sňatky mezi lety 1988 až 2000 a zjistili jsme, že v průběhu devadesátých let dvacátého století relativní míra vzdělanostní homogamie ve všech čtyřech zemích roste (v České republice a v Polsku se jedná o mírný nárůst, v Maďarsku a na Slovensku se jedná o růst strmější), přičemž podoba tohoto růstu není lineární, ale v každé zkoumané zemi kvadratická. Připustíme-li, že relativní vzdělanostní homogamie indikuje uzavřenost a otevřenost vzdělanostních struktur, musíme konstatovat, že přechod od socialismu ke kapitalismu je v těchto zemích doprovázen změnami v povaze vzdělanostních nerovností, které se ve vnímání a následném sňatkovém chování lidí zvětšují. Srovnání těchto nálezů s předchozími nálezy týkajícími se vývoje relativní sociální mobility v ruské a německé společnosti staví do popředí dvě otázky. Jednak: Dochází v postsocialistických zemích z hlediska vývoje nerovností ke konvergentnímu nebo divergentnímu vývoji? A pokud můžeme hovořit o konvergentním vývoji, jak nálezy naznačují, jaké faktory podmiňují tento vývoj? Co tedy ovlivňuje růst třídních nerovností během sociální, politické, kulturní a ekonomické transformace od socialismu ke kapitalismu v jednotlivých zemích bývalého socialistického bloku? Na tyto otázky čtvrtá generace sociálně stratifikačního výzkumu zatím neodpověděla. homogamie tedy nevypovídá pouze o párování mezi dvojicemi, které je charakteristické pro jednotlivé společnosti, ale indikuje rovněž velikost otevřenosti jednotlivých třídních struktur. Například vysoká vzdělanostní homogamie indikuje velké vzdálenosti mezi jednotlivými vzdélanostními stupni ve vnímání lidí, která se pak promítá do jejich sňatkového chování. Hovoříme-li naopak o nízké vzdělanostní homogamii, hovoříme o tom, že vzdálenosti mezi vzdélanostními stupni jsou ve vnímání lidí nízké, lidé je pak snadno překonávají a uzavírají vzdělanostně heterogamní sňatky. 136 6.kapitola MĚŘENÍ SOCIÁLNÍ MOBILITY v méi\-m owx.*«i**i *»*~—j j j stavitelé prvního přístupu pracují s agregovanými daty v mobilitních tabulkách, představitelé druhého přístupu pracují s individuálními daty, které analyzují pomocí pokročilých regresních metod. První způsob používala první generace, rozpracovala jej třetí generace a využívá jej také čtvrtá generace sociálně mobilitních badatelů (Ganzeboom, Treiman, Ultee 1991; Treiman, Ganzeboom 2000). Druhý způsob je svázán s druhou generací a v kombinaci s prvním způsobem jej používají rovněž někteří představitelé čtvrté generace sociálně mobilitních výzkumníků (Treiman, Ganzeboom 2000). Oba metodologické postupy a s nimi spojené statistické aparáty jdou ruku v ruce s odlišným analytickým přístupem k sociální stratifikaci. Konstrukce mobilitních tabulek předpokládá existenci sociálních tříd a třídních nerovností, regresní metody jsou založené na konceptech sociální status a vertikální nerovnost. Zastánci práce s mobilitními tabulkami jsou přesvědčeni o tom, že lidé z hlediska zdrojů, jež mají k dispozici, a omezení, jimž musejí čelit, sdílejí podobné životní šance. Patří tedy do stejné sociální třídy - do totožné (do jisté míry) sociálně uzavřené entity. Reprezentanti sofistikovaných regresních modelů se domnívají, že lidé jsou odměňováni podle toho, jaký dílem přispívají k chodu společnosti. Velikost příjmu, zaměstnanecká prestiž a stupeň vzdělání dohromady určují jejich postavení v hierarchii zaměstnaneckých statusů (zaměstnání tedy pojímají jako stupně na vertikální škále). Zastánci prvního přístupu pomocí mobilitních tabulek indikují míru omezení sociální mobility z jedné třídy do jiné, představitelé druhého přístupu ukazují, co podmiňuje dosahování zaměstnaneckého statusu ve společnosti. Zatímco tedy první přístup je zaměřen na analýzu velikosti sociálních 137 teV bariér mezi sociálními třídami, ve druhém přístupu jde o to zmapovat faktory podmiňující zaměstnanecký status.1 Tato kapitola představuje první a druhý přístup z hlediska jejich metodologicko-statistických aspektů. Zabývá se analýzou mobilitních tabulek v první generaci sociálně stratifikačního výzkumu, mapuje základní východiska regresního přístupu k dosahování zaměstnaneckého statusu ve druhé generaci a ukazuje, proč sociálně stratifikační badatelé třetí generace se znovu k mobilitním tabulkám vracejí a jaký metodologicko-statistický aparát dnes pro jejich analýzu používají. / 6.1 Mobilitnítabulky jako nástroj analýzy mobilitních dat Analytickým nástrojem, který používala první generace sociálně stratifikačních badatelů pro identifikaci mobilitních procesů, byly mobilitní (kontingenční) tabulky. Jedná se o elementární vyjádření sociální mobility. V případě intergenerační třídní mobility je mobilitní tabulka kombinací třídního postavení otce (případně rodičů), obvykle v řádcích tabulky, a třídního postavení syna (případně dětí), obvykle ve sloupcích tabulky. V případě intragenerační (kariérní) třídní mobility je mobilitní tabulka kombinací třídní příslušnosti jednoho a toho samého člověka, řádky a sloupce tabulky se ovšem od sebe liší časovými okamžiky, v nichž byla třídní příslušnost zjišťována. Tabulka 6.1 zachycuje intergenerační třídní mobilitu z otce na syna v první polovině sedmdesátých let dvacátého století ve Spojených státech amerických, Velké Británii a Japonsku.2 Čísla na diagonále ukazují absolutní počet mezigeneračně imobilních je- 1 První přístup bývá také někdy nazýván jako evropský přístup k sociální stratifikaci, druhý přístup jako americký přístup k sociální stratifikaci. Pro první přístup je klíčový koncept životních šancí, pro druhý koncept společenského úspěchu. 2 Data za USA pocházejí z šetření Occupational Changes in a Gencration (OCG II) realizovaného v roce 1973, data za Velkou Británii pocházejí z šetření Oxford Sociál Mobility Survey uskutečněného v roce 1972 a data za Japonsko pocházejí z šetření Sociál Stratification and Mobility (SSM) realizovaného v roce 1975. Vzorek ve všech třech zemích tvořili muži ve věkovém rozmezí 20 až 64 let. Data z americké a britské společnosti analyzovali 1 Tabulka 6.1. Intergenerační sociální mobilita z otce na syna ve Spojených státech amerických, Velké Británii a Japonsku (absolutní čísla). syn Otec USA Vyšší nemanuálové Nižší nemanuálové Vyšší manuálové Nižšímanuálové Zemědělci Celkem Velká Británie Vyššínemanuálové Nižší nemanuálové Vyšší manuálové Nižšímanuálové Zemědělci Celkem 1 Japonsko Vyšší nemanuálové Nižší nemanuálově Vyšší manuálové Nižší manuálové Zemědělci t Celkem VN 1275 1055 1043 1159 666 5198 474 300 438 601 76 1889 127 86 43 35 109 400 NN 364 , 597 . , 587 791 496 2835 129 218 254 388 56 1045 101 207 73 51 206 638 VM 274 394 1045 1323 1031 4067 87 •'• 171 669 ' 932 125 1984 24 64 122 62 184 456 NM 272 443 951 2046 1632 5344 124 220 703 1789 295 3131 30 61 60 66 " 253 470 Z 17 31 47 52 646 793 : " 11 8 16 : 37 191 263 12 13 13 11 325 374 Celkem 2202 2520 3673 5371 4471 18237 825 917 2080 3747 743 8312 294 431 311 225 1077 2338 dinců (reprodukce třídní struktury), čísla nad diagonálou a pod diagonálou ukazují absolutní počet mobilních jedinců, přičemž čísla nad diagonálou vyjadřují sestupnou mezigenerační mobilitu (třídní postavení syna je nižší než třídní postavení otce) a čísla pod diagonálou ukazují vzestupnou mezigenerační mobilitu (třídní postavení syna je vyšší než třídní postavení otce). Čím vzdálenější je pole v tabulce od diagonály ve směru vyššího Kerckohoff, Campbell, Winfield-Laired (1985) a data z japonské společnosti analyzoval Grusky (1983). Analýzu všech tří zemí dohromady s aspirací odpovědět na otázku po uzavřenosti a otevřenosti národních třídních struktur představili až výzkumníci třetí generace mobilitních badatelů: Yamaguchi (1987) a o několik let později Xie (1992). 138 139 nebo nižšího třídního postavení otce nebo syna, tím je také větší vzestupná nebo sestupná mobílitní vzdálenost. Na základě prostého součtu celkových relativních četností (tabulka 6.2) v diagonálních polích tabulek, v polích nad diagonálami a pod nimi, můžeme srovnat podíl mezigeneračně imobilních, sestupně a vzestupně mobilních a sestupně a vzestupně mobilních o určitou vzdálenost. Zatímco v USA prošlo třídní reprodukcí 30,7 % jedinců, ve Velké Británii to bylo 40,2 % a v Japonsku 36,2%. Třídně mobilních naopak v USA bylo 69,3%, v Británii 59,8 % a v Japonsku 63,8 %. Z těchto podílů připadlo v USA 15,7% na sestupnou třídní mobilitu a 53,6% na vzestupnou třídní mobilitu, v Británii 18,1 % na sestupnou třídní mobiTabulka 6.2. Intergenerační sociální mobilita z otce na syna ve Spojených státech amerických, Velké Británii a Japonsku ; (procenta) Otec USA Vyšší nemanuálové Nižšínemanuálové Vyšší manuálové Nižšímanuálové Zemědělci Celkem Velká Británie Vyšší nemanuálové Nižšínemanuálové Vyšší manuálové Nižší manuálové Zemědělci Celkem Japonsko Vyšší nemanuálové Nižšínemanuálové Vyšší manuálové Nižší manuálové Zemědělci Celkem Syn VN 7,0 5,8 5,7 6,4 3,7 28,6 5,7 3,6 5,3 7,2 0,9 22,7 5,4 3,7 1,8 1,5 4,7 17,1 NN 2,0 : 3,3 , 3,2 4,3 2,7 15,5 1,5 2,6 3,1 4,7 0,7 12,6 4,3 8,9 3,1 2,2 8,8 27,3 VM 1,5 2,2 5,7 7,2 5,6 22,2 1,1 2,1 8,1 11,2 1,5 24 1,0 2,7 5,2 2,6 7,9 19,5 NM 1,5 2,4 5,2 11,2 9,0 29,3 1,5 2,6 8,5 21,5 3,5 37,6 1,3 2,6 2,6 2,8 10,8 20,1 Z 0,1 0,2 0,3 0,3 3,5 4,4 0,1 0,1 0,2 0,4 2,3 3,1 0,5 0,6 0,6 0,5 13,9 16,0 Celkem 12,1 13,9 20,1 29,4 24,5 100,0 9,9 11,0 25,2 45,0 8,9 f 100,0 12,5 18,5 13,3 ••" 9,6 46,1 " 100,0 litu a 41,7% na vzestupnou třídní mobilitu a v Japonsku 16,7% na sestupnou třídní mobilitu a 47,1% na vzestupnou třídní mobilitu (tabulka 6.3). Jak u vzestupné, tak u sestupné mobility je u každé země nejrozšířenější mobilita na krátkou vzdálenost (o l stupeň) a se vzrůstající vzdáleností podíl mobilních jedinců klesá. Všechna tato procentuální vyjádření naznačují, že v sedmdesátých letech dvacátého století byla nejpropustnější třídní struktura v USA, a to především směrem do vyšších třídních pozic. Naopak největší podíl lidí, kteří prošli reprodukcí třídního postavení a sestupnou třídní mobilitou, byl ve Velké Británii. V případě, že spočítáme řádkové relativní četnosti pro jednotlivé země (podíl absolutních četností v polích tabulky a jejich součtu v řádcích), dostaneme odtokovou mobilitu (outflow mobility). Tato mobilita vyjadřuje mezigenerační vliv třídního původu a ukazuje, jaký podíl potomků „odtekl" z třídy, do níž se narodili. Jedná se o odpověd na otázku - kam? Do jakých tříd synové v mezigeneračním přechodu odcházejí? Jak se rozdělila skupina synů, jejichž otcové měli určité třídní postavení? Jaký je podíl potomků, které každá sociální třída „dodává" do jednotlivých tříd? Když spočítáme sloupcové relativní četnosti v tabulkách (podíl absolutních četností v polích tabulky a jejich součtu ve sloupcích), Tabulka 6.3. Intergenerační sociální mobilita (vzestupná a sestupná) a reprodukce ve Spojených státech amerických, Velké Británii a Japonsku (procenta) Reprodukce Mobilita Vzestupná mobilita o 1 stupeň (krátká vzdálenost) o 2 stupně (střední vzdálenost) o 3 stupně (delší vzdálenost) o 4 stupně (dlouhá vzdálenost) Sestupná mobilita o 1 stupeň (krátká vzdálenost) o 2 stupně (střední vzdálenost) o 3 stupně (delší vzdálenost) o 4 stupně (dlouhá vzdálenost) USA 30,7 69,3 53,6 25,2 15,6 9,1 .. 3,7 15,7 : .' 9,7 4,2 " 1.7 0,1 VB 40,2 59,8 41,7 21,4 11,5 7,9 0,9 18,1 12,5 3,9 1,6 0,1 Japonsko 36,2 63,8 47,1 20,2 11,9 10,3 4,7 í; 16,7 10,1 4,2 1,9 0,5 140 141 dostaneme přítokovou mobilitu (inflow mobility). Tato mobilita ukazuje třídní původ synů, neboli vyjadřuje, jaký podíl potomků z té které třídy „přitekl" do určité třídy. Jedná se o odpověď na otázku - odkud? Z jakých tříd synové přicházejí? Jaké je složení třídy podle třídního původu jejích příslušníků? Jaký je podíl třídních představitelů, kteří jsou „odváděni" z jednotlivých tříd jejich otců? Tabulka 6.4 ukazuje výsledky odtokové mobility pro USA, Velkou Británii a Japonsko. Ve všech třech zemích synové vyšších nemanuálů v poměrně značné míře končí zase ve třídě vyšších nemanuálů, menší část z nich ve třídě nižších nemanuálů, manuálů a velmi málo z nich se stává zemědělci. Synové nižších nemanuálů Tabulka 6.4. Odtoková intergenerační sociální mobilita z otce na syna ve Spojených státech amerických, Velké Británii a Japonsku Otec USA Vyšši nemanuálové Nižší nemanuálové Vyšší manuálové Nižší manuálové Zemědělci Celkem Velká Británie Vyšší nemanuálové Nižší nemanuálové Vyšši manuálové Nižší manuálové Zemědělci Celkem Japonsko Vyšší nemanuálové Nižší nemanuálové Vyšši manuálové Nižší manuálové Zemědělci Celkem Syn VN 57,9 41,9 28,4 21,6 14,9 28,5 57,5 32,7 21,1 16,0 10,2 22,7 43,2 20,0 13,8 15,5 10,1 :17,1 NN 16,5 23,7 16,0 .14,7 11,1 15,6 15,6 23,8 12,2 10,4 7,6 12,6 34,3 48,0 23,5 22,7 19,1 27,3 VM 12,4 15,6 28,4 24,6 23,1 22,3 10,6 18,6 32,1 24,9 16,8 23,9 8,2 14,9 39,2 27,6 17,1 19,5 NM 12,4 17,6 25,9 38,1 36,5 29,3 15,0 24,0 33,8 47,7 39,7 37,7 10,2 14,1 19,3 29,3 23,5 20,1 Z 0,8 1,2 1,3 1,0 14,4 ' 4,3 1,3 0,9 0,8 1,0 25,7 3,1 4,1 ' 3,0 4,2 4,9 30,2 , 16 Celkem 100,0 ', 100,0 100,0 100,0 ; 100,0 100,0 100,0 100,0 100,0 100,0 100,0 '' 100,0 100,0 100,0 100,0 100,0 100,0 100,0 142 jsou jak v USA, tak v Británii nejčastěji zastoupeni v třídě vyšších nemanuálů (v USA to bylo 41,9 %, ve Velké Británii 32,7 %).3 Podobnou mobilitu vidíme v obou zemích u synů zemědělců. Největší podíl z nich končí ve třídě nižších manuálů (v USA to bylo 36,5 %, ve Velké Británii 39,7 %). Ani jeden z těchto trendů není ovšem patrný pro japonskou společnost. Pro všechny třídy zde platí, že synové končí nejčastěji ve třídě svého otce. Tabulka 6.5 ukazuje výsledky přítokové mobility pro tytéž země. Míra reprodukce je v tomto případě u všech tří zemí patrná Tabulka 6.5. Přítoková intergenerační sociální mobilita z otce na syna ve Spojených státech amerických, Velké Británii a Japonsku Syn Otec ~ USA Vyšší nemanuálové Nižší nemanuálové Vyšši manuálové Nižší manuálové Zemědělci Celkem Velká Británie Vyšší nemanuálové Nižší nemanuálové Vyšší manuálové Nižší manuálově Zemědělci Celtem Japonsko Vyšši nemanuálové Nižši nemanuálové Vyšší manuálové Nižší manuálové Zemědělci Celkem VN 24,5 20,3 20,1 22,3 12,8 100,0 25,1 15,9 23,2 31,8 4,0 100,0 31,8 21,5 10,8 8,8 27,3 100,0 NN 12,8 21,1 20,7 27,9 17,5 100,0 12,3 20,9 24,3 37,1 5,4 100,0 15,8 32,5 11,4 8,0 32,3 100,0 VM 6,7 9,7 25,7 32,5 25,4 100,0 4,4 8,6 33,7 47 6,3 100,0 5,3 14,0 26,8 13,6 40,4 100,0 NM 5,1 •'. 8,3 17,8 38,3 30,5 100,0 4,0 7,0. 22,5 57,1 9,4 100,0 6,4 13,0 12,8 14,0 53,8 100,0 Z 2,1 1 3,9 5,9 6,6 81,5 ,100,0 4,2 3,0 6,1 14,1 72,6 100,0 3,2 3,5 '•: 3,5 2,9 86,9 100,0 Celkem 12,1 13,8 20,1 29,5 24,5 100,0 9,9 11,0 25,0 45,1 8,9 100,0 12,6 18,4 13,3 9,6 46,1 100,0 3 Tato procenta lze také interpretovat jako pravděpodobnost syna pocházejícího z určité třídy dostat se do jiné třídy. V tomto případě by to znamenalo, že u synů nižších nemanuálů je v USA pravděpodobnost dostat se do třídy vyšších nemanuálů 0,42, v Británii je to 0,33. 143 především u zemědělců a nižších manuálů (např. synové, kteří patří mezi zemědělce, měli v USA v 81,5% případů otce zase zemědělce, ve Velké Británii to bylo v 72,6% případů a v Japonsku v 86,9 % případů). Původ vyšších nemanuálů je ve všech zemích poměrně rovnoměrně rozložen mezi všechny sociální třídy (v Japonsku dokonce 27,3 % vyšších nemanuálů pochází z třídy zemědělců). Podobné to je i v případě nižších nemanuálů. Poměr mobilitních odtoků mezi dvěma variantami výchozí pozice (třídní zařazení otce) nebo poměr mobilitních přítoků mezi dvěma variantami konečné pozice (třídní zařazení syna) indikuje index odlišnosti (index of dissimilarity). Vypočítá se jako součet všech pozitivních rozdílů mezi dvěma procentuálními distribucemi, dělený číslem 100." Kdyby rozdíly mezi těmito distribucemi neexistovaly, byly by odtoky ze všech tříd otců nebo přítoky do všech tříd synů stejně veliké. Index odlišnosti tedy ukazuje, jak velký podíl případů z hlediska odtokové nebo přítokové mobility přesahuje stav, kdy dva odtoky z třídy původu nebo dva přítoky do konečné třídy jsou identické. Tabulka 6.6 ukazuje velikost indexu odlišnosti pro jednotlivé varianty tříd otců a tříd synů ve Spojených státech amerických, Velké Británii a Japonsku. Pro všechny tyto společnosti platí, že čím větší vzdálenost mezi třídními pozicemi, tím je také vyšší hodnota indexu odlišnosti, tedy vyšší podíl případů, které se z hlediska mobilitních toků od sebe odlišují. Jak odtoková, tak přítoková mobilita jsou dvě strany jedné mince. Jedná se o dva rozdílné pohledy na jeden a ten samý jev. Odtoková mobilita odkazuje k vzestupným nebo sestupným šancím spojeným s třídním původem člověka. Indikuje sílu vztahu mezi tím, kde člověk v třídní struktuře začne, a tím, kde v ní Tabulka 6.6. Index odlišnosti mezi mobilitními odtoky (pod diagonálou) a mobilitními přítoky (nad diagonálou) ve Spojených státech amerických, Velké Británii a Japonsku 4 Například index odlišnosti mezi odtokovým podílem pro zemědělce a nižší manuályv americké společnosti z tabulky 6.4vypočítámejako [(21,6-141 9)+(14> 7-ll,l)+(24,6-23,l)+(38> l-36,5)1/100, což odpovídá kontrastní pozitivní diferenci (14,4-1)/100. Podobně spočítáme index odlišnosti v tabulce 6.5 mezi přítokovým podílem například pro nižší nemanuály a vyšší nemanuály [(17,5- 12,8)+(27,9- 22,3)+(20,7- 20,1) + (21,1 -20,3)]/100, čemuž zase odpovídákontrastní pozitivní diference (24,5-12,8)/100. Index odlišnosti nabývá hodnot <0;1>. Čím vyšších hodnot dosahuje, tím je také difference mezi zkoumanými distribucemi větší. tec USA Vyšší nemanuálové Nižší nemanuálové Vyšší manuálové Nižší manuálové Zemědělci Velká Británie Vyšší nemanuálové Nižšínemanuálové Vyšší manuálové Nižší manuálové Zemědělci Japonsko Vyšší nemanuálové Nižší nemanuálové Vyšší manuálové Nižší manuálové Zemědělci VN - 0,16 0,30 0,38 0,48 - 0,25 0,40 0,47 0,55 - 0,23 0,40 0,39 0,48 NN 0,12 - 0,21 0,30 0,40 0,13 - 0,23 0,30 0,41 0,16 - 0,31 0,30 0,39 Syn VM 0,28 0,18 - 0,12 0,24 0,21 0,20 : 0,14 0,31 0,34 0,29 - 0,12 0,30 NM 0,34 0,23 0,11 - 0,13 0,31 0,24 0,13 •:•., 0,25 0,34 0,29 0,14 - 0,25 Z 0,69 0,64 0,56 0,51 - 0,69 0,67 0,63 0,63 - 0,60 0,55 0,47 0,33 skončí (Breen, Rothman 1995). Čím silnější je tento vztah, tím nižší jsou mobilitní šance člověka a tím explicitnější je jeho třídní příslušnost. Přítoková mobilita odkazuje ke složení třídy, k její homogenitě a heterogenitě. Ukazuje, jak je třída konzistentní a soudržná vzhledem k třídnímu původu jejích příslušníků. Čím větší je tato soudržnost, tím větší je sociální a kulturní semknutí třídních příslušníků,tímjasnějšíjsou třídní kontury a tím silnější je také identifikace člověka se svou třídní pozicí. 5 I když kombinace těchto typů mobilit ukazuje propustnost jednotlivých sociálních tříd, jejich používání je problematické, protože třídy nejsou obvykle stejně veliké. Například když při 5 Tato dvě vyjádření mobility nejsou stejná relativní čísla, protože jsou počítána vždy ve vztahu k číslům v marginálních distribucích mobilitních tabulek, které nejsou pro otce z syny totožné. komparaci odtoků a přítoků u třídy, která je v populaci zastoupena z 10%, s odtoky a přítoky u třídy, která je v populaci zastoupena ze 30%, nenajdeme rozdíl, neznamená to, že tento rozdíl neexistuje. Jelikož jedno a to samé číslo znamená pro obě třídy něco jiného, rozdíl mezi těmito třídami existuje, nicméně procentuální vyjádření odtokové a přítokové mobility jej neindikuje.6 6.2 Mobilitnítabulky a identifikace strukturní a čisté mobility Problémem až dosud prezentované analýzy mobilitních dat je nezohlednění věku respondenta. Výzkumníci sice pracují s aktuální třídní pozicí respondenta, určenou na základě jeho zaměstnání, nicméně nerozlišují, zdali se jedná o pozici na začátku pracovní kariéry, v jejím středu nebo na jejím vrcholu. Když respondent pak uvádí pozici otce, obvykle jmenuje tu nejúspěšnější nebo tu nejdéle zastávanou, která ovšem může být zcela odlišná od jeho současné pozice, i když není vyloučeno, že jí rovněž za několik let nedosáhne. Tento typ analýz zkrátka srovnává nesrovnatelné, protože nebere zřetel na intragenerační (kariérní) mobilitu respondenta. To konstatovali již autoři prvních mobilitních studií v padesátých letech (srov. Rogoíf 1953; Glass 1954; Carlsson 1958). Glass (1954) navrhl tento problém řešit komparací otců a jejich potomků, až dosáhnou určité věkové hranice (např. 50 let), kdy je jejich pracovní kariéra již stabilizovaná natolik, že není příliš pravděpodobná další intragenerační mobilita.7 Problémem tohoto řešení je, že opomíjí z analýzy podstatnou část populace. Lenski (1958) nebo Lipset a Bendix (1959) proto navrhli jiné řešení, jež spočívá v kohortní komparaci třídních pozic. Re- 6 33 % odtokové mezigenerační mobility u sociální třídy, kterou reprezentuje 99 lidí, znamená, že skutečně třídně mobilních je 33 potomků; 33 % této mobility u třídy, již reprezentuje 9 lidí, znamená, že třídní mobilitou prošli ve skutečnosti pouze 3 potomci. 7 Tento závěr vychází ze zjištění, že k sociální mobilitě dochází nejčastěji v první třetině ekonomické aktivity (mezi 20. až 35. rokem života) a s postupujícím věkem její četnost velmi rychle klesá (více k tomu srov. Jaffe, Carleton 1954). spondentovo zaměstnání by mělo být srovnáváno s otcovým zaměstnáním, které měl ve stejném věku, jež má respondent v době šetření. Podle Yasudy (1964) není ani toto řešení nejvhodnější, protože v něm není dostatečně oddělena intergenerační a intragenerační mobilita. Nevíme, co je funkcí výhod daných otcovým třídním postavením a co je důsledkem potomkovy vlastní kariéry. Rogoff (1953) nebo Yasuda (1964) proto navrhují komparovat první zaměstnání potomka s otcovým zaměstnání v téže době. Oddělíme tak intergenerační mobilitu od intragenerační mobility (především Yasuda se domnívá, že nástupem do prvního zaměstnání se efekt rodinného původu vyčerpává a další posuny v zaměstnanecké kariéře musíme již připsat na vrub intragenerační mobilitě) a navíc tuto komparaci lze ve výběrových šetřeních dělat pro jednotlivé kohorty, a tak analyzovat vývoj intergenerační mobility v čase. Ani toto řešení se ovšem nejeví jako nejvhodnější, protože vliv otcovy třídní pozice nemusí končit nástupem syna do prvního zaměstnání, konstatuje Lenski (1958). Intergenerační a intragenerační mobilita se mohou vzájemně doplňovat a nemusí mezi nimi existovat tak radikální předěl, jež předpokládá Yasuda (1964). Než konečné řešení tohoto problému se pro další vývoj měření sociální mobility ukázaly podstatnější okolnosti, které při komparacích generací otců a synů vyvstávaly na povrch. Od doby komparace třídních (zaměstnaneckých) pozic otců a synů v mobilitních tabulkách bylo totiž jasné, že nelze mechanicky srovnávat dvě generace bez ohledu na strukturu třídních (zaměstnaneckých) pozic, která byla v generaci otců a která je v generaci jejich potomků. Struktura třídních (zaměstnaneckých) pozic se mění a s ní se mění i velikost třídní mobility. Dále bylo zřejmé, že nelze mechanicky srovnávat dvě generace otců a synů bez ohledu na mezigenerační rozdíl v nabídce uvolněných zaměstnání (Lipset, Zetterberg 1966). Díky nižší porodnosti ve vyšších sociálních třídách než v nižších třídách má například každá další generace synů z nižších tříd k dispozici větší počet neobsazených zaměstnaneckých míst a jejich mobilita je pak oproti generaci otců nutně vyšší. Na základě těchto úvah začala být celková intergenerační třídní mobilita chápána jako výsledek třech příčin. Tou první jsou změny ve složení sociálních tříd dané technologickým pokrokem 147 ve společnosti (některá pracovní místa zanikají, jiná se objevují). Tou druhou jsou změny ve velikosti třídní populace (třídní diferenciace v porodnosti, úmrtnosti, migraci do třídy a emigraci ze třídy). A tou třetí je prostá cirkulace lidí mezi jednotlivými třídami. První dvě příčiny vedou ke strukturální (někdy také vynucené) mobilitě, třetí příčina vede k čisté (někdy také výměnné) mobilitě (Kahl 1953; Lipset, Zetterberg 1966). Strukturální mobilita nemá nic do činění s nerovnostmi v příležitostech. Je důsledkem technologického pokroku a demografických změn v jednotlivých třídách. V případě rychlého technologického a ekonomického rozvoje je její míra vysoká, mizejí pracovní místa rodičů a potomci se nemají na jaká místa a do jakých tříd reprodukovat, přesto ovšem nerovnosti v příležitostech pro tyto potomky mohou zůstávat stejně vysoké, jako byly pro generaci jejich rodičů.8 Čistá mobilita odkazuje k výměně, k mezitřídnímu pohybu lidí. Až tato mobilita indikuje, jak třída původu poznamenává mobilitní proces, jak zdroje, jež mají představitelé jednotlivých tříd k dispozici, ovlivňují nerovnosti v mobilitních šancích potomků, kteří v nich vyrostli.9 Ústředním problémem první generace sociálně mobilitních badatelů se velmi záhy stalo odlišení těchto dvou typů mobilit 8 V této souvislosti Lipset a Zetterberg (1959,1966) jsou dokonce přesvědčeni, že by bylo správnější hovořit o nerovnosti příležitostí než o sociální mobilitě, protože naměřená absolutní sociální mobilita ještě nutně nemusí odpovídat rovným příležitostem a zjištěná rovnost příležitostí nemusí být vyjádřena celkovou absolutní sociální mobilitou. Například v populaci, kde pracuje 90 % lidí v zemědělství, může existovat naprostá rovnost příležitostí, a přesto zde většina dětí bude muset pracovat zase v zemědělství (naměřená absolutní mobilita bude tudíž nízká). Když se naopak společnost ekonomicky rychle rozvíjí a roste počet nemanuálních pracovních míst, musejí být obsazovány potomky manuálně pracujících rodičů (ze skupiny potomků nemanuálně pracujících rodičů již nemá tyto místa kdo obsazovat). V takové společnosti pak naměříme vysokou sociální mobilitu, i když rovnost šancí se nijak dramaticky nezvyšuje. Otázkou zůstává, jak a zdali vůbec změny v zaměstnanecké struktuře ovlivňují její otevřenost a uzavřenost, tedy rovnost a nerovnost šancí. Tato otázka nebyla dodnes spolehlivě zodpovězena. 9 Kahl (1953) tuto mobilitu nazývá individuální mobilitou, nicméně jak ukazujeYasuda (1964) nebo Goldthorpe (2000b),tento termín není vhodný, protože se jedná o nadindividuální, makrostrukturální koncept. 148 v celkové míře mobility. Jak moc je naměřená mobilita výsledkem strukturní změny ve společnosti a jak moc je odrazem rovnosti příležitostí? Nakolik se jednotlivé společnosti liší nerovnostmi v životních šancích bez ohledu na jejich ekonomický a technologický pokrok? První řešení spočívalo v uchopení čisté mobility jako rezidua, které dostaneme po odečtení strukturní mobility od celkové mobility. Jelikož celková mobilita byla z mobilitních tabulek snadno vypočitatelná, mělo se za to, že stačí určit velikost strukturní mobility a dopočet do celkové mobility bude vyjadřovat velikost čisté mobility. Kahl (1953) v analýze amerických dat z roku 1947 vyšel z předpokladu, že četnosti v marginálních polích mobilitní tabulky pro syny reprezentují jejich zaměstnaneckou strukturu v americké společnosti na konci čtyřicátých let a četnosti v marginálních polích tabulky pro otce ukazují zaměstnaneckou strukturu, která byla v americké společnosti na začátku dvacátých let. Strukturní mobilitu pak identifikoval jako rozdíl mezi strukturou třídního postavení otců a synů - jako rozdíl mezi řádkovými a sloupcovými margináliemi v mobilitní tabulce. Když se vrátíme k Tabulce 6.1, můžeme na základě tohoto řešení konstatovat, že jak v USA, tak Velké Británii a Japonsku došlo ke strukturní mobilitě mezi otci a syny u zemědělců (v USA bylo v této třídě 4471 otců, jejich synů je zde bylo 793; ve Velké Británii bylo v této třídě 743 otců, synů 263 a v Japonsku byla tato mezigenerační změna z 1077 otců na 374 synů). Synové otců zemědělců byli „donuceni" k mobilitě do vyšších tříd, protože počet pozic ve třídě zemědělců byl v jejich generaci nižší než u jejich otců. Výpočet absolutního počtu strukturně mobilních jedinců je triviální. Lze k němu dospět třemi způsoby: bud odečteme vždy větší číslo v marginálním poli od menšího čísla v marginálním poli pro jednu a tu samou třídu otců a synů, čísla pak sečteme a součet vydělíme číslem 2, nebo odečteme čísla v marginálních polích otců od čísel v marginálních polích synů, ale pouze v případě, že čísla v marginálních polích otců jsou menší než čísla v marginálních polích synů (v případě, že čísla jsou větší, odečítáme syny od otců a dostaneme stejný výsledek), anebo vždy menší číslo z marginálního pole otců a synů v jedné a té samé třídě umístíme na diagonálu tabulky, tato čísla sečteme a jejich 149 součet odečteme od celkového počtu respondentů v tabulce. 10 Jakmile dostaneme absolutnípočetstrukturálně mobilních,vypočítáme jejich podíl11 a rozdílem tohoto podílu a celkové mobility dostaneme velikost čisté mobility pro jednotlivé země. Pro USA, Velkou Británii a Japonsko velikost strukturní a čisté mobility ukazuje Tabulka 6.7. Na základě těchto údajů bychom měli poopravit naše předchozí tvrzení, že japonská společnost je otevřenější než britská společnost, jež bylo podepřené údaji o celkové mobilitě. Strukturní změna,jíž prošlo Japonsko, je větší než strukturní změna ve Velké Británii a čistá mobilita je naopak v Japonsku téměř o 12 % menší než ve Velké Británii. USA zůstává i v tomto případě společností s nejotevřenější třídní strukturou. Tabulka 6.7. Intergenerační strukturní a čistá sociální mobilita a reprodukce ve Spojených státech amerických, Velké Británii a Japonsku (procenta) USA VB Japonsko Reprodukce 30,7 40,2 36,2 Mobilita Strukturní mobilita Čistá mobilita 69,3 20,3 49,0 59,8 14,3 45,5 63,8 30,1 33,7 Druhé řešení v odlišení strukturní a čisté mobility spočívalo v identifikaci čisté mobility přímo z mobilitních tabulek. Jednalo se o konstrukci více nebo méně složitých mobilitních indexů. V prvních mobilitních výzkumech Rogoff (1953), Glass (1954) a Carlsson (1958) nezávisle na sobě vyšli ze stejného předpokladu, že velikost mobility a imobility v mobilitních tabulkách lze určit na základě vzdálenosti mezi naměřenými četnostmi a oče- 10 Například pro USA v Tabulce 6.1 podle prvního způsobu výpočtu dostaneme absolutní počet strukturně mobilních jako [(5198-2202)+(2385-2520)+(4067-3673)+(5371-5344)+(4471-793)]/2=3705 podle druhého způsobu výpočtu jako (5198-2202)+(2385-2520)+(4067-3673)=3705 a podle třetího způsobu výpočtu jako 18237-(2202+2520+3673+5344+793)=3705. . »' Pro USA je tento podíl (3705/18237)100 =20,3%. 150 kávanými četnostmi, jež dostaneme za předpokladu statistické nezávislosti neboli perfektní mobility. 12 I když každý z těchto autorů mobilitní index nazval jinak (Rogoff hovoří o „poměru distance sociální mobility", Glass používá termín „index asociace" a Carlsson „koeficient associace" či „c"), způsob jeho výpočtu byl stejný. Jednalo se o poměr naměřených a očekávaných četností, které dostaneme za situace perfektní mobility.13 S kritikou neadekvátnosti tohoto idexu pro určení čisté mobility v diskusi, která proběhla na stránkách Population studies o metodologii práce Glasse (1954) a jeho kolegů, přišel Billewicz (1955).14 Ukázal, že index asociace může nabývat pro dvě diagonální tabulková pole stejných hodnot, i když v jednom poli pozorujeme úplnou reprodukci (všichni synové končí ve stejné třídě otců) a ve druhém naopak velmi slabou reprodukci (asi pouze desetina synů končí ve třídě jejich otců). Nebo naopak pro dvě diagonální tabulková pole může nabývat rozdílných hodnot, i když je v nich mezigenerační reprodukce z otce na syna téměř úplná (prakticky všichni synové končí v třídě jejich otců). To je dáno tím, že tento index není nezávislý na marginálních distribucích v mobilitních tabulkách. Na základě této kritiky vznikla celá řada dalších mobilitních indexů a jejich následných korekcí (viz např. Durbin (1955); Tumin, Feldman (1961); Yasuda (1964); Bertaux (1969); Pullum 12 Koncept statistické nezávislosti znamená, že data v mobilitních tabulkách jsou rozložena zcela náhodně. Mezi sociální třídou otce a syna neexistuje žádný vztah. Jedná se o situaci perfektní mobility, kdy pravděpodobnost jakéhokoliv třídního postavení je pro všechny syny pocházející z různých sociálních tříd otců stejná - třídní struktura je zcela otevřená. 13 Vzorec pro výpočet je (n..N)/(n.n), kde n..označuje frekvenci v i-tém řádku a j-tém sloupci rnobilitní tabulky, N je celkový počet respondentů, n. označuje celkový počet respondentů v j-tém řádku mobilitní tabulky a n, označuje celkový počet respondentů v j-tém řádku mobilitní tabulky. Tento index může nabývat hodnot <0;°°>, přičemž číslo l znamená statistickou nezávislost neboli situaci perfektní mobility. Čím je číslo větší než l, tím větší je nadreprezentace případů vzhledem ke statistické nezávislosti a čím je číslo menší než l, tím je nadreprezentace vzhledem k statistické nezávislosti menší. Blackburn a Prandy (1997) ukázali, že idea tohoto výpočtu pochází z práce American Bussiness Leaders (Taussig, Joslyn 1932), nicméně až do doby prvních mobilitních výzkumů nebyla zobecněna.14 Do diskuse vstoupili ještě Prais (1955) a Gábor (1955), odpovědna jejich kritiku viz Scott (1955). 151 (1970); Tyree (1973) nebo Boudon (1973)).15 Žádný z nich se ovšem neukázal jako adekvátní pro rozlišení čisté a strukturní mobility. Jelikož velikost každého indexu podmiňovaly marginální četnosti v mobilitních tabulkách, nebylo možné dostat stejné výsledky pro dvě generace nebo dvě společnosti s rozdílnou strukturou marginálií, a tedy přesvědčivě určit změnu v mobilitních vzorcích bez ohledu na změny v třídních strukturách. ,' 6.3 Měření dosahování zaměstnaneckého statusu V polovině šedesátých let Duncan (1964) ukázal, že intergenerační změna pozorovaná v mobilitních tabulkách, která byla počítána jako strukturní mobilita, nekoresponduje (a nikdy ani nemůže korespondovat) s reálnou změnou v zaměstnanecké struktuře. Když Kahl (1953) formuloval algoritmus pro určení strukturní mobility v mobilitních tabulkách, vycházel z předpokladu, že všichni synové již „nahradili" své otce, a proto prostým rozdílem marginálních tabulkových distribucí lze určit velikost strukturní intergenerační mobility. Problém je v tom, že zaměstnanecká distribuce otců je zjišťována u synů, kteří jsou v době sociologického šetření na trhu práce. Otcové, kteří neměli syna, se do šetření nedostanou. Otcové, jež měli dva a více synů, jsou naopak v šetření nadreprezentováni. Otcové synů, kteří opustili trh práce v době, než šetření začalo, z výzkumu vypadávají. A otcové, kteří jsou stále ještě na trhu práce, i když jsou již zkoumáni jejich synové, reprezentují sice předchozí generaci, nicméně svou intragenerační mobilitou poznamenávají zaměstnaneckou strukturu v čase zkoumání. Když je potom výzkum mobility reprezentativní, tak pouze na zaměstnaneckou strukturu v době zkoumání. Tato reprezentativita ovšem není přenositelná na předchozí generaci. Zaměstnaneckou strukturu otců nelze specifikovat prostřednictvím zaměstnanecké struktury synů, konstatuje Duncan (1964). V mobilitních tabulkách je tedy srovnávána reálná zaměstnanecká struktura s hypotetickou zaměstnaneckou strukturou a na základě tohoto srovnání se vyvozují 15 Diskusi o jednotlivých indexech a způsobech jejich výpočtu viz Bibby (1975). 152 nejen závěry o velikosti strukturní, ale také o velikosti čisté intergenerační mobility. Duncan (1964) byl přesvědčen, že tyto problémy nelze vyřešit ani rozšířením retrospektivního výzkumu, ani kohortním přístupem k intergenerační mobilitě. Navrhuje proto novou konceptualizaci sociální mobility a nový způsob analýzy mobilitních dat, jež do historie stratifikačního výzkumu vešly pod názvem teorie dosahování zaměstnaneckého statusu.16 Zaměstnanecká pozice otce se v tomto pojetí nevztahuje ke generaci otců, ale je to proměnná, která popisuje výchozí status syna. S ní je srovnávána konečná zaměstnanecká pozice syna (nebo jeho pozice v době zkoumání), což umožňuje zodpovědět otázky, jak a do jaké míry výchozí sociální pozice determinuje dosažené zaměstnání ve společnosti. Mobilitní tabulky bychom tedy podle Duncana měli chápat jako uspořádání výchozích sociálních statusů podle dosažených zaměstnání u těch kohort, které byly do výzkumu zahrnuty, a závěry, k nimž na jejich základě dospějeme, interpretovat jako intrakohortní změny, a nikoliv jako intergenerační mobilitu. Takto konceptualizovaná sociální mobilita šla ruku v ruce nejen s jejím novým analytickým uchopením, ale také s novou sadou otázek, na které předchozí generace sociálně stratifikačních výzkumníků se svým metodologickým aparátem jen obtížně a především nepřesvědčivě odpovídala. Duncan se svými spolupracovníky v polovině šedesátých let uvádí do sociologie pěšinkovou analýzu (path analysis) (Duncan 1966a; Duncan 1966b), která umožnila zkoumat vliv více faktorů na zaměstnaneckou pozici, a tak zodpovědět otázky, co a jakým způsobem podmiňuje zaměstnání, které člověk vykonává. V pěšinkové analýze výzkumník modeluje efekty jednotlivých nezávisle proměnných na závisle proměnnou, při kontrole vzájemných vztahů mezi nezávisle proměnnými. Jedná se o způsob, jak zachytit přímé a nepřímé vztahy mezi proměnnými a ukázat rozdíly v jejich síle. Například když víme, že zaměstnání otce koreluje se zaměstnáním syna, a ptáme-li se, jak je tento vztah zprostředkován vzděláním syna, můžeme tuto otázku zodpovědět právě prostřednictvím pěšinkové 16 Tento návrh předznamenal nejen začátek konce metodologie první generace sociálně stratifikačních výzkumníků, ale také uzavření této generace jako celku (Ganzeboom, Treiman, Ultee 1991). 153 analýzy. Klasická výzkumná otázka v tomto případě zní: mají synové otců prestižnější a ekonomicky výhodnější zaměstnání, protože mají vyšší vzdělání, bez ohledu na zaměstnání jejich otce (efekt otcova zaměstnání na zaměstnání syna při kontrole synova vzdělání oslabuje na minimum), nebo synové otců v prestižním afinančnědobře ohodnoceném zaměstnání získávají podobné zaměstnáníbezohledu najejichvzdělání?Analýzaamerické společnosti ukázala, že lidé s vyšším vzděláním vykonávají prestižnější a finančně lépe ohodnocené zaměstnání než lidé s nižším vzděláním, i když jejich otcové se typem svého zaměstnání neliší.17 Proměnné,jež vstupují do pěšinkové analýzy, musejí být měřitelné. Toho lze dosáhnout třemi způsoby: budjsoujednotlivé proměnné dichotomizovány (např. manuálové, nemanuálové), nebo každou zaměstnaneckou kategorii specifikujeme jako zvláštní „dummy" proměnnou, anebo vytvoříme škálu skórů či vah, která charakterizuje jednotlivé zaměstnanecké posty, a splňuje tak požadavekjejichkardinalizace(Duncan,Hodge 1963;Duncan-Jones 1973). Blau a Duncan volí třetí způsob. Pro zaměstnanecké postavení otce a syna konstruují na základě průměrů z příjmu a let strávených ve škole socioekonomický index zaměstnání (SEI). Pěšinková analýza se stává oporou Blauova a Duncanova (1967) modelu dosahování zaměstnaneckého statusu. Na přelomu šedesátých a sedmdesátých let začíná, dominovat zkoumání stratifikačního procesu. Obrázek 6.1. ukazuje Blauův a Duncanův základní model dosahování statusu v americké společnosti.18 Model obsahuje dvě proměnné charakterizující sociální původ (otcovo vzdělání a zaměstnání), dvě proměnné charakterizující synovu startovací pozici na začátku jeho zaměstnanecké kariéry (jeho vzdělání a jeho první zaměstnání) a proměnnou, jíž je synovo zaměstnání v době sběru dat. Vzdělání otce a syna jsou zde ne 17 Podobně bychom se mohli ptát: vydělávají lidé s vyšším vzděláním více, protože mají prestižnější a finančně lépe ohodnocené zaměstnání (efekt vzdělání na příjem při kontrole zaměstnání oslabuje na minimum), nebo vzdělanější lidé vydělávají více bez ohledu na prestiž a ekonomické ohodnocení zaměstnání. Výzkum pro americkou společnost ukázal, že lidé s vyšším vzděláním, kteří mají stejné zaměstnání, vydělávají více (Treiman 1970). Efekt vzdělání na příjem při stejných zaměstnáních tedy neoslabuje. 18 Do dějin mobilitního výzkumu tento model vešel pod názvem „mobilitní prasátko". závisle proměnné, které ovlivňují další proměnné ve směru šipek (čísla nad šipkami jsou pěšinkové koeficienty - path coefficients -, jež ukazují efekt jednotlivých proměnných při kontrole všech ostatních proměnných).19 Například vzdělání otce působí pouze na vzdělání syna, nicméně zaměstnání otce působí jak na vzdělání syna, tak na jeho první zaměstnání a jeho zaměstnání v době realizace výzkumu. Nejsilněji podmiňuje první zaměstnání syna jeho vzdělání (0,44). Jen o něco méně vzdělání syna ovlivňuje jeho další zaměstnání (0,39). Na základě těchto údajů Blau a Duncan uzavírají svou analýzu konstatováním, že vzdělání je nejdůležitějším prediktorem zaměstnanecké pozice v americké společnosti.20 Obrázek 6.1. Koeficienty pěšinkové analýzy v základním modelu dosahování zaměstnaneckého statusu v americké společnosti zaměstnáni syna v roce 1982 ^zaměstnání otce .224 syna Pramen: Blau, Duncan (1967: 170) 19 Pěšinkové koeficienty jsou (statisticky řečeno) plně standardizované regresní koeficienty (ve vztahu každé nezávisle a závisle proměnné bereme ohled na směrodatnou odchylku obou proměnných), které interpretujeme následovně: vzroste-li nezávisle proměnná o standardní odchylku, můžeme očekávat změnu u závisle proměnné o standardní odchylku regresního koeficientu, který indikuje vztah mezi nezávisle a závisle proměnnou. 20 Na přelomu šedesátých a sedmdesátých let minulého století tento model na československou společnost aplikoval Šafář (1971, 1972). Jeho analýza 155 Podle Treimana (1970) má pěšinková analýza oproti předchozí analýze mobilitních tabulek v komparativním stratifikačním výzkumu tři výhody. Jednak lze s její pomocí oddělit podstatné kauzální vztahy od nepodstatných. To je velmi užitečné při větším počtu proměnných, s nimiž do analýzy vstupujeme. Jednak můžeme navrhnout stejné modely pro celou řadu společností a parametry vztahů v těchto modelech mezi sebou srovnávat. Tím odpovíme na otázku, které determinanty a jak moc ovlivňují dosahování sociální pozice v konkrétních společnostech oproti jiným společnostem. A v neposlední řadě lze do pěšinkové analýzy vstupovat s daty z různých šetření, protože pěšinkové koeficienty jsou odvozeny z korelací nultého řádu (zero-order corelations) mezi proměnnými v modelu.21 To podstatně zvyšuje možnosti práce s daty dostupnými pro sociálně stratifikační výzkum v jednotlivých zemích. Pěšinková analýza byla později rozpracována do metod strukturního modelování (Jóreskog 1970; Duncan 1975; Bielby, Hauser 1977) a rozšiřuje se také do jiných oblastí sociálněvědního výzkumu.22 Používání obou těchto technik je nicméně pevně svázáno s druhou generací, i když částečně také přesáhlo do třetí generace sociálně mobilitního výzkumu. Především kvůli pojímání zaměstnání a ostatních proměnných vstupujících do analýzy jako kontinuálních (kardinálních) byly tyto techniky opuštěny. I když tento přístup umožňoval vyjádřit vztahy mezi proměnnými pomocí několika málo parametrů, argumenty, že proměnné v sociálním světě nejsou svou povahou kardinální (nesplňují tedy požadavky normálního rozložení a nelze je poněkud překvapivě ukázala, že socialistické Československo se v determinantech dosahování zaměstnaneckého statusu výrazněji nelišilo od americké společnosti. Konceptuální zakotvení Šafářovy analýzy, stejně jako adekvátnost použití jeho modelu pro popis stratifikačního procesu v socialistické společnosti zpochybnili na začátku devadesátých let dvacátého století Boguszak, Gabal a Matějů (1990). 21 Korelace nultého řádu ukazuje sílu vztahů mezi proměnnými, které nejsou kontrolovány pro jednotlivé vztahy mezi nimi. 22 Základní rozdíl mezi pěšinkovou analýzou a stukturním modelováním spočívá v tom, že pěšinková analýza testuje (pouze) kauzální vztahy mezi proměnnými, zatímco stukturní modely jsou zaměřeny na testování struktur vztahů mezi proměnnými. 156 vyjádřit pomocí aritmetického průměru, směrodatné odchylky a korelačního koeficientu), postupně převládly a pěšinková analýza a metody strukturního modelování v průběhu osmdesátých a devadesátých let dvacátého století přestávají být v sociálně mobilitním výzkumu používány.23 Dnes, kdy se konstituuje již čtvrtá generace tohoto výzkumu (Ganzeboom, Treiman 2000), je jejich využití při analýze sociální mobility spíše výjimkou než pravidlem. 6.4 Měření absolutní a relativní mobility návrat k mobilitním tabulkám Prvním problémem Blauova a Duncanova návrhu měřit sociální mobilitu jako vztah mezi zaměstnáním otce a syna, který je zprostředkován dalšími faktory, bylo, že nezohledňuje posuny v zaměstnanecké struktuře v čase nebo - pokud bylo toto řešení aplikováno na komparativní výzkum - rozdíly v zaměstnaneckých strukturách mezi národními státy. Tento způsob řešení není vhodný pro rozlišení strukturních a individuálních příčin zaměstnanecké mobility. Dalším problémem použití Blauovy a Duncanovy metodologie byl předpoklad uspořádání zaměstnání podle určitého kritéria do vertikální škály. Na rozdíl od vzdělání nebo příjmu jsou zaměstnání nominální proměnné,to znamená, že inherentně neobsahují měřitelné prvky nebo kritéria, podle kterých by je bylo lze hierarchicky seřadit. Otázkou tedy bylo, nakolik různé varianty zaměstnaneckých škál (SEI, SIOPS, ISEI), s nimiž pěšinková analýza nebo později strukturní modelování pracuje, vypovídají 23 Spor o povahu kategorizovaných (diskrétních) proměnných, které tvoří drtivou většinu proměnných v sociálním světě, má svůj počátek na začátku dvacátého století. Otázkou tehdy bylo, zdali jsou tyto proměnné svou povahou inherentně diskrétní, nebo se jedná pouze o projevy spojitých (kontinuálních) nepozorovaných proměnných. George Udny Yule zastával první stanovisko, Karl Pearson obhajoval druhé stanovisko (více k tomu srov. Agresti 2002). Tento spor se táhne dodnes, kdy je znám jako spor mezi • transformačním přístupem (převládá ve statistice a biostatistice) a latentním přístupem ke kategorizovaným proměnným (dominuje v ekonometrii a psychometrii). Více k tomu srov. Powers, Xie (2000). 157 o realitě zaměstnaneckých pozic a jejich vlivu na sociální mobilitu z jedné generace na druhou nebo v rámci individuální profesní kariéry. Způsob řešení těchto dvou problémů je spojen s ustavením další, třetí generace sociálně mobilitního výzkumu (Ganzeboom, Treiman, Ultee 1991). Sociálně stratifikační výzkumníci, kteří se průběhu sedmdesátých a osmdesátých let dvacátého století nespokojili s Blauovým a Duncanovým návrhem konceptualizovat sociální mobilitu jako dosahování zaměstnaneckého statusu, neopustili kontext mobilitních tabulek a pokračovali v hledání řešení, které by spolehlivě odlišilo strukturní a čistou (výměnnou) mobilitu (srov. např. Hazelrigg 1974; McCledon 1977,1980; Hope 1981a, 1981b; Jones 1985). Paralelně s tím ovšem zaznívají kritiky dělení sociální mobility na tyto dvě složky, které poukazují, že identifikace strukturní a čisté mobility pomocí marginálií v mobilitních tabulkách je nepřesná a především zavádějící (Hauser, Koífel, Travis, Dickinson 1975; Erikson, Goldthorpe, Portocarero 1979; Goldthorpe 1980; Sobel 1983; Sobel, Hout, Duncan 1985). V roce 1985 obsah těchto kritik shrnul Breen (1985) do třech bodů. Za prvé, marginální distribuce v mobilitních tabulkách nemají empirického referenta. Jak už ukázal Duncan (1964), marginální řádková distribuce otců nereprezentuje reálnou zaměstnaneckou distribuci v čase sběru dat. Z tohoto důvodu rozdíly mezi marginálními tabulkovými distribucemi otců a synů neukazují skutečné rozdíly v zaměstnaneckých strukturách zkoumaných společností. Za druhé, v realitě je strukturní a čistá mobilita spojená. Mobilitní tabulky reprezentují jedince a jejich mobilitní dráhy. V této rovině distinkce mezi strukturní a čistou mobilitou nemá význam, protože oba dva typy mobility zde koexistují. Podle Goldthorpa (1980) se lze jen těžko domnívat, že faktory, které ovlivňují změnu v zaměstnanecké struktuře (např. ekonomický růst nebo technologický pokrok) zároveň neovlivňují vzorec čisté mobility (např. růst vzdělanostních šancí). Strukturní a čistá mobilita je odlišitelná pouze na societální, nadindividuální rovině. Rozdíl mezi těmito typy mobility musí být pochopen, nemůže být ovšem indikován empiricky, protože to, co vždy pozorujeme, je celková mobilita jedince, která není složena z jedné (oddě- 158 litelné) části strukturní mobility a z druhé (oddělitelné) části čisté mobility. Navíc je zavádějící předpokládat, že strukturní y.měny ve stejné míře ovlivňují mobilitu do jednotlivých tříd, v nichž potomci rodičů s rozdílným třídním původem končí, jejich efekt pravděpodobně variuje a je provázán s růstem nebo poklesem rovnosti šancí pro představitele jednotlivých sociálních tříd. Za třetí, v mobilitní tabulce je empirický obsah strukturní mobility definován rozdílem mezi marginální distribucí otců a jejich potomků. Neexistují-li tyto rozdíly, je strukturní mobilita v tabulce neidentifikovatelná. Veškeré posuny bychom pak měli přičíst na vrub čisté mobilitě. Pokud pracujeme se vzorky z populací, je ze statistického hlediska tento závěr neodůvodnitelný. Matematické důkazy navíc ukazují, že pro dvě tabulky, které se liší rozdílem mezi marginálními distribucemi - v první tabulce je tento rozdíl velký (vysoká strukturní mobilita), ve druhé žádný (bez strukturní mobility) -, může existovat stejná velikost asociace mezi původem potomka a jeho aktuální třídní pozicí, pokud je vypočítána jako poměr mobilitních šancí pro jednotlivé sociálních třídy. Marginální distribuce tedy výpočet mobilitních šancí nepoznamenávají. Promítají se pouze do specifikace celkové mobility. Zvláště tento poslední bod kritiky, která v sociálně mobilitním výzkum zaznívala v průběhu osmdesátých let minulého století stále silněji, 24 vedl k nové konceptualizaci sociální mobility. Koncepty strukturní a čistá mobilita byly nahrazeny koncepty absolutní a relativní mobilita (Goldthorpe 1980). Absolutní mobilita vyjadřuje celkovou mobilitu, k níž došlo mezi generacemi nebo během určitého časového období. Absolutní mobilita je intergenerační, mezikohortní nebo intragenerační a je spojena jak se zaměstnaneckými posuny ve společnosti - se změnami v distribucích třídních pozic, tak s růstem mobilitních šancí. Relativní mobilita indikuje samotnou velikost 24 Patrně poslední výměna názorů na nosnost konceptů strukturní a čistá mobilita proběhla ve druhé polovině osmdesátých let na stránkách Sociological Methods & Research (Krauze, Slomczynski 1986a, 1986b; Sobel, Hout, Duncan 1986) a American Sociological Review (Hauser, Grusky 1988a, 1988b; Slomczynski, Krauze 1988). 159 mobilitních šancí, jež jsou charakteristické pro potomky podle tříd původu, že skončí v různých třídních pozicích. Tato mobilita měří rozdíly nebo podobnosti v nerovnostech příležitostí. Odkazuje ke kompetitivním výhodám spojeným s rozdílnými třídními pozicemi a ukazuje míru otevřenosti a uzavřenosti třídní struktury. Může být například nízká, i když je absolutní mobilita vysoká. Znamená to, že ve společnosti sice dochází k zaměstnaneckým posunům, nicméně v jejich rámci relativní šance na to skončit v jiné třídní pozici zůstávají prakticky stejné. Absolutní mobilita je vyjadřována procentuálně. Ukazuje celkový podíl lidí, který prošel sociální mobilitou. Podle typu sociální mobility se obvykle konkretizuje na vzestupnou a sestupnou, na mobilitu na dlouhou a krátkou vzdálenost nebo na mobilitu odkud a kam. Relativní mobilitu ukazují poměry mobilitních šancí (odds ratios - OK). Jedná se o vyjádření šance na vzestupnou (sestupnou) mobilitu reprezentanta jedné sociální třídy oproti reprezentantovi jiné sociální třídy.25 Mobilitní šance počítáme jako poměr dvou čísel nebo dvou celkových (sdružených) procent. Jedná se o podíl čísel v jednotlivých třídách původu (otců) a aktuální třídy (synů). Například v tabulce 6.4 jsem viděli, že pravděpodobnost vzestupu z třídy původu vyšších manuálně pracujících do třídy vyšších nemanuálně pracujících byla v USA 28,4 %. Když to vyjádříme v mobilitních šancích, dostaneme tyto údaje: šance vyšších manuálně pracujících dostat se do třídy vyšších nemanuálně pracujících oproti tomu, že skončí ve třídě nižších nemanuálně pracujících, byla v USA 1,78. 26 Naopak jejich šance dostat se do třídy nižších 25 V mobilitních tabulkách jsou mobilitní šance měřené ex post. Data obvykle ukazují dvě třídní struktury, které jsou od sebe oddělené různou časovou periodou. Nedemonstrují velikost zdrojů a bariér, typických pro představitele jednotlivých sociálních tříd. Ukazují výsledek mobilitního procesu, nikoliv proces sám, jenž k výsledku vedl. Nerovnosti ve výsledcích mobilitního procesu jsou tedy považovány za výraz nerovností v mobilitních šancích. Problémem je, že výsledky mobilitního procesu nemusejí být pouze odrazem nerovností ve zdrojích a omezeních, ale mohou být rovněž výrazem nerovností v preferencích, intencích, záměrech a úsilí (Breeen, Goldthorpe 2001), schopností nebo inteligence (Herrnstein, Murray 1994). 26 Vypočítáno jako 1043/587 z tabulky 6.1, nebo jako 5,7/3,2 z tabulky 6.2. nemanuálně pracujících oproti šancím, že skončí ve třídě vyšších nemanuálně pracujících byla 0,56.27 V prvním případě jsou šance na třídu vyšších nemanuálně pracujících l,78krát vyšší oproti šancím na třídu nižších nemanuálně pracujících, ve druhém případě jsou šance na třídu nižších nemanuálně pracujících oproti šancím na třídu vyšších nemanuálně pracujících 0,56krát men- ší.28 Tato dvě čísla ukazují jednu a tu samou věc, nicméně jinak vyjádřenou (když vydělíme 1/0,56 dostaneme 1,78 a naopak). Někteří sociální vědci proto upřednostňují interpretaci šancí v podobě přirozených logaritmů, protože přirozený logaritmus čísla 0,56 je -0,58 a čísla 1,78 je 0,58). V tomto případě je kritériem rovnosti šancí číslo 0. Při interpretaci šancí v jejich původní podobě je kritériem jejich rovnosti číslo 1. Poměr dvou mobilitních šancí ukazuje velikost relativní sociální mobility. Například mobilitní šance potomků z třídy vyšších nemanuálů skončit zase ve třídě vyšších nemanuálů oproti tomu, že skončí ve třídě nižších nemanuálů v kontrastu k šancím potomků z třídy nižších nemanuálů skončit v těch samých třídách byly v USA 1,98.29 Ti, co se narodili vyšším nemanuálům v americké společnosti, měli l,98krát vyšší šanci (neboli o 98 %), že skončí v třídě jejich rodičů, než aby skončili ve třídě nižších nemanuálů, oproti těm, kteří se narodili do rodiny nižších nemanuálů.30 Číslo l i v tomto případě znamená rovnost 17 Vypočítáno jako 587/1043 z tabulky 6.1, nebo jako 3,2/5,7 z tabulky 6.2. 28 Procentuálně vyjádřeno: v prvním případě jsou mobilitní šance potomků vyšších manuálů na to, že skončí ve třídě vyšších nemanuálů o 78 % větší oproti tomu, že skončí ve třídě nižších nemanuálů, ve druhém případě jsou jejich šance na mobilitu do třídy nižších nemanuálů o 44 % nižší oproti šancím na jejich mobilitu do třídy vyšších nemanuálů. 29 Vypočítáno jako (1275/364)/(1055/597), čemuž odpovídá (1275-597)/(1055-364). Stejný výsledek dostaneme, když namísto absolutních čísel dosadíme relativní čísla.30 Stejnou šanci, ovšem na to, že skončí ve třídě nižších nemanuálů oproti vyšším nemanuálům, pak měli ti, co se narodili nižším nemanuálům, oproti těm, kteří se narodili vyšším nemanuálům. Kontrastní šance vypočítáme jako 1/OR (1/1,98= 0,51). Tedy: šance těch, kteří se narodili vyšším nemanuálům v americké společnosti na to, že skončí ve třídě nižších nemanuálů oproti vyšším nemanuálům byly 0,51krát menší než šance potomků nižších nemanuálů skončit v této třídě. Nebo: šance těch, co se narodili nižším nemanuálům, oproti těm, kteří se narodili vyšším nemanuálům, na mobilitu šancí, číslo větší než l ukazuje vyšší šance a číslo menší než l šance nižší. Poměr šancí je jedno číslo, které reprezentuje vztah mezi čtyřmi poli mobilitní tabulky. K úplnému popsání mobilitní tabulky pomocí poměrů šancí proto vždy stačí méně poměrů šancí, než je polí v tabulce. U dvojrozměrné mobiltní tabulky, jejíž proměnné mají laj počet variant, je základní (nezbytný) počet poměrů šancí dán vzorcem (I- !)(/- l).31 Zbylé poměry šancí jsou redundantní; jsou závislé na základních poměrech šancí a navíc jsou z nich odvoditelné. Základní počet poměrů šancí pro popis relativní sociální mobility v USA, Japonsku a Velké Británii ukazuje tabulka 6.8. Vidíme, že pro Velkou Británii a Japonsko jsou poměry šancí na diagonále tabulky vyšší než pro USA. Relativní mobilitní šance jsou v těchto společnostech nižší než v USA. Výjimku tvoří zemědělci. V Británii jsou relativní šance potomků zemědělců (oproti potomkům nižších manuálů), že skončí jako zemědělci ve srovnání s mobilitou mezi nižší manuály, nejvyšší. V Japonsku jsou naopak tyto šance nejnižší. Podobný trend vidíme i u nižších manuálů. V případě vyšších tříd jsou tedy USA a Velká Británie relativně otevřenější společnosti než Japonsko. V případě nižších tříd a zvláště zemědělců, je ovšem Japonsko otevřenější společností než USA a Velká Británie. Poměry šancí jako indikátory míry relativní reprodukce u zemědělců a nižších manuálů jsou zde ze všech třech zemí nejnižší. V současném mobilitním výzkumu jsou poměry šancí považovány za nástroj měření nerovnosti v přístupu do jednotlivých třídních pozic podle třídního původu. Počítají se z jádra mobilitní tabulky, což znamená, že jejich velikost neovlivňují ani marginální četnosti, ani celkový počet respondentů v mobilitní tabulce (Powers, Xie 2000). Z tohoto důvodu mohou indikovat míru relativní sociální mobility. Navíc jsou základem log-lineárního a log-multiplikativního modelování (Goodman 1970; 1971, do třídy vyšších nemanuálů oproti mobilitě do nižších nemanuálů byly 0,51krát nižší. Stejnost čísel 1,98 a 0,51, ovšem s opačným znaménkem, lehce dokážeme zase jejich převodem na přirozené logaritmy. 31 U trojrozměrné tabulky o variantách /, / a K, je pak nezbytný počet poměrů šancí dán vzorcem (/- !)(/- l)(K- 1). , Tabulka 6.8. Poměry relativních mobilitních šancí z otce na syna ve Spojených státech amerických, Velké Británii a Japonsku n, Syn Otec USA Vyšší nemanuálové Nižšínemanuálové Vyšší manuálové Nižší manuálové Zemědělci Velká Británie Vyšší nemanuálové Nižšínemanuálové Vyšší manuálové Nižší manuálové Zemědělci Japonsto Vyšší nemanuálové Nižší nemanuálové Vyšší manuálové Nižší manuálové Zemědělci VN 1,98 1,97 2,39 2,61 - 2,67 2,13 2,37 2,71 - 3,03 2,13 1,83 2,38 - NN 1,74 4,66 5,31 7,20 - 3,11 8,32 8,45 8,96 - 3,94 15,01 9,37 8,93 - VM 1,97 4,27 8,27 11,49 - 2,80 6,14 11,38 14,84 - 3,00 5,91 • 7,98 9,83 — NM Z 2,20 3,38 - 3,37 72,75 .;/. ~ ',; ,; " !' 1.15 1,57 ,: - 2,65 ; - 108,29 — , — 1,60 ' " - 3,20 ' - 3,33 " - 31,56 1 1981; Bishop, Fienberg, Holland 1975), které se jako statistický nástroj od osmdesátých let minulého století pro identifikaci relativní sociální mobility používá. Cílem této techniky je ukázat strukturu mobilitních dat - vzorec, který se v datech vyskytuje, analyzovat efekty jednotlivých proměnných, které tento vzorec utvářejí, a identifikovat sílu vztahu mezi nimi (k log-lineární analýze v mobilitním výzkumu srov. více Hout 1983; Yamagushi 1987; Xie 1992; Goodman, Hout 1998, 2001; Powers, Xie 2000). Od konce osmdesátých let minulého století se sice objevují názory, které nabádají k opatrnosti používání poměrů šancí jako prostředku k vyjádření relativních mobilitních šancí (Harrison 1988; Kelley 1990; Dessens, Jansen, Ringdal 1995). Někteří autoři rovněž zpochybňují koncept rovnosti šancí, jež je základem relativní sociální mobility a jehož vyjádřením je situace perfektní sociální mobility (Hout 2003; Swift 2004). Argumenty, o něž se 163 představitele těchto názorů opírají, ovšem nejsou zatím natolik přesvědčivé, aby poměry šancí jako základ analýzy mobilitních tabulek a koncept perfektní mobility jako situace rovnosti relativních šancí přestaly dominovat současnému sociálně mobilitnímu výzkumu. 7. kapitola TEORIE SOCIÁLNÍ MOBILITY A TŘÍDNÍ REPRODUKCE \ ljt>\ Opakem konceptu sociální mobility je koncept třídní reproduk- ce.Zatímcosociálnímobilitazachycujeintergenerační,kohortní nebo kariérní změny v třídní struktuře společnosti, koncept reprodukce označuje trvalost třídních nerovností z jedné generace na druhou nebo v rámci jedné generace. Obsahem tohoto pojmu není změna, ale sociální řád. Otázky po důvodech sociální mobility se tážou, čím je to dáno, že dochází ke změně třídního postavení. Otázky po důvodech reprodukce společnosti se ptají, jak je možné, že dochází k přetrvávání třídního postavení z jedné generace na druhou, mezi kohortami nebo v rámci zaměstnaneckých kariér. Jedná se o dva koncepty, které jsou analyticky odlišitelné, prakticky nicméně spolu koexistují. Vysoká sociální mobilita znamená zároveň nízkou reprodukci třídních nerovností a naopak: vysoká reprodukce třídních nerovností odpovídá nízké sociální mobilitě. Odpovídáme-li pak na otázky po příčinách sociální mobility, odpovídáme tím také na otázky po reprodukci třídního postavení a naopak. V empirické rovině většina sociálně stratifikačních badatelů měří především sociální mobilitu, v teoretické rovině ovšem většina z nich diskutuje o příčinách reprodukce společnosti. Dnes se sociálně stratifikační badatelé shodují na tom, že vzdělávací systém je nedílnou součástí sociální mobility a reprodukce společnosti. Liší se ovšem v názoru, zdali vzdělávací systém redukuje třídní nerovnosti a je katalyzátorem sociální mobility, nebo naopak stvrzuje třídní nerovnosti a posiluje třídní reprodukci. Ti, kteří usilují o to vysvětlit sociální mobilitu, pojímají vzdělávací systém jako nástroj redukce třídních nerovností, ti, kteří hledají příčiny reprodukce sociálních nerovností, naopak přistupují ke vzdělávacímu systému jako prvku posilujícímu třídní nerovnosti. 164 165