

Behavioral Economics: Riziko

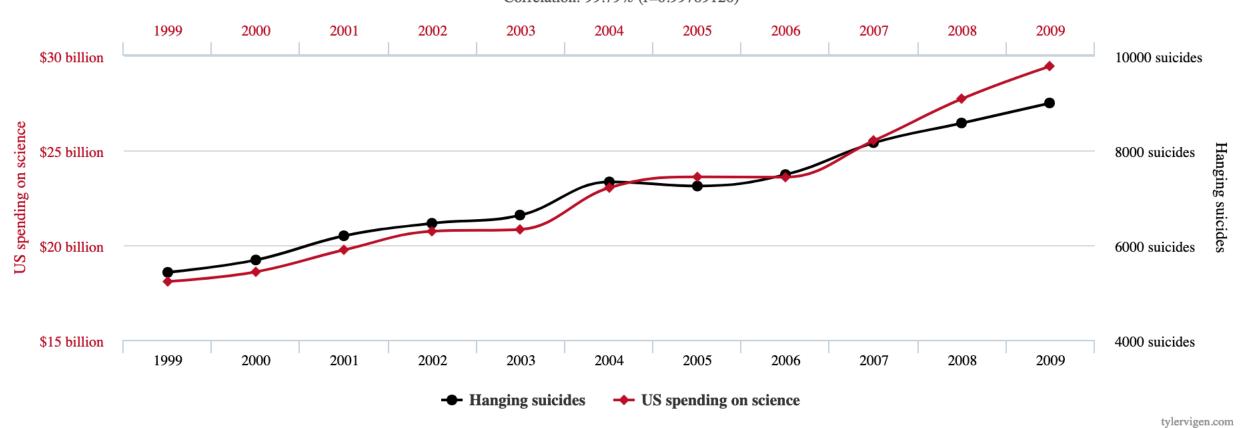
Behavioral + Experimental Econ

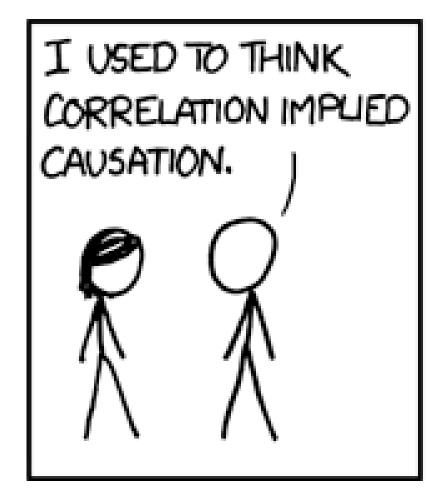
Risk

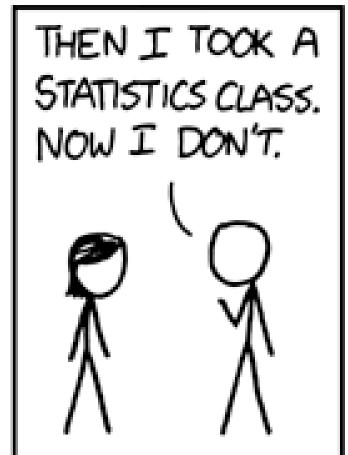
Some papers

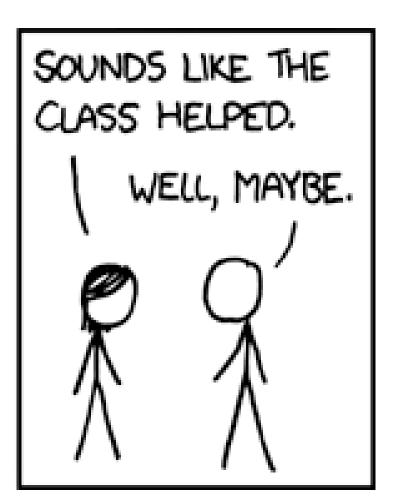
What would you do?

Hypotheticals not too reliable


OBSERVATION


US spending on science, space, and technology


correlates with


Suicides by hanging, strangulation and suffocation

Correlation: 99.79% (r=0.99789126)

EXPERIMENT

Research method that allows the researcher to ceteris paribus manipulate the independent variable and observe changes in the dependent variable.

Research method that allows the researcher to ceteris paribus manipulate the independent variable and observe changes in the dependent variable.

In experiment, we:

- -randomize
- -compare groups

Research method that allows the researcher to ceteris paribus manipulate the independent variable and observe changes in the dependent variable.

In experiment, we:

- -randomize
- -compare groups

On top of that, in Econ experiment:

- -decisions have consequences
- -we never lie (ehm...)

Research method that allows the researcher to ceteris paribus manipulate the independent variable and observe changes in the dependent variable.

In experiment, we:

- -randomize
- -compare groups

On top of that, in Econ experiment:

- -decisions have consequences
- -we never lie (ehm...)

What is it good for?

Theory testing

Policy wind tunnel

What is it good for?

Corporate decision testbed

They're fun to run

WHAT FOR

BEHAVIORAL ECON

(neo)classic Econ

- People want Max(u)
- u=\$

• Enter: Psychology

- Social
- Personality
- Cognitive

- People want Max(u),
- u=\$

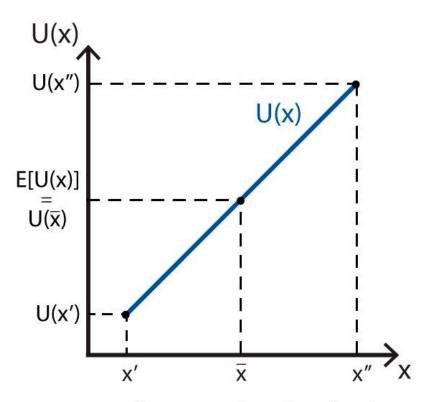
- People want Max(u), but are not very good at it (heuristics, biases)
- u=\$ + much more(non-monetary idividual and social preferences)

- People want Max(u), but are not very good at it (heuristics, biases)
- u=\$ + much more(non-monetary idividual and social preferences)

$$u_i(z, \boldsymbol{\mu}, s_j) = \pi_i(z) - \theta_i \left[\max_{s_i} \sum_{s_j'} \mu_i^1(s_j'|z) \pi_i(\zeta(s_i, s_j')) - \pi_i(z) \right]$$

Pe

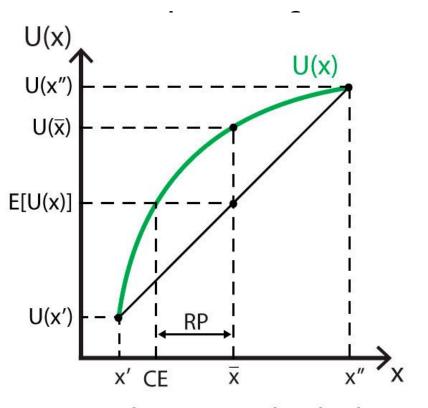
• u=

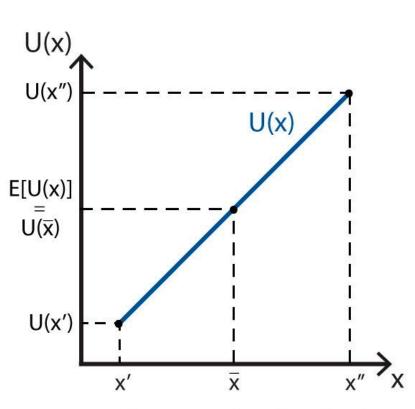

$$\begin{split} \pi_{MS} &= p \left(2\bar{a} + 2q \left(\int_{2\bar{a} - 2u}^{2\bar{a} + 2u} (\gamma(\alpha_{2}))^{2} d\alpha_{2} \right) \delta_{W} B \left(\frac{k_{-} - k_{+}}{k_{-} \cdot k_{+}} \right) \right) - 2w \\ &+ 2\delta_{F} \int_{2\bar{a} - 2u}^{2\bar{a} + 2u} \int_{\alpha_{2}}^{2\bar{a} + 2u} p h\alpha_{1} \gamma(\alpha_{1}) d\alpha_{1} \gamma(\alpha_{2}) d\alpha_{2} - 2\delta_{F} w, \\ \pi_{MM} &= 2 \left(p \bar{a} - w \right) + 2\delta_{F} \left(p h \bar{a} - w \right), \\ \pi_{SS} &= p \left(2\bar{a} + q \gamma \left(2 \frac{\bar{a}}{h} \right) \delta_{W} B \left(\frac{k_{-} - k_{+}}{k_{-} \cdot k_{+}} \right) \right) - 2w \\ &+ \delta_{F} \left(\int_{2\frac{\bar{a}}{h}}^{2\bar{a} + 2u} p h\alpha_{1} \gamma(\alpha_{1}) d\alpha_{1} \right) \\ &+ \delta_{F} \left(\int_{2\bar{a} - 2u}^{2\bar{a} + 2u} 2p \bar{a} \gamma(\alpha_{1}) d\alpha_{1} \right) - 2\delta_{F} w, \\ \pi_{SM} &= 2 \left(p \bar{a} - w \right) + \delta_{F} \left(p \left(1 + h \right) \bar{a} - 2w \right). \end{split}$$

Denote by π_{tMS} , π_{tMM} , π_{tSS} , π_{tSM} expected period-t profit for job designs MS, MM, SS, and SM. The following lemma compares these profits:

• Vs. uncertainty?

 How much would you pay to play a 50/50 coinflip game where you win \$100 or \$0?

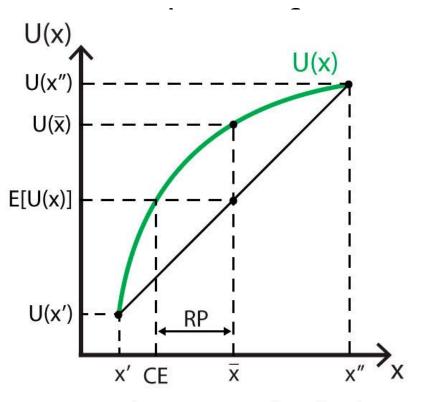

 How much would you pay to play a 50/50 coinflip game where you win \$100 or \$0?


Risk neutral individual

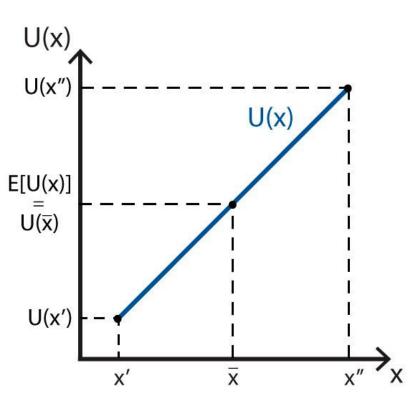
$$E[U(x)] = U(\overline{x})$$
$$CE = \overline{x}$$

$$0 = A$$

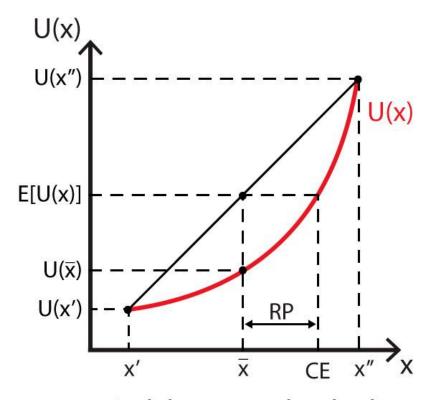
Risk averse individual $E[U(x)] < U(\overline{x})$ $CE < \overline{x}$



Risk neutral individual


$$E[U(x)] = U(\overline{x})$$

$$CE = \overline{x}$$


$$0 = A$$

Risk averse individual $E[U(x)] < U(\overline{x})$ $CE < \overline{x}$ 0 < A

Risk neutral individual $E[U(x)] = U(\overline{x})$ $CE = \overline{x}$ 0 = A

Risk loving individual $E[U(x)] > U(\overline{x})$ $CE > \overline{x}$ 0 > A

How to measure?

Multiple price lists

Baloon task

How to measure?

Multiple price lists

No.	Option A	Option B		Exp. payoff difference	
1	100	1/2 of 300,	1/2 of 0	- 50	
2	110	1/2 of 300,	1/2 of 0	-40	
3	120	1/2 of 300,	1/2 of 0	-30	
4	130	1/2 of 300,	1/2 of 0	-20	
5	140	1/2 of 300,	1/2 of 0	-10	
6	150	1/2 of 300,	1/2 of 0	0	
7	160	1/2 of 300,	1/2 of 0	10	
8	170	1/2 of 300,	1/2 of 0	20	
9	180	1/2 of 300,	1/2 of 0	30	
10	190	1/2 of 300,	1/2 of 0	40	

expected utility behaviors where people evaluate probabilities non-linearly.

The resulting MPL is contained in Table 4, where an individual switching

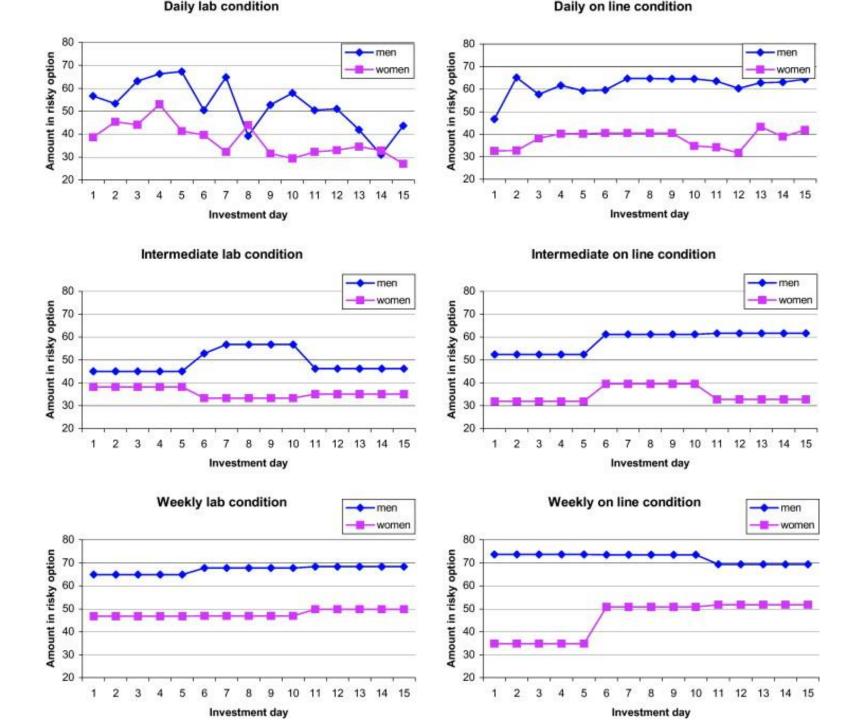
How to measure?

Baloon task

PAPERS

Who is (relatively) more risk averse?

Journal of Economic Behavior & Organization

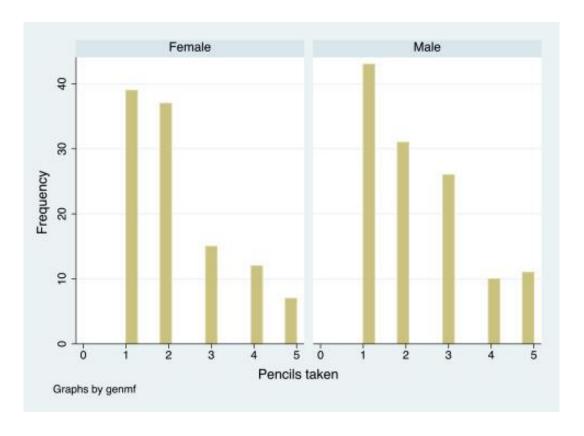

Volume 83, Issue 1, June 2012, Pages 50-58

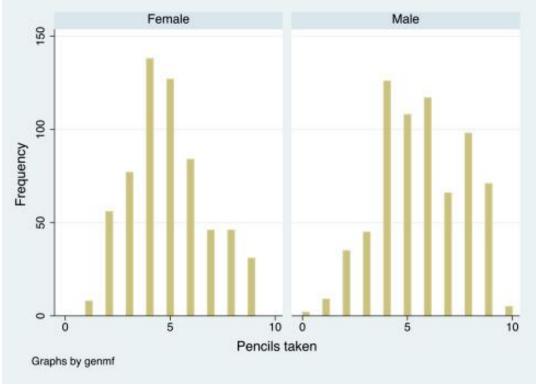
Strong Evidence for Gender Differences in Risk Taking

Gary Charness ^a Ø, Uri Gneezy ^b $\stackrel{>}{\sim}$ Ø

Show more 🗸

+ Add to Mendeley 🚓 Share 🥦 Cite

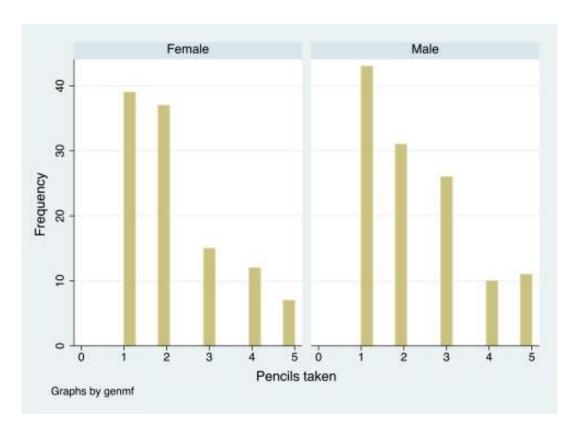


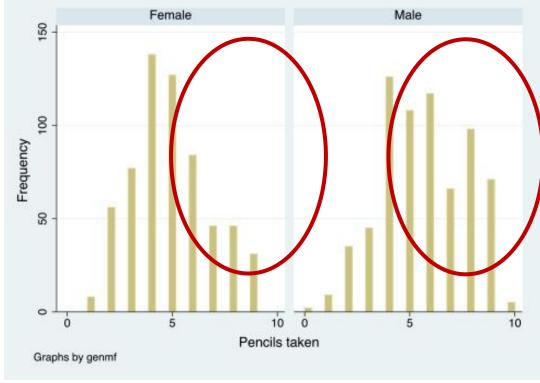

Gender gap in risk preferences emerges with age

Gender gap in risk preferences emerges with age

LEFT: children

RIGHT: adolescents





Gender gap in risk preferences emerges with age

LEFT: children

RIGHT: adolescents

What else is there?

Chapman University Chapman University Digital Commons

ESI Working Papers

Economic Science Institute

2-1-2016

Arousal and Economic Decision Making

Salar Jahedi RAND Corporation

Cary Deck Chapman University

Dan Ariely
Duke University

2.2 Methods

Participants were seated at partially enclosed cubicles to ensure that they could not observe or interact with others. Fifty-three people were assigned to the neutral image condition and 91 were assigned to the arousal image condition. Neutral images included 80 pictures of everyday objects such as office supplies, tiles, and housewares. Arousal images consisted of 80 explicit images of women and heterosexual couples engaging in various sexual acts. Eight of the arousing images were selected from the Center for the Study of Emotion and Attention at the University of Florida's International Affective Picture System (IAPS) database. The remaining images were downloaded from the internet.⁴

2.2 Methods

Participants were seated at partially enclosed cubicles to ensure that they could not observe or interact with others. Fifty-three people were assigned to the neutral image condition and 91 were assigned to the arousal image condition. Neutral images included 80 pictures of everyday objects such a office supplies, tiles, and housewares. Arousal images consisted of 80 explicit images of women and heterosexual couples engaging in various sexual acts. Eight of the arousing images were selected from the Center for the Study of Emotion and Attention at the University of Florida's International Affective Picture System (IAPS) database. The remaining images were downloaded from the internet.⁴

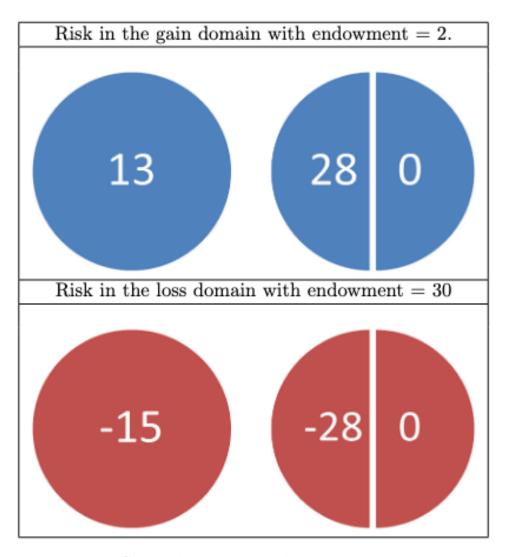


Figure 1: Sample Risk task in gains and losses

Risk in Gains: higher expected value, could be safe or risky bet					
Neutral		(2.5%)	389	2.17	4.1
Arousal	60.9% (*)	(1.8%)	717	5.57	4.3

.

	Maan	Ctd E	Obsernations	T 0	Casanda	
	Mean	Std. Error	Observations	Image	Seconds	
	Performance			Rating	Spent	
Addition:	percentage corr	ect				
Neutral	97.5%	(0.8%)	403	2.19	2.7	
Arousal	97.7%	(0.6%)	730	5.49	2.6	
Multiplication: percentage correct						
Neutral	80.8%	(1.9%)	417	2.20	5.6	
Arousal	79.7%	(1.5%)	738	5.52	5.6	
Risk in Gains: higher expected value, could be safe or risky bet						
Neutral	50.9%	(2.5%)	389	2.17	4.1	
Arousal	60.9% (*)	(1.8%)	717	5.57	4.3	
Risk in Losses: higher expected value, could be safe or risky bet						
Neutral	48.1%	(2.5%)	403	2.19	4.2	
Arousal	48.4%	(1.9%)	686	5.45	4.2	
Impatience: larger amount of money, could be in the future or immediately						
Neutral	62.5%	(1.7%)	834	2.17	3.4	
Arousal	63.7%	(1.3%)	1440	5.5	3.4	
Snack Choice: choose the healthy snack						
Neutral	48.1%	(1.7%)	896	2.17	3.6	
Arousal	45.9%	(1.3%)	1487	5.51	3.7	
Anchoring: guess is within range of S-value						
Neutral	44%	(1.7%)	886	2.19	5.7	
Arousal	38.6% (**)	(1.3%)	1468	5.51	5.3	

^{*} and ** denote significance at the 10% and 5% level, respectively.

"One possible explanation for why we do not find a large effect of arousal on preferences is that our study uses real incentives, rather than hypothetical choices. It is possible that the incentive payments are large enough that respondents are motivated to make good decisions in spite of being exposed to arousing stimuli.

"One possible explanation for why we do not find a large effect of arousal on preferences is that our study uses real incentives, rather than hypothetical choices. It is possible that the incentive payments are large enough that respondents are motivated to make good decisions in spite of being exposed to arousing stimuli. Alternatively, it is possible that participants realize the effect that arousal might have on their decision making and take additional steps to self-regulate their decision making process."

Generosity

Review of Economic Studies (2016) 83, 587–628 doi:10.1093/restud/rdv051
© The Author 2015. Published by Oxford University Press on behalf of The Review of Economic Studies Limited.
Advance access publication 26 October 2015

Excusing Selfishness in Charitable Giving: The Role of Risk

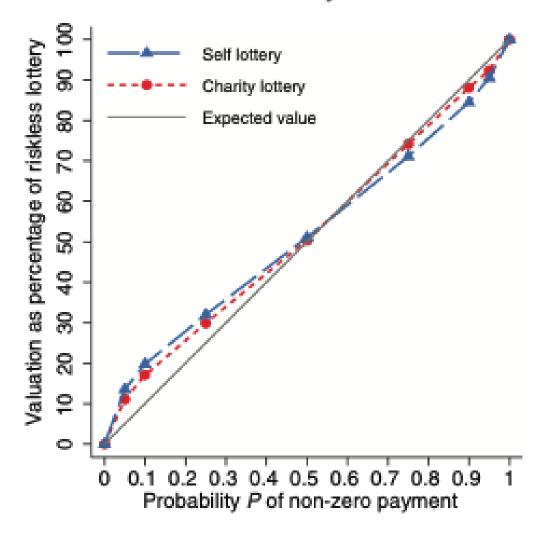
CHRISTINE L. EXLEY

Harvard Business School

First version received December 2014; final version accepted June 2015 (Eds.)

Decisions involving charitable giving often occur under the shadow of risk. A common finding is that potential donors give less when there is greater risk that their donation will have less impact. While this behaviour could be fully rationalized by standard economic models, this article shows that an additional mechanism is relevant: the use of risk as an excuse not to give. In a laboratory study, participants evaluate risky payoffs for themselves and risky payoffs for a charity. When their decisions do not involve tradeoffs between money for themselves and the charity, they respond very similarly to self risk and charity risk. By contrast, when their decisions force tradeoffs between money for themselves and the charity, participants act more averse to charity risk and less averse to self risk. These altered responses to risk bias participants towards choosing payoffs for themselves more often, consistent with excuse-driven responses to risk. Additional results support the existence of excuse-driven types.

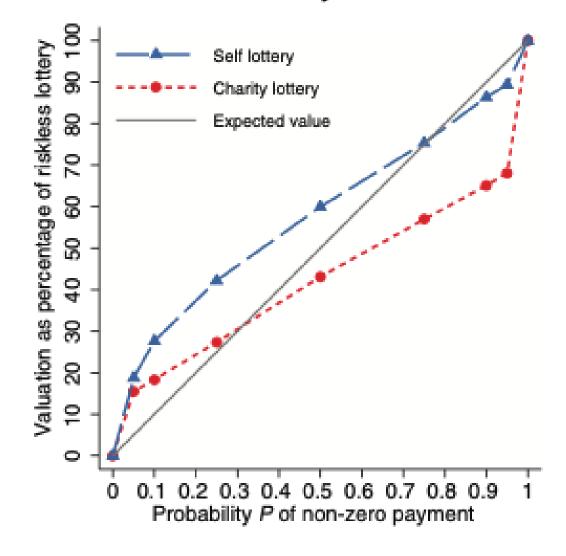
Key words: Charitable giving, Prosocial behaviour, Altruism, Risk preferences

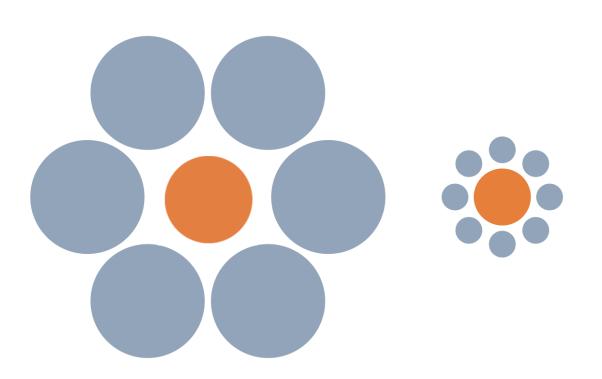

JEL Codes: C91, D64, D81, H41

Option A (you receives)	Option B (the ARC receives)
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$0
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$1
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$2
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$3
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$4
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$5
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$6
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$7
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$8
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$9
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$10
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$11
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$12
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$13
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$14
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$15
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$16
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$17
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$18
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$19
You: \$10 with probability 95%, and \$0 otherwise	ARC: \$20

Sure amount for me / lottery for me

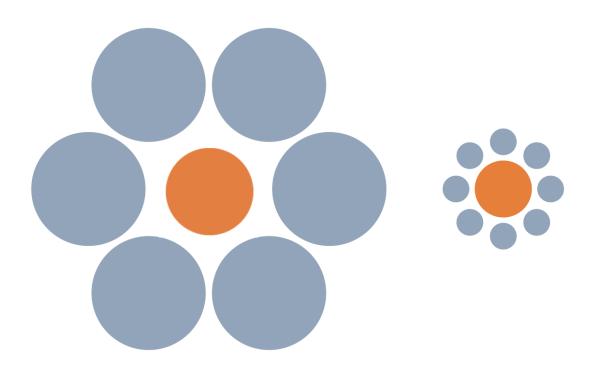
Sure amount for charity / lottery for charity


No self-charity tradeoff



Sure amount for charity / lottery for me

Sure amount for me / lottery for charity


Self-charity tradeoff

