + '-N), where 8 E (0,1) is a parameter measuring the degree of concern for helping the worst-off person versus maximizing the total social surplus.45 Setting 8 = 1 corresponds to a pure "maximin" or "Rawlsian" criterion, whereby social welfare is measured solely according to how well off the least well off is. Setting 8 = 0 corresponds to total-surplus maximization. Now consider Player i's payoffs as a weighted sum of this 45. It would be more realistic (but more complicated) to assume that people care about not just the lowest payoff, but the full distribution of payoffs, giving more and more weight to the well-being of those with lower and lower payoffs. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 852 QUARTERLY JOURNAL OF ECONOMICS disinterested social-welfare criterion (which includes his own payoff) and his own payoff: V,(rl1,7r2,. ,TN)- (1 - )' + X'[2min [ rr2,...,rN + (1 - 8) ' (1 + + 2 +' '" + g), where X E [0,1] measures how much Person i cares about pursuing the social welfare versus his own self-interest. Setting X = 1 corresponds to purely "disinterested" preferences, in which players care no more (or less) about her own payoffs than others' payoffs, and setting X - 0 corresponds to pure self-interest. To see the connection between these preferences and the two-player specification of Section II when we ignore reciprocity, note that the above formulation reduces to VB('TA,'TB) (1 - XB)T+B + XSAA when rB - 7A, VB(1rA,TB) TB + X(1 - 6)7TA when B- TB 7A. If we normalize these two equations by dividing by 1 + X(1 - 8), so that as in the Section II model VB = TB when TB, = A, we see that p = X/(1 + X(1 - 8)) and a u (1 - 8)/(1 + X(1 - 8)). These equations have a natural interpretation. When X increases (meaning B puts more weight on the social good and less on his own material payoffs), both p and a increase. When 8 increases (so that B puts relatively more weight on the maximin component and less on total surplus), then p increases and a decreases. That is, both parameters move in the direction of more concern for the person who has a lower payoff, whether this is A or B. Indeed, looking at p/u = 1/(1 - 8) makes this even clearer. Increasing p and a by the same proportion indicates a decrease in self-interestedness, X, whereas increasing the ratio indicates an increase in 8. Before defining the full model that incorporates reciprocity, we first define an equilibrium notion based just on these socialwelfare preferences. To put preferences in the context of games, let Ai by Player i's pure strategies, S, be Player i's mixed strategies, and Si xjiSj be the set of strategies for all players besides Player i. The material payoffs are determined by actions taken, where 7ri(al, . . . , aN) represents Player i's payoffs given actions (a1, . . . , aN). DEFINITION. For given parameters (N,6) E [0,1], a social-welfare equilibrium (SWE) of the material game (A1, . . AN; IT, . . . , ITN) is a strategy profile (s, . . . , SN) that This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 853 corresponds to Nash equilibrium of the game (A1, . . . Vj(rr), . . . , VN('r)), where Vi(ur) is Player i's (Xh,)-s welfare utility function. Because r1, . .. , ar are continuous in the players' acti the functions Vi(ir) are well-defined and continuous in the p ers' actions, a SWE always exists. In both reciprocity-free ronments, where players are unlikely to be motivated by rec ity, and in "simple-model environments," where researchers the most tractable model possible, SWE can provide mor planatory power than other distributional models.46 Bu also serves as a foundation for our reciprocity model. In with an important restriction placed on the parameters o model, every SWE will be an equilibrium in our full recip model. To begin to incorporate reciprocity, consider a strategy profile s - (s1,S2, . . . , S,), as well as a demerit profile, d = (d,, . dn), where dk E [0,1] for all k. Below, d will be determinedendogenously. For now, dk can be interpreted roughly as a measure of how much Player k deserves, where the higher the value of dk, the less others think Player k deserves. With this interpretation, we define players' preferences as a function of both their underlying social-welfare preferences and how they feel about other players: U,(s,d) (1 - X) n-, + X [. - min [Ir,, minm, {(rrm + bdm}] + (1 - ws) 4r, + L max [1 - kdm,O]Trm -f dmnTrm , where b, k, and f are nonnegative parameters of the model. The key new aspect to these preferences is that the greater is dj forj f i, the less weight Player i places on Playerj's payoff. Hence, these preferences say that the more Player i feels that a Player j is being a jerk, the less Player i wants to help him. When the parameter f is positive, Player i may in fact wish to hurt Player j when Player j is being a jerk. The nature of these preferences 46. As with other distributional models, one could readily define a range of solution concepts with respect to social-welfare preferences. Both refinements of Nash equilibrium (such as subgame-perfect Nash equilibrium) and less restrictive concepts (such as rationalizability) can be applied directly to the transformed games. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 854 QUARTERLY JOURNAL OF ECONOMICS can be seen most starkly by setting f = 0 and assuming that b and k are very large. Then the preferences Ui(s,d) imply that Player i maximizes the disinterested social-welfare-maximizing allocation among all those other players for which dj = 0-that is, among all the deserving others-and ignores the payoffs among those who are undeserving. We begin endogenizing the demerits d by defining, for every profile of strategies si and demerits d-i for other players, and every g E [0,1], the set of Player i's strategies that would maximize her utility if she put weight g on the social good and weight 1 - g on her own payoff: S*(s-,,d_,;g) fs, ES, s, E argmax (1 - g)?r, + g 8 min [,rr, minm,l {ITm + bdm}l + (1 - )L .nT j- k dm'TmT - fm dm 1mT ,n M.f i M:A where -r is the profile of material payoffs. "Typically," S*(si,d_i,g) will be a singleton set. The material payoffs are afunction of players' actions, and hence strategies; we suppress this fact in our notation. We let gi(s,d) be some upper hemi-continuous and convexvalued correspondence from (s,d) into the set [0,1] such that gi(s,d) {glsi E S((s_ ,d _,g)}.47 The function gi(s,d) will serve as a measure of how appropriately other players feel that Player i is behaving when they determine how to reciprocate. It can be interpreted as the degree to which Player i is pursuing the social 47. More exactly, for values (s,d) where (gIs' E ST(s',,d' ,,g)) is nonempty for all (s',d') in a large-enough neighborhood of (s,d), then g,(s,d) = {gIs, E S*(s_,,di,g)). The full definition of g,(s,d) is as follows. Let e(s,d) be theneighborhood around (s,d) with all components within E > 0 of (s,p). We then let g,(s,d) be any upper hemi-continuous and convex-valued correspondence such that {g s, E S*(s_,,d_,,g)} C g,(s,d) C G(E,s,d), where G(e,s,d) is the convex hull of {g t, C S*(t_,,,_,,g) for some (t,X) CE (s,d)l if {gIt- C S*(t_,,X,g) for some (t,X) E E(s,d)) is nonempty, and G(E,s,d) = [0,11 if {(gt, E S t_,,X_,,g) for some (t,y) C E(s,d)} is empty. This is entirely unrestrictive when (gtt, E S*(t_,,X_y,g) for some (t,X) CE (s,d)) is empty. But, assuming as we do that E is small, g,(s,d) - {gls, E S*(s-,,d_,,g)) when {(gs, C S*(s_,,d_,,g)) is nonempty. This convoluted formulation embeds a "smoothing" procedure that is a common trick to assure continuity in reciprocity models (see, e.g., Rabin [1993] and Falk and Fischbacher [1998]), assuring here that there exists such a correspondence meeting the criteria of upper hemi-continuity and convexity. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 855 good (that is, pursuing the disinterested social-welfare cri by choosing si in response to s -i, given that she has di d_i toward the other players. Except for a technical fix t that gi(s,d) is upper hemi-continuous and convex-valu interpretation holds when there exists some degree of con the social good that, combined with self-interest, can Player i's choice. But some strategies may not be consisten any such weighting-as, for instance, when a person c Pareto-inefficient allocation even when all other player having well. In such cases, our model does not pin dow ticular functional form, and hence is quite unrestrictive. The unrestrictiveness of our model in such cases is par technical convenience and because it does not matter much we do not restrict gi(s,d) when {(gsi E S*(si,di,g)) ialso because we do not feel we know the right psychology people interpret seemingly unmotivated Pareto-damaging ior or behavior that seems motivated by different norms ness than expected. To derive demerit profiles from these functions, we assu other players compare each gi(s,d) with some selflessness X*-the weight they feel a decent person should put on so fare. Specifically, we assume that other players' level of a toward Player i corresponds to ri(s,d,X*) E {min [g - X gi(s,d)). That is, whenever max {g g E gi(s,d)) < X*, Play generate some degree of animosity in others, since he is jud hurting others relative to what they would get if he were social-welfare preferences with X - */. When min {g g E X*, others will feel no animosity toward Player i. Requiring of ri(s,d,X*) to be nonnegative greatly simplifies the mod however, also a substantive assumption that essentially positive reciprocity. But given the lack of positive reciproci data and those of others, it may not be a costly restriction situations. We can now define our solution concept. DEFINITION. The strategy profile s is a reciprocal-fairness rium (RFE) with respect to parameter profiles , K*, f and correspondence gi(s,d) if there exists d where, fo there exists gi E gi(s,d) such that 1) si E argmax Ui(s,d), and 2) di = max [K,* - gi,0]. 48. It would be more problematic if we were to use it to predict n rium outcomes, or outcomes for heterogeneous preferences. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 856 QUARTERLY JOURNAL OF ECONOMICS A strategy profile is a RFE if every player is maximizing her expected utility given other players' strategies and given some demerit profile that is itself consistent with the profile of strategies. While not stated in that framework, this definition implicitly corresponds to a psychological Nash equilibrium of a psychological game as formulated by Geanakoplos, Pearce, and Stacchetti [1989]. If we were to define a nonequilibrium notion of players' preferences, the entire formal apparatus would be needed. Because we just define the equilibrium concept, suppressing the psychological-game apparatus is both feasible and tractable.49 The implications of RFE depend, of course, on the specific parameter values assumed, and hence it is unrestrictive insofar as there are many degrees of freedom in interpreting behavior as consistent with RFE. But two results enhance the applicability of reciprocal-fairness equilibrium. THEOREM 1. For all parameter values and for all games, the set of RFE is nonempty. Proof. Let h be the mapping from (s,d) into itself defined by the best-response correspondences si argmax Ui(s,d) and the demerit functions di(s,d) E {rl3 g E gi(s,d) such that r = max [X* - g,0]}). If this mapping is upper hemi-continuous and convex-valued, then it will have a fixed point, and this fixed point will be a RFE. By the continuity of Ui(s,d) and the expectedutility structure, argmax Ui(s,d) is upper hemi-continuous and convex-valued. The component di(s,d) is upper hemi-continuous and convex-valued because gi(s,d) is, by assumption, upper hemi- 49. Our model does not incorporate any sophisticated notion of sequential rationality, as have some recent reciprocity models, such as Dufwenberg and Kirchsteiger [1998] and Falk and Fischbacher [1998]. We do not do so, partly to keep our model simple, and partly because some of the better predictions made by these models are obtained in our model as well without sequential refinements, by assuming that players are motivated to help others even in the absence of sacrifice by others. Moreover, we suspect that much of the intuition in these models-and the evidence invoked in favor of these intuitions--derive from heterogeneous and nonequilibrium play in experiments, rather than from a notion of how players should behave at points in a game that really are "off the equilibrium path." If it is unrealistic to assume that the second mover in a sequential prisoner's dilemma will play a strategy of unconditional cooperation no matter what a first mover does, it is probably not because unconditional cooperation is not a best response to certainty that the first mover will cooperate. It seems more likely that the real positive probability (due either to heterogeneous preferences or disequilibrium) that a first mover will defect induces the second mover to defect in response to an interpretable on-the-equilibrium-path play by the first mover, rather than as part of an off-the-equilibrium-path strategy. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 857 continuous and convex-valued. Hence, h is upper hemi-con ous and convex-valued, proving the theorem. Existence clearly enhances the applicability of the solu concept. A second feature also enhances the applicability o model despite potential complications due to incorporating procity. Above, we noted that social-welfare equilibria would a prominent role in our model. Because of the reciprocity co nent in preferences (operative when dk > 0 for some k), reci cal-fairness equilibria might not correspond to social-we equilibria. Outcomes such as noncooperation in the priso dilemma can be "concern-withdrawal equilibria." Indeed, if ers hold each other to very high standards of selflessness-if very high-it may be that such negative outcomes are the RFE. But if all players' intrinsic desire X to pursue the social rather than self-interest is at least as great as the standard X which people hold each other, then all social-welfare equi will be reciprocal-fairness equilibria. THEOREM 2. For all vectors of parameters such that X* - X, social-welfare equilibrium is a reciprocal-fairness equilibr Proof. Consider a SWE s*. Each Player i is playing a b response given di = 0, so that X E gi(s,d). If X - X*, thisthat 0 = max [X* - X,0]. Hence, s* is a RFE with respect t demerit profile d = 0. Theorem 2 indicates that SWE may serve as a good heu to predict the types of "cooperative" equilibria that can occu course, there may additionally be negative equilibria, and importantly for interpreting experimental data) there m either disequilibrium play or heterogeneous preferences, X < X* for some of the participants, so that some bad beh and corresponding retaliation, may be observed. Despite the unrestrictiveness of reciprocal-fairness equ rium in some ways, it is clearly too restrictive in other respe is too restrictive to be directly applied to experimental evide on the other hand, because it does not allow for other soc preferences, heterogeneity in players' preferences, or noneq rium play. And the model clearly omits patterns of behavior seem apparent in the data, such as complicity effects. By ass ing homogeneous preferences, it rules out even a minor subjects being motivated by preferences such as difference a sion. We think any prospects for good-fitting models will ev ally have to account better for such heterogeneity than w This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 858 QUARTERLY JOURNAL OF ECONOMICS done in this paper. We can also think of specific examples-such as Barc5, where we seem to observe no negative reciprocity (when compared with Berk29, say) even when it is free-that, if they turn out to be consistent patterns, would raise problems for this model. APPENDIX 2: SAMPLE INSTRUCTIONS INSTRUCTIONS Thank you for participating in this experiment. You w receive $5 for your participation, in addition to other money paid as a result of decisions made in the experiment. You will make decisions in several different situations ("games"). Each decision (and outcome) is independent from e of your other decisions, so that your decisions and outcomes one game will not affect your outcomes in any other game. In every case, you will be anonymously paired with one ( more) other people, so that your decision may affect the payoffs others, just as the decisions of the other people in your group m affect your payoffs. For every decision task, you will be pai with a different person or persons than in previous decisions. There are "roles" in each game-generally A or B, althou some games also have a C role. If a game has multiple decisio (some games only have decisions for one role), these decisions w be made sequentially, in alphabetical order: "A" players wil complete their decision sheets first, and their decision sheets w then be collected. Next, "B" players complete their decision shee and these will be collected. Etc. When you have made a decision, please turn your decision sheet over, so that we will know when people have finished. There will be two "periods" in each game, and so you will play each game twice, with a different role (and a different anonymous pairing) in each case. You will not be informed of the results of any previous period or game prior to making your decision. Although you will thus have 8 "outcomes" from the games played, only two of these outcomes will be selected for payoffs. An 8-sided die will be rolled twice at the end of the experiment and the (different) numbers rolled will determine which outcomes (1-8) are used for payoffs. At the end of the session, you will be given a receipt form to be filled out, and you will be paid individually and privately. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 859 Please feel free to ask questions at any point if you fe need clarification. Please do so by raising your hand. P NOT attempt to communicate with any other participants session until the session is concluded. We will proceed to the decisions once the instructions are clear. Are there any questions? PERIOD 1 GAME 3 In this period, you are person A. You have no choice in this game. Player B's choice determines the outcome. If player B chooses Bi, you would receive 800, and player B would receive 200. If player B chooses B2, you would each receive 0. B A B1 / \ B2 A 800 0 A B 200 0 B DECISION I understand I have no choice in this game This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 860 QUARTERLY JOURNAL OF ECONOMICS PERIOD 1 GAME 3 In this period, you are person B. You may choose B1 or B2. Player A has no choice in this game. If you choose B1, you would receive 200 and player A would receive 800. If you choose B2, you would each receive 0. B A BI \B2B1 / \ B2 A 800 0 A B 200 0 B DECISION I choose: B1 B2 This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 861 PERIOD 1 GAME 1 In this period, you are person A. You may choose Al or A2. If you choose Al, you would receive 750, and player B would receive 0. If you choose A2, then player B's choice of B1 or B2 would determine the outcome. If you choose A2 and player B chooses B1, you would each receive 400. If you choose A2 and player B chooses B2, you would receive 750, and he or she would receive 375. Player B will make a choice without being informed of your decision. Player B knows that his or her choice only affects the outcome if you choose A2, so that he or she will choose B1 or B2 on the assumption that you have chosen A2 over Al. A A Al / \ A2 A 750 B O B A B1 / \ B2 A 400 750 A B 400 375 B DECISION I choose: Al A2 This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 862 QUARTERLY JOURNAL OF ECONOMICS PERIOD 1 GAME 1 In this period, you are person B. You may choose B1 or B2. Player A has already made a choice. If he or she has chosen Al, he or she would receive 750, and you would receive 0. Your decision only affects the outcome if player A has chosen A2. Thus, you should choose B1 or B2 on the assumption that player A has chosen A2 over Al. If player A has chosen A2 and you choose B1, you would each receive 400. If player A has chosen A2 and you choose B2, then player A would receive 750, and you would receive 375. A A Al / \ A2 / \ A 750 B O B A BI / \ B2 A 400 750 A B 400 375 B DECISION I choose: Al A2 This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 863 APPENDIX 3: ROLE REVERSAL The role-reversal data for each of the 19 games are below. The (two-tailed) p-value used reflects the perce time that a difference in rates as large as the one observe occur randomly. For each type of behavior as A, if if did the person help A as B? Out Enter p-value Helping A doesn't affect B's payoff Barc5 (36) A chooses (550,550) or lets B choose 5/14 19/22 .00 (400,400) vs. (750,400) Barc7 (36) A chooses (750,0) or lets B choose 15/17 19/19 .12 (400,400) vs. (750,400) Berk28 (32) A chooses (100,1000) or lets B choose 10/16 11/16 .73 (75,125) vs. (125,125) Berk32 (26) A chooses (450,900) or lets B choose 16/22 1/4 .06 (200,400) vs. (400,400) Helping A is costly to B Barc3 (42) A chooses (725,0) or lets B choose 10/31 6/11 .19 (400,400) vs. (750,375) Barc4 (42) A chooses (800,0) or lets B choose 11/35 5/7 .05 (400,400) vs. (750,375) Berk21 (36) A chooses (750,0) or lets B choose 3/17 11/19 .01 (400,400) vs. (750,375) Barc6 (36) A chooses (750,100) or lets B choose 8/33 1/3 .73 (300,600) vs. (700,500) Barc9 (36) A chooses (450,0) or lets B choose 2/25 0/11 .24 (350,450) vs. (450,350) Berk25 (32) A chooses (450,0) or lets B choose 3/20 3/12 .48 (350,450) vs. (450,350) Berkl9 (32) A chooses (700,200) or lets B choose 13/18 12/14 .36 (200,700) vs. (600,600) Berkl4 (22) A chooses (800,0) or lets B choose 6/15 6/7 .05 (0,800) vs. (400,400) Barcl (44) A chooses (550,550) or lets B choose 1/42 2/2 .00 (400,400) vs. (750,375) Berkl3 (22) A chooses (550,550) or lets B choose 1/19 3/3 .00 (400,400) vs. (750,375) Berkl8 (32) A chooses (0,800) or lets B choose 0/0 14/32 (0,800) vs. (400,400) Helping A is beneficial to B Barcll (35) A chooses (375,1000) or lets B choose 15/19 16/16 .05 (350,350) vs. (400,400) This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 864 QUARTERLY JOURNAL OF ECONOMICS APPENDIX 3 (CONTINUED) For each type of behavior as A, if if did the person help A as B? Out Enter p-value Berk22 (36) A chooses (375,1000) or lets B choose 13/14 22/22 .20 (250,350) vs. (400,400) Berk27 (32) A chooses (500,500) or lets B choose 11/13 18/19 .34 (0,0) vs. (800,200) Berk31 (26) A chooses (750,750) or lets B choose 16/19 7/7 .26 (0,0) vs. (800,200) Berk30 (26) A chooses (400,1200) or lets B choose 19/20 4/6 .06 (0,0) vs. (400,200) APPENDIX 4: GAME-BY-GAME CONSISTENCY WITH DISTRIBUTIONAL MODELS In this table we allow A to have any beliefs about B's response to Enter. Entries in the following tables indicate which models, C (competitive preferences), D (difference aversion), Q (social-welfare preferences), and $ (self-interest) each move is consistent with. B plays B plays A Exit A Enter Left Right Game N Prefs. N Prefs. N Prefs. N Prefs. 1 A(550,550); B(400,400)-(750,375) 42 C,D,Q,$ 2 C,D,Q,$ 41 C,D,Q,$ 3 Q 2 B(400,400)-(750,375) - - 25 C,D,Q,$ 23 Q 3 A(725,0); B(400,400)-(750,375) 31 C,D,Q,$ 11 C,D,Q,$ 26 C,D,Q,$ 16 Q 4 A(800,0); B(400,400)-(750,375) 35 C,D,Q,$ 7 D,Q 26 C,D,Q,$ 16 Q 5 A(550,550); B(400,400)-(750,400) 18 C,D,Q,$ 28 C,D,Q,$ 15 C,D,$ 31 Q,$ 6 A(750,100); B(300,600)-(700,500) 33 C,D,Q,$ 3 D,Q 27 C,D,Q,$ 9 D,Q 7 A(750,0); B(400,400)-(750,400) 17 C,D,Q,$ 19 D,Q,$ 2 C,D,$ 34 Q,$ 8 B(300,600)-(700,500) - - 24 C,D,Q,$ 12 D,Q 9 A(450,0); B(350,450)-(450,350) 25 C,D,Q,$ 11 D,Q,$ 34 C,D,Q,$ 2 11 A(375,1000); B(400,400)-(350,350) 19 C,D,Q,$ 16 C,D,Q,$ 31 C,D,Q,$ 4 13 A(550,550); B(400,400)-(750,375) 19 C,D,Q,$ 3 C,D,Q,$ 18 C,D,Q,$ 4 Q 14 A(800,0); B(0,800)(400,400) 15 C,D,Q,$ 7 D,Q 10 C,D,Q,$ 12 D,Q 15 B(200,700)-(600,600) - - 6 C,D,Q,$ 16 D,Q This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 865 APPENDIX 4 (CONTINUED) B plays B plays A Exit A Enter Left Right Game N Prefs. N Prefs. N Prefs. N Prefs. 17 B(400,400)-(750,375) - - 16 C,D,Q,$ 16 Q 18 A(0,800); B(0,800)(400,400) 0 32 C,D,Q,$ 14 C,D,Q,$ 18 D,Q 19 A(700,200); B(200,700)-(600,600) 18 C,D,Q,$ 14 D,Q 7 C,D,Q,$ 25 D,Q 21 A(750,0); B(400,400)-(750,375) 17 C,D,Q,$ 19 D,Q,$ 22 C,D,Q,$ 14 Q 22 A(375,1000); B(400,400)-(250,350) 14 C,D,Q,$ 22 C,D,Q,$ 35 C,D,Q,$ 1 C 23 B(800,200)-(0,0) - - 36 C,D,Q,$ 0 C,D 25 A(450,0); B(350,450)-(450,350) 20 C,D,Q,$ 12 D,Q,$ 26 C,D,Q,$ 6 26 B(0,800)-(400,400) - - 25 C,D,Q,$ 7 D,Q 27 A(500,500); B(800,200)-(0,0) 13 C,D,Q,$ 19 C,D,Q,$ 29 C,D,Q,$ 3 C,D 28 A(100,1000); B(75,125)-(125,125) 16 C,D,Q,$ 16 C,D,Q,$ 11 C,D,$ 21 Q,$ 29 B(400,400)-(750,400) - - 8 C,D,$ 18 Q,$ 30 A(400,1200); B(400,200)-(0,0) 20 C,D,Q,$ 6 C,D,$ 23 C,D,Q,$ 3 C,D 31 A(750,750); B(800,200)-(0,0) 19 C,D,Q,$ 7 C,D,Q,$ 23 C,D,Q,$ 3 C,D 32 A(450,900); B(200,400)-(400,400) 22 C,D,Q,$ 4 C,D 9 C,$ 17 D,Q,$ Total A choices = 671 C = 579 D = 671 Q = 661 $ = 636. Total B choices = 903 C = 579 D = 685 Q = 836 $ = 690 In this table we assume A correctly assesses actual B play when choosing. B plays B plays A Exit A Enter Left Right Game N Prefs. N Prefs. N Prefs. N Prefs. 1 A(550,550); B(400,400)-(750,375) 42 C,D,Q,$ 2 C 41 C,D,Q,$ 3 Q 2 B(400,400)-(750,375) - - 25 C,D,Q,$ 23 Q 3 A(725,0); B(400,400)(750,375) 31 C,D,Q,$ 11 D,Q 26 C,D,Q,$ 16 Q 4 A(800,0); B(400,400)(750,375) 35 C,D,Q,$ 7 D,Q 26 C,D,Q,$ 16 Q 5 A(550,550); B(400,400)-(750,400) 18 D,Q 28 C,D,Q,$ 15 C,D,$ 31 Q,$ This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 866 QUARTERLY JOURNAL OF ECONOMICS APPENDIX 4 (CONTINUED) B plays B plays A Exit A Enter Left Right Game N Prefs. N Prefs. N Prefs. N Prefs. 6 A(750,100); B(300,600)-(700,500) 33 C,D,Q,$ 3 D,Q 27 C,D,Q,$ 9 D,Q 7 A(750,0); B(400,400)(750,400) 17 C,D,Q,$ 19 D,Q 2 C,D,$ 34 Q,$ 8 B(300,600)-(700,500) - - 24 C,D,Q,$ 12 D,Q 9 A(450,0); B(350,450)(450,350) 25 C,D,Q,$ 11 D,Q 34 C,D,Q,$ 2 11 A(375,1000); B(400,400)-(350,350) 19 Q 16 C,D,Q,$ 31 C,D,Q,$ 4 13 A(550,550); B(400,400)-(750,375) 19 C,D,Q,$ 3 C 18 C,D,Q,$ 4 Q 14 A(800,0); B(0,800)(400,400) 15 C,D,Q,$ 7 Q 10 C,D,Q,$ 12 D,Q 15 B(200,700)-(600,600) - - 6 C,D,Q,$ 16 D,Q 17 B(400,400)-(750,375) - - 16 C,D,Q,$ 16 Q 18 A(0,800); B(0,800)(400,400) 0 32 C,D,Q,$ 14 C,D,Q,$ 18 D,Q 19 A(700,200); B(200,700)-(600,600) 18 C,D,Q,$ 14 D,Q 7 C,D,Q,$ 25 D,Q 21 A(750,0); B(400,400)-(750,375) 17 C,D,Q,$ 19 D,Q 22 C,D,Q,$ 14 Q 22 A(375,1000); B(400,400)-(250,350) 14 Q 22 C,D,Q,$ 35 C,D,Q,$ 1 C 23 B(800,200)-(0,0) - - 36 C,D,Q,$ 0 C,D 25 A(450,0); B(350,450)-(450,350) 20 C,D,Q,$ 12 D,Q 26 C,D,Q,$ 6 26 B(0,800)-(400,400) - - 25 C,D,Q,$ 7 D,Q 27 A(500,500); B(800,200)-(0,0) 13 D,Q 19 C,D,Q,$ 29 C,D,Q,$ 3 C,D 28 A(100,1000); B(75,125)-(125,125) 16 Q 16 C,D,Q,$ 11 C,D,$ 21 Q,$ 29 B(400,400)-(750,400) - - 8 C,D,$ 18 Q,$ 30 A(400,1200); B(400,200)-(0,0) 20 C,D,Q,$ 6 C,D 23 C,D,Q,$ 3 C,D 31 A(750,750); B(800,200)-(0,0) 19 C,D,Q,$ 7 C 23 C,D,Q,$ 3 C,D 32 A(450,900); B(200,400)-(400,400) 22 C,D,Q,$ 4 C,D 9 C,$ 17 D,Q,$ Total A choices = 671 C = 579 D = 671 Q = 661 $ = 636. Total B choices = 903 C = 579 D = 685 Q = 836 $ = 690. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 867 APPENDIX 5: FIRST-MOVER BEHAVIOR Table 3.1: A's sacrifice helps B Maximize Sacrifice Barc5 (36) A chooses (634,400) or (550,550) .61 .39 Barc7 (36) A chooses (750,0) or (729,400) .47 .53 Berk28 (32) A chooses (108,125) or (100,1000) .50 .50 Barc3 (42) A chooses (725,0) or (533,390) .74 .26 Barc4 (42) A chooses (800,0) or (533,390) .83 .17 Berk21 (36) A chooses (750,0) or (536,390) .47 .53 Barc6 (36) A chooses (750,100) or (400,575) .92 .08 Barc9 (36) A chooses (450,0) or (356,444) .69 .31 Berk25 (32) A chooses (450,0) or (369,431) .62 .38 Berkl9 (32) A chooses (700,200) or (512,622) .56 .44 Berkl4 (22) A chooses (800,0) or (216,584) .68 .32 Berkl8 (32) A chooses (224,576) or (0,800) 1.00 .00 Barcll (35) A chooses (394,394) or (375,1000) .46 .54 Berk22 (36) A chooses (396,398) or (375,1000) .61 .39 Berk27 (32) A chooses (728,182) or (500,500) .59 .41 Table 3.2: A's sacrifice hurts B Maximize Sacrifice Berk32 (26) A chooses (450,900) or (330,400) .85 .15 Barcl (44) A chooses (550,550) or (424,398) .96 .04 Berkl3 (22) A chooses (550,550) or (463,396) .86 .14 Berk31 (26) A chooses (750,750) or (704,176) .73 .27 Berk30 (26) A chooses (400,1200) or (352,176) .77 .23 DEPARTMENT OF ECONOMICS, UNIVERSITY OF CALIFORNIA, SANTA BARB DEPARTMENT OF ECONOMICS, UNIVERSITY OF CALIFORNIA, BERKELEY REFERENCES Andreoni, James, and John Miller, "Giving According to GARP: An Test of the Consistency of Preferences for Altruism," Econom (2002), 737-753. Andreoni, James, Paul Brown, and Lise Vesterlund, "What Produc Some Experimental Evidence," mimeo, 1999, Games and Econom forthcoming. Berg, Joyce, John Dickhaut, and Kevin McCabe, "Trust, Reciproc History," Games and Economic Behavior, X (1995), 122-142. Blount, Sally, "When Social Outcomes Aren't Fair: The Effect of C tions on Preferences," Organizational Behavior and Human Dec cesses, LXIII (1995), 131-144. Bolton, Gary, "A Comparative Model of Bargaining: Theory and Evidence," American Economic Review, LXXXI (1991), 1096-1136. Bolton, Gary, and Axel Ockenfels, "Strategy and Equity: An ERC-Analysis of the Giuth-van Damme Game," Journal of Mathematical Psychology, XLII (1998), 215-226. Bolton, Gary, and Axel Ockenfels, "ERC: A Theory of Equity, Reciprocity, a Competition," American Economic Review, XC (2000), 166-193. Bolton, Gary, Jordi Brandts, and Elena Katok, "How Strategy Sensitive A Contributions? A Test of Six Hypotheses in a Two-Person Dilemma Game Economic Theory, XV (2000), 367-387. Bolton, Gary, Jordi Brandts, and Axel Ockenfels, "Measuring Motivations for t This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms 868 QUARTERLY JOURNAL OF ECONOMICS Reciprocal Responses Observed in a Simple Dilemma Game," Experimental Economics, I (1998), 207-219. Brandts, Jordi, and Gary Charness, "Hot vs. Cold: Sequential Responses in Simple Experimental Games," Experimental Economics, II (2000), 227-238. Brandts, Jordi, and Gary Charness, "Retribution in a Cheap-Talk Game," mimeo, 1999. Brandts, Jordi, and Carles Sola, "Reference Points and Negative Reciprocity in Simple Sequential Games," mimeo, 1998, Games and Economic Behavior, forthcoming. Cason, Timothy, and Vai-Lam Mui, "Social Influence in the Sequential Dictator Game," Journal of Mathematical Psychology, XLII (1998), 248-265. Charness, Gary, "Attribution and Reciprocity in an Experimental Labor Market," mimeo, 1996. , "Responsibility and Effort in an Experimental Labor Market," Journal of Economic Behavior and Organization, XLII (2000), 375-384. Charness, Gary, and Brit Grosskopf, "Relative Payoffs and Happiness: An Experimental Study," Journal of Economic Behavior and Organization, XLV (2001), 301-328. Charness, Gary, and Ernan Haruvy, "Altruism, Fairness, and Reciprocity in Gift-Exchange Experiment: An Encompassing Approach," mimeo, 1999 Games and Economic Behavior, forthcoming. Charness, Gary, and Matthew Rabin, "Social Preferences: Some Simple Tests an a New Model," Universitat Pompeu Fabra and University of California Berkeley, mimeo, 1999. Charness, Gary, and Matthew Rabin, "Some Simple Tests of Social Preference University of California at Berkeley, mimeo, 2000. Croson, Rachel, "The Disjunction Effect and Reason-Based Choice in Games Organizational Behavior and Human Decision Processes, LXXX (2000), 118- 133. Dufwenberg, Martin, and Uri Gneezy, "Measuring Beliefs in an Experimental Lost Wallet Game," Games and Economic Behavior, XXX (2000), 163-182. Dufwenberg, Martin, and Georg Kirchsteiger, "A Theory of Sequential Reciprocity," mimeo, 1998. Engelmann, Dirk, and Martin Strobel, "Inequality Aversion, Efficiency, and Maximin Preferences in Simple Distribution Experiments," mimeo, 2001. Falk, Armin, and Urs Fischbacher, "A Theory of Reciprocity," mimeo, 1998. Falk, Armin, Ernst Fehr, and Urs Fischbacher, "On the Nature of Fair Behavior," mimeo, 1999, Economic Inquiry, forthcoming. Fehr, Ernst, and Klaus Schmidt, "A Theory of Fairness, Competition, and Cooperation," Quarterly Journal of Economics, CXIV (1999), 817-868. Frohlich, Norman, and Joseph Oppenheimer, "Beyond Economic Man: Altruism, Egalitarianism, and Difference Maximizing," Journal of Conflict Resolution, XXVIII (1984), 3-24. Frohlich, Norman, and Joseph Oppenheimer, Choosing Justice (Berkeley: University of California Press, 1992). Geanakoplos, John, David Pearce, and Ennio Stacchetti, "Psychological Games," Games and Economic Behavior, I (1989), 60-79. Glasnapp, Douglas, and John Poggio, Essentials of Statistical Analysis for the Behavioral Sciences (Columbus, OH: Merrill, 1985). Giuth, Werner, and Eric van Damme, "Information, Strategic Behavior, and Fairness in Ultimatum Bargaining: An Experimental Study," Journal of Mathematical Psychology, XLII (1998), 227-247. Kagel, John, and Katherine Wolfe, "Testing between Alternative Models of Fairness: A New Three-Person Ultimatum Game," mimeo, 1999. Kahneman, Daniel, Jack Knetsch, and Richard Thaler, "Fairness and the Assumptions of Economics," Journal of Business, LIX (1986), S285-S300. Kritikos, Alexander, and Friedel Bolle, "Approaching Fair Behavior: Self-Centered Inequality Aversion versus Reciprocity and Altruism," mimeo, 1999. Loewenstein, George, Max Bazerman, and Leigh Thompson, "Social Utility and Decision Making in Interpersonal Contexts," Journal of Personality and Social Psychology, LVII (1989), 426-441. McCabe, Kevin, Mary Rigdon, and Vernon Smith, "Positive Reciprocity and Intentions in Trust Games," mimeo, 2000. McFadden, Daniel, "Econometric Models of Probabilistic Choice," in Structural This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms UNDERSTANDING SOCIAL PREFERENCES 869 Analysis of Discrete Data with Econometric Applications, Charles Mans Daniel McFadden, eds. (Cambridge, MA: MIT Press, 1981). Offerman, Theo, "Hurting Hurts More than Helping Helps: The Role Self-Serving Bias," mimeo, 1998, European Economic Review, forthcom Rabin, Matthew, "Incorporating Fairness into Game Theory and Econo American Economic Review, LXXXIII (1993), 1281-1302. Roth, Alvin, "Bargaining Experiments," in Handbook of Experimental Eco J. Kagel and A. Roth, eds. (Princeton, NJ: Princeton University Press, Shafir, Eldar, and Amos Tversky, "Thinking through Uncertainty: Noncons tialist Reasoning and Choice," Cognitive Psychology, XXIII (1992), 449 Yaari, Menahem, and Maya Bar-Hillel, "On Dividing Justly," Social Cho Welfare, 1 (1984), 1-24. This content downloaded from 86.49.255.159 on Fri, 20 Mar 2020 12:46:08 UTC All use subject to https://about.jstor.org/terms