10 Media Choice and Selective Exposure Silvia Knobloch-Westerwick, Axel Westerwick, and Daniel J. Sude In an era of virtually inexhaustible choices of media channels and messages, the question of what motivates individuals to attend to a particular outlet or type of content becomes especially pressing. At least in developed countries, people are often inundated by a multitude of sources around the clock. As several chapters in this volume report, a plethora of research has established that media exposure shapes recipients’ views of the world, others, and themselves, with both short and long-term effects. Alongside emotional and attitudinal impacts, media exposure affects behaviors. Yet a pivotal threshold, before media exposure can impact recipients, is selection. With ample messages available, most mediated communication is a matter of choice. Typically, individuals choose what messages they attend to and thus engage in selective exposure. This chapter will clarify what drives such selective exposure. First, we will review technological changes that shape media choice environments and then differentiate layers involved in media choice. Terminology connected to selective exposure will be established next. The research review will differentiate three traditions before focusing on specific concepts and evidence. Finally, we offer some concluding remarks and future research suggestions. Technology Shaping Media Choice Environments An unprecedented increase of media channels occurred with the introduction of cable and satellite television. Zapping between TV channels became a focus of research in the 1980s (e.g., Becker & Schönbach, 1989). Abundant channels and remote controls not only allowed people to avoid commercials but also to choose from a much greater variety of content. Moreover, recording media content facilitated time-shifting in consumption of programming, as well as skipping segments. The internet era then led to a skyrocketing increase of available media content. Easy online content generation and dissemination now make an enormous variety of sources accessible, while search engines and filtering technologies (e.g., newsfeeds) help to focus users’ attention. Sophisticated algorithms provide content suggestions with the presumably best fit to the entered search terms; they influence consumers’ exposure to online content significantly but may present an incomplete, biased picture of a given topic. Additionally, modern websites guide 146 Media Choice and Selective Exposure • 147 consumers’ selections by using cookies to store browsing history and user preferences for content customization and personalization (Kang & Sundar, 2016). With the appearance of social media, user generated content increased dramatically, starting with blogs and wikis, followed by Myspace, Facebook, YouTube, Twitter, Instagram, and the like. Through the mix of usergenerated content and messages from media organizations, the internet today provides fewer orientation points for the user regarding who is actually responsible for content and how content may have been altered. Understanding how users choose mediated content is more pressing than ever in light of these technological changes. To illustrate how accessing different media leads to abundant multi-layered choices, it is helpful to specify how content selection happens on different layers. On the top layer, consumers choose from channels like TV, radio, internet, magazines, or newspapers. They can even use several at the same time, by just shifting their attention. On the next layer, users exert choices within a medium, for example, by surfing different websites, switching TV or radio channels, or browsing different newspapers. On the third level, they can select from different offerings on the same website, pick out particular TV shows, or read just one specific newspaper article or a specific newspaper section. On the lowest level, users may select within a particular article or show, for instance by reading select paragraphs of some of the articles in a newspaper or watching select scenes of a TV show. A key technological development that significantly changes media content use and selection is that internet technologies integrate almost all of the content that the other outlets traditionally provided through separate media. Through digitization of TV and radio—as well as online versions of newspapers, books, journals, videos, and music—most content is increasingly disseminated through the internet (Lugmayr & Dal Zotto, 2016). Thus, content selection and consumption are increasingly influenced by online display features like consumer ratings, likes, reviews, and tailored ads, intertwined with the content, as well as big-data algorithms for customization and personalization. Terminology of Selective Exposure and Media Choice As numerous terms have been used regarding media choice phenomena, we first want to clarify some terminology. Historically, the term selective exposure was first used by Lazarsfeld, Berelson, and Gaudet (1948) to describe that, before an election, media users exhibit a preference for messages and outlets that convey a stance in line with their own political views. Yet its contemporary use is much broader: Selective exposure relates to individuals’ selections of mediated content and can be conceptualized on an aggregate or an individual level; it denotes “any systematic bias in audience composition for a given medium or message, as well as any systematic bias in selected messages that diverges from the composition of accessible messages” (KnoblochWesterwick, 2015a, p. 3). For example, when Kris spends 60 minutes on TV while having access to ten channels, she is unlikely to spread this time equally across channels and may spend 50 minutes with one of them. This example illustrates a bias in selected messages: Kris may spend the hour mostly with a news or a comedy channel. Users almost always exhibit systematic bias in selecting media messages. Such individual selective exposure decisions result in systematic biases in audience composition on the aggregate level; for instance, men may be more likely than women to tune into sports channels, which is exhibited in a systematic bias in audience composition when sports channels viewers are predominantly male. Why such tendencies exist is at the heart of selective exposure research. 148 • Silvia Knobloch-Westerwick et al. There are numerous ways and units of expressing selective exposure patterns—for instance, time portions, choice frequencies, or choice proportions—and the most suitable way of capturing the phenomenon depends on the theory and hypotheses under consideration. Investigations may look at specific choices of mediated messages observed in a given situation, as opposed to generalized preferences for types of messages. An example of a media choice would be that Morgan chose to watch the movie Annie yesterday, whereas a preference is a pattern of several choices wherein Morgan usually prefers to watch musical movies when encountering them as an option. Yet a preference is not equivalent to a habit: Morgan watches the news every day, such that these daily choices accumulate to a habit. But her preference for musical movies might only play out when she sits down a few times a year to watch a movie through an ondemand service. Related to the notions of choice versus preference, an investigation may examine what situational circumstances render a particular media choice more likely or, on the other hand, what dispositional factors (i.e., traits) foster particular media exposure choices. Either way, any investigation of selective media exposure will rely on some content characterization of media channels or messages (e.g., choosing sitcom vs. drama, or a violent vs. a non-violent video game, or classical vs. popular music). It is important to note that many studies of actual selective media exposure are simultaneously interested in situations, dispositions, and content; for instance, exploring if people who are generally more aggressive (disposition) are more likely to choose violent videos (content) after being provoked (situation), or whether men are more likely than women (disposition per gender) to choose negative online news (content) when they think they will get to retaliate against a provoker (situation) (Knobloch-Westerwick & Alter, 2006; O’Neal & Taylor, 1989). All these elaborations serve to answer the question we posed initially: What drives selective exposure? In conceptual terms, scholars seek to understand motivations underlying media choices. The term motivation denotes an internal process within an individual that causes goaldirected behaviors, such as selecting a media message as a behavior to accomplish a certain goal. Related terms are needs that bring media use about or gratifications that individuals seek to derive from media use (Palmgreen & Rayburn, 1982); in fact, the terminology is closely intertwined with different theoretical perspectives and methodological traditions, as the next section will clarify. Research Traditions Regarding Selective Media Exposure Uses and Gratifications (U&G) Approach Herzog (1944) conducted the first study on what drives media users to attend to mediated messages. It took decades, however, until an elaborate research paradigm emerged with the uses and gratifications (U&G) approach. For instance, Katz and Foulkes (1962, p. 377) noted “there is a great need to know what the people do with the media,” taking a contrasting view to the then-predominant media effects research, and highlighted selective exposure as a pivotal phenomenon because “viewers, listeners and readers ultimately determine the content of the media by their choices of what they will read, view, or hear.” In the 1970s and 1980s, the U&G approach flourished. Scholars generally agreed on the importance of disentangling the so-called needs that the audience members aimed to fulfill with media use, and what gratifications they sought through media exposure. These terms are closely connected with research characterized Media Choice and Selective Exposure • 149 by the following: Survey respondents rated statements meant to capture why they attended to particular messages, programs, or channels. For example, Rubin (1983) asked participants to indicate the reasons they watched television with statements such as “Because it relaxes me” and “Because it helps me learn things about myself and others” in a survey, based on a fivepoint scale ranging from “not at all” to “exactly.” As typical for the U&G approach, Rubin (1983) then extracted viewing motives such as habit, pass time, and escape among others via factor analysis. This research approach connects with a key proposition of the U&G approach: Media users are thought to be aware of what motivates their use (Blumler & Katz, 1974), which justifies selfreport survey questions. Undoubtedly, the U&G approach inspired a large body of research with hundreds of studies (Sundar & Limperos, 2013). However, certain criticisms may explain why its influence diminished: The self-report measures used to capture media use motivations rely on a level of introspection that has often been questioned (e.g., Zillmann, 1985). Take, for example, a teenager who chooses to watch a war tragedy that makes him cry. When presented with prompts such as “to pass time” or to “learn new information,” the teen might indicate a high level of agreement with these suggested gratifications. But possibly, he picked the movie—consciously or not—to see soldiers in deplorable circumstances, hoping to feel better about his own minor strains. Also, U&G studies relied on cross-sectional, correlational designs that cannot establish causality. They usually did not include media exposure measures and merely used self-reports on motivations, disregarding actual behavior. These methodological aspects distinguish this tradition from the approaches explained next. Dynamic-Transactional Models In contrast to the U&G tradition, approaches under the umbrella of dynamic-transactional models do not rely on self-reported media use motivations but capture media exposure in some fashion to infer motivations and use panel survey designs. A dynamic-transactional view was first introduced by Früh and Schönbach (1982) who drew on media exposure measures to represent use motivations in media effects analyses. In their DTA (dynamic-transactional approach), inter-transactions denote imagined or actual interactions between communicator and recipient, which can influence both parties. Indeed, in the current era where users generate much of the content available online, the inter-transactions may be more important than in the 1980s when the model was developed, because user-generated content necessitates the conceptualization of these specific transactions even more so than the traditional mass media context. Furthermore, intra-transactions pertain to the interplay of psychological characteristics of users (i.e., activation level, affect, attention, interest, knowledge), which also change as a result of receiving media messages. The DTA differs from broader media effects models, as well as from the uses and gratifications view, in that neither media nor users’ motives are considered the key cause of effects. Whereas traditional media effects models postulated that media exposure causes effects (e.g., McQuail, 1994) and the uses and gratifications approach (e.g., Blumler & Katz, 1974) emphasized that users’ motivations bring about media effects, the DTA married these two positions and suggested that both media and users’ characteristics and motives instigate media effects in a dynamic, fluctuating interchange. Yet the DTA did not detail more specific motivations for selective exposure. Recent models of selective media use and subsequent effects reiterate central propositions of the DTA. Slater’s (2007) reinforcing spirals model (RSM) also emphasizes the dynamic nature 150 • Silvia Knobloch-Westerwick et al. of processes in which attitudes are created and maintained through media use. The term attitudes is used in a broad sense and includes durable perceptions of one’s own lifestyle, social identity, religion, but also more transient attitudes about policies or specific behaviors. “The RSM views selective exposure to attitude-consistent content and media effects as two components of a larger dynamic process by which such social identities, attitudes, and behaviors are maintained,” wrote Slater (2015, p. 371), noting further that “the process of media selection and effects of exposure to selected media is dynamic and ongoing” (p. 372). The RSM originated in panel survey studies with adolescents and thus highlights the role of selective media use for socialization of (identity-relevant) attitudes and later maintenance thereof. Although data reviewed by Slater (2015) suggest connections in line with the RSM’s view of a dynamic interplay of media choices and effects, the predicted two-way effects over time did not always emerge, given that there is a certain stability in attitudes that make the demonstration of influences challenging. Per its name, the RSM largely postulates the reinforcement of attitudes through selective media use, once attitudes have formed in the socialization process. In this regard, the model aligns with classic views that media are selectively attended such that existing attitudes are generally reinforced (Klapper, 1960). The first presentation of the model implied downward spiraling reinforcement of negative effects (i.e., teens with aggressive tendencies seek out violent video games and become increasingly aggressive over time as a result). In a later iteration, Slater (2015) highlighted that the suggested processes usually work toward a homeostasis. Another recent model that highlights dynamic, two-way influences between selective media use and effects over time is Valkenburg and Peter’s (2013) differential susceptibility to media effects model (DSMM). It postulates that media effects are contingent on dispositional, developmental, and social conditions. The authors suggested that cognition, affect, and excitation mediate media effects, similar to steps described in the DTA by Früh and Schönbach (1982). Overall, strong parallels exist between DSMM and DTA, as Valkenburg and Peter (2013) write, “the differential-susceptibility variables have two roles; they act as predictors of media use and as moderators of the effect of media use on media response states” (p. 231), and “media effects are transactional; they not only influence media use, but also the media response states, and differential-susceptibility variables” (p. 235). A review of these models suggests a consensus that numerous recipient characteristics and contexts—cognitive, physiological, dispositional, developmental, and social aspects—influence what media content is selected. Moreover, the outlined models in unison imply that media exposure subsequently influences these characteristics, which brings about dynamic transactions of media selection and effects over time. The DTA, RSM, and DSMM are all characterized by a rather generalized take on media exposure patterns and rely on panel designs and self-reports for supporting evidence, from which user motivations were inferred. In contrast, the next perspective has a much more situation-specific approach that uses observational measures and (quasi-)experimental designs. Selective Exposure Paradigm Whereas the research traditions outlined above remained relatively broad, either with inventories of possible media use motivations (for U&G) or generic predictions of reinforcement motivations or vulnerability to media effects (for dynamic-transactional models), the research perspective described in the present section has yielded more specific postulations. Studies rooted in the selective exposure paradigm built on psychological concepts and methods to Media Choice and Selective Exposure • 151 conceptualize this problem. Zillmann and Bryant (1985) were front-runners in this development, both with their own studies (e.g., Bryant & Zillmann, 1984) and in an edited volume on selective exposure from 1985. Zillmann’s mood management theory (1988) was rooted in psychological work on cognitive dissonance (see below) and arousal regulation, but became the first influential account of how individuals select media messages that provided specific, testable hypotheses and that was situated in communication science. Additional theorizing to explain and predict how media users choose messages have since emerged, whereas the advent of computerized research methods and online media led selective exposure research to increasingly use software to unobtrusively log specific media users’ choice behaviors and to enable sophisticated (quasi-)experimental procedures (review by Knobloch-Westerwick, 2015a). Although survey methods are still commonly used (e.g., Skovsgaard, Shehata, & Strömbäck, 2016) and provide helpful insights, methodological concerns regarding self-reports led scientists to pursue a different paradigm. In this vein, numerous researchers used observational measures of media exposure (e.g., Kim, 2009; see review by Knobloch-Westerwick, 2015a), which is characteristic of the selective exposure paradigm. This advancement is important in light of ample evidence that individuals’ recollection of self-reported media use is scant and questionable (e.g., Jerit et al., 2016; Prior, 2009). While scholars continue to debate how to best capture media use in surveys (de Vreese & Neijens, 2016), validation studies find that self-report measures of selective exposure do not correlate with observational data, or do so only weakly (Tsfati, 2016). Sometimes media use diaries, momentary assessments, or web browsing trackers serve to capture media use (Scherer, Bickham, Shrier, & Rich, 2015). But a particularly fruitful line of research has relied on tracking specific media exposure instances in relatively controlled contexts that feature messages that represent content categories of theoretical relevance. For instance, studies by Kim (2009), Iyengar and Hahn (2009), Graf and Aday (2008), Jang (2014) and Knobloch-Westerwick (2007) all tracked what messages media users selectively attended to from arrays of messages that took pro and con stances on political issues. This set only illustrates the numerous studies that have used behavioral media exposure measures, which all relied on computerized methods. The basic approach of providing research participants with an array of messages to then record their selections goes back to much earlier work that allowed participants to pick out printed messages (e.g., Biswas, Riffe, & Zillmann, 1994; Freedman, 1965) or tracked TV remote control use (Bryant & Zillmann, 1984). The theoretical accounts for what drives selective exposure compiled in the next section were primarily derived from this approach. Theoretical Accounts for Selective Media Exposure Interests and Issue Publics Obviously, individuals’ interests foster selective exposure to related messages (Bolsen & Leeper, 2013; Kim, 2009; Skovsgaard et al., 2016). The term issue publics is often used to describe the phenomenon that sections of a larger audience hold interest in an issue and thus more often choose related information and become more knowledgeable (e.g., Iyengar, 1990). However, the notion of interest in itself does not clarify what factors instigate a motivation to seek out information on a particular issue. Three aspects were suggested to explain from where interest stems (Knobloch-Westerwick, 2014). First, self-interest can attract one to a topic. Naturally, students are more interested in higher education issues, given that they may be affected themselves. Second, affiliation with particular groups—even without being a member of that 152 • Silvia Knobloch-Westerwick et al. group—can induce interest. Third, values can instigate particular interests; for instance, a retiree may not be remotely affected by abortion laws but still follow the topic due to religious beliefs. Cognitive Dissonance Theory The phenomenon of political attitudes and partisanship shaping selective exposure to politically aligned messages was first discussed by Lazarsfeld and colleagues (1948), which inspired Festinger’s (1957) theory of cognitive dissonance. Accordingly, individuals experience tension and discomfort if they encounter information that challenges their preexisting views or behaviors. As a result, individuals are thought to avoid such messages—a phenomenon commonly labeled confirmation bias. In the past 15 years, empirical research has frequently corroborated this predicted selection pattern that information aligned with preexisting views or behaviors is preferred over challenging information (Knobloch-Westerwick, 2015a). However, investigations in the past century yielded inconsistent findings (Donsbach, 2009). Even though Festinger’s propositions were widely thought to be plausible and restated in many textbooks, they were not always supported in early research. But contemporary computerized methods of unobtrusively observing media choices have yielded coherent support for Festinger’s predictions (Knobloch-Westerwick, 2015a). In addition to more precise measurement, it is also possible that the context of online media, in which many of the recent studies were conducted, is conducive to a stronger confirmation bias than traditional media contexts. Politically motivated selective exposure continues to inspire a flourishing line of research. Informational Utility (IU) Aside from just preserving existing beliefs by preferring consistent messages, a motivation to select information that helps to adapt to the environment has long been suggested. For instance, an influential review by Sears and Freedman (1967) questioned whether dissonance avoidance shapes information choices and proposed that informational utility (IU) may override this avoidance. The concept of IU was further elaborated by Atkin (1973), but without empirical evidence. A more detailed discussion of what IU means, along with empirical evidence in crosscultural investigations, was provided by Knobloch-Westerwick and colleagues (summarized by Knobloch-Westerwick, 2008; more recently, Johnson & Knobloch-Westerwick, 2017). Per this model, the extent to which a message is perceived to have IU depends on four dimensions (explained below), which are thought to contribute to this perception cumulatively. Importantly, greater perceived IU is thought to predict greater selective exposure; for instance, related items should be more likely to be chosen for consumption or attended to longer. Naturally, these message characteristics can shape selective exposure best if they are signaled prominently upfront (i.e., in the headline of a message). First, the greater the magnitude of consequences described in the message, the greater the perceived IU. For example, news about a comprehensive tax reform should be perceived as more useful than news about small adjustments in tax law. Second, the likelihood of being affected by the reported event influences the perceived IU, with greater likelihood linked to greater IU. For the tax news example, individuals below the tax liability income threshold will attach low or no IU to the related news, as they are not directly affected by the change in law. Third, immediacy—how soon or distant in time the consequences of a reported event will materialize—shapes IU, such that reports of events with soon-anticipated consequences will be perceived as more useful. Thus, hearing about a tax reform that goes into effect soon should be associated with greater IU. Fourth, efficacy, the Media Choice and Selective Exposure • 153 extent to which recipients perceive that they can influence consequences of a reported event, also contributes to perceived IU, as greater potential for own impact makes the information more useful. Hence, if the message induces a sense that recipients can take political action to influence the tax reform or to adapt to upcoming tax requirements, the message will be perceived as more useful. These predictions garnered support in several studies in the U.S. and Germany. Importantly, they were found to apply to both positive and negative events. Thus, regardless of whether recipients hope for tax benefits or fear tax disadvantages, they should perceive IU per the outlined dimensions. Mood Management Theory (MMT) and Mood Adjustment Approach The next theoretical approach is not concerned with how media users might utilize messages selectively to adjust to the environment and instead looks at how they might use them to regulate inner states. Zillmann (1988) proposed that a key motivation driving media selection is the optimization of moods. Mood management theory (MMT) does not focus on cognitions and instead emphasizes mood states, as defined by arousal levels and perceived valence of one’s own mood state, as key concepts to predict what choices media users make. In a nutshell, it proposes audience members select any kind of media message—music, movies, news, documentaries, etc. —with the goal of enhancing their moods. More specifically, selective media use serves to regulate arousal levels, such that users will select exciting messages to overcome states of boredom and calming messages to overcome stress (Bryant & Zillmann, 1984). Also, media users seek out messages that enhance the hedonic valence of mood. Moreover, if in a negative mood, media users avoid messages that would remind them of the source of the negative mood. For example, after failing an exam, a student might avoid a campus comedy, as it would remind her of the setback. MMT was the first theory with specific predictions on media choices that garnered solid empirical support. Its predictions were found applicable for selective exposure to TV, websites, news articles, and music, among others (Knobloch-Westerwick, 2006). Numerous experimental, quasi-experimental, field, and diary studies applied and corroborated its claims. Nonetheless, MMT faced challenges. Its postulation that media users seek out messages that enhance the valence of mood is challenged by the massive amounts of negative news and violent entertainment, which appear well suited to ruin moods. How could the theory account for the wide popularity of news about deplorable events, of music about heartbreak, and fictional accounts of violent conflict? This popularity can only be explained from an MMT perspective by drawing on additional considerations. For example, negative events can increase excitation and in turn lead to more intense enjoyment of a movie’s happy-ending. Furthermore, seeing others suffer heartbreak or violence could instigate self-serving social comparisons that enhance moods after all. In other words, observing others in deplorable life circumstances might make onlookers feel better about themselves. For example, elderly TV viewers preferred watching a documentary about a lonely old man, likely because they felt better off than the portrayed individual (Mares & Cantor, 1992). Indeed, when applying MMT to social media posts, Johnson and KnoblochWesterwick (2014) observed that people in negative moods viewed negatively valenced posts that allowed for downward social comparison longer than positively valenced posts about others’ successes. Hence, downward social comparisons—whether a media user might derive a sense of superiority—can explain, based on MMT, why individuals select messages that portray others negatively. An additional challenge to MMT stemmed from observations that men and women did not show consistent media choice patterns (e.g., Biswas et al., 1994). The notions that social 154 • Silvia Knobloch-Westerwick et al. expectations and the drive to not just optimize moods but also adapt to anticipated requirements instigated the mood adjustment approach (Knobloch, 2003; Knobloch-Westerwick, 2007). Per this view, media users utilize media to shape their moods to match anticipated situations. For example, Kevin might feel sluggish before his planned workout but could pick fast-paced music to motivate himself for his run. In that case, the media message was not chosen based on Kevin’s mood-improvement and maintenance goals (per MMT), but instead mood adjustment to anticipated circumstances guided his selection. Coming back to gender differences, stereotyped expectations for how individuals should act and feel differ by gender: After a provocation, a man might be expected to retaliate and stand his ground, whereas a woman might be expected to withdraw—and media choices may help individuals to comply with such social expectations. Indeed, this view of mood adjustment found empirical support (KnoblochWesterwick & Alter, 2006), wherein men preferred negative content to sustain anger against a provoker, whereas women preferred positive content to dissipate anger, but only for participants who anticipated an opportunity to retaliate against the provoker. The trajectory of MMT and mood adjustment evolved further based on such consideration of social contexts and situational anticipations, combined with self-related affect, as the next section shows. Selective Exposure of Self- and Affect-Management (SESAM) Model The Selective Exposure Self- and Affect-Management (SESAM) model (Knobloch-Westerwick, 2015b) proposes that people select messages to activate and regulate certain working self-concepts, as well as affective and cognitive states and their associated behaviors. The SESAM builds on the dynamic self-concept (Markus & Wurf, 1987): People have dynamically changing, malleable selfconcepts, which are shaped by both circumstances and choice. Working self-concepts are those aspects of the self that are accessible in the moment. Going beyond the MMT and adjustment perspective, the SESAM model suggests that people selectively attend to messages to activate particular self-concepts (and not just affective states) in their working self. Thinking about oneself in a particular way, facilitated by selective media use, can be sought out for many reasons, for example, because the particular self-facet induces pride or a sense of belonging. Nicole may read Forbes Magazine because it activates her positive self-concept of an accomplished entrepreneur. Becca, an Ohio State University alumnae, watches games played by her alma mater’s football team—the “Buckeyes”—to activate her “Buckeye” self and feel connected with the university community. Even if Nicole’s company is not doing well, and even if Becca’s preferred team loses, they feel good about the related aspects of themselves and seek to activate them in their working selves. Their selective exposure is then driven by self-consistency motivations (which probably underlie most habitual media use) to uphold a sense of stability and identity despite fluid self-perceptions. Per the SESAM, selective media use facilitates behavior regulation, when media users activate a self-facet through media exposure to accomplish a goal related to external rewards. For instance, Jerry may read Men’s Health to activate his sense of being athletic to get motivated to work out. If Jerry feels he falls short in his level of physical fitness, but activates his athletic self nonetheless through media use, he encourages himself toward physical activity and better health. The selective exposure is then driven by a self-improvement motivation, often addressed by upward social comparisons with media portrayals who may be doing better in a relevant dimension (i.e., greater physical fitness). The SESAM model thus conceptualizes the possibility that media use can facilitate change and is not only a tool for reinforcing the status quo. Media Choice and Selective Exposure • 155 Additionally, the SESAM proposes that self-enhancement motivation can drive selective exposure, when users seek out portrayals of others or outgroups that provide an opportunity for downward comparisons. For instance, after receiving negative test feedback, social media users prefer viewing posts depicting others’ failures (compared to users who received positive feedback) (Johnson & Knobloch-Westerwick, 2014). Several studies yielded that groups that are subject to negative stereotyping (e.g., ageism, racial bias) exhibited a preference for negative portrayals of outgroups (young people, whites) and derived a self-esteem boost from that selective exposure (Knobloch-Westerwick, 2015a; Knobloch-Westerwick & Hastall, 2010). Importantly, ongoing affective experience, which is part of the working self-concept and often a result of self-discrepancies, may prompt each of these motivations of self-consistency, self-improvement, and self-enhancement. When attainability of a desirable future self is perceived to be high, self-improvement motivation is more likely (Knobloch-Westerwick & Romero, 2011); if it is low, people may rather engage in self-enhancement without aspiring to change. Self-discrepancies wherein the actual self differs from an ideal self or from an ought self (i.e., who others expect us to be) can trigger affect, per the SESAM. Moreover, the most basic social comparison motive Festinger (1954) proposed, namely self-evaluation, will also drive selective exposure: To gain an understanding of one’s own standing or performance regarding a particular self-aspect, people compare themselves with others, oftentimes with similar others, and selective media exposure certainly provides ample opportunity for doing so. For example, when teens want to get an idea of how popular they are, they might consider the number of “friends” they have on a particular social media platform. This observation will likely trigger some self-evaluation and an affective response. Self-regulation through selective media use can have lasting effects, as prolonged selective exposure research demonstrated (Knobloch-Westerwick, Robinson, Willis, & Luong, in press). As media messages are selected, aspects of the self-concept are rendered more salient and become more chronically accessible. The SESAM has been successfully applied in a variety of contexts: selective viewing of political ads (Marquart, Matthes, & Rapp, 2016) and controversial political messages (e.g., Dvir-Gvirsman, 2017; Knobloch-Westerwick & Meng, 2011), selective media use when anticipating challenging tasks (e.g., Luong & Knobloch-Westerwick, 2017), selective exposure to race portrayals (e.g., Knobloch-Westerwick, 2015b), music videos (Karsay & Matthes, in press), gendered role-portrayals (Knobloch-Westerwick et al., in press), and health communication (e.g., KnoblochWesterwick, Johnson, & Westerwick, 2013). The SESAM also has been used to interpret selective media use regarding ideal-body internalization (Rousseau & Eggermont, 2018) and multi-tasking (van der Schuur, Baumgartner, Sumter, & Valkenburg, 2018). The role of self-discrepancies, related to affect per SESAM, was corroborated by Johnson and Ranzini (2018). With regard to specific mechanisms through which impacts of selective media exposure on recipients occur, the SESAM emphasizes social comparisons. Further social factors on selective exposure will be discussed in the next section. Social Factors in Selective Exposure While the SESAM considers social comparisons and anticipations, a wider array of research on social factors’ impacts on selective exposure has been conducted. Yet no single organizing theory of social influence on selective exposure exists. Researchers have suggested various distinct social goals influencing media consumption, including affiliation, persuasion, impression 156 • Silvia Knobloch-Westerwick et al. management, and distinctiveness (e.g., Berger & Heath, 2007; Leary & Kowalski, 1990). Although similarity and self-consistency frequently play an important role for selective exposure, sometimes media portrayals that are dissimilar to the self may be sought out for selfimprovement or self-enhancement. We will discuss social impacts on selective exposure in more detail in this section. The overarching notion that media users will prefer messages they associate with anticipated conversations and desirable shared knowledge per affiliation goals has received empirical support (e.g., Chaffee & McLeod, 1973). For example, Smith, Fabrigar, Powell, and Estrada (2007) found a distinct preference for attitude-consistent information when participants expected to talk with others who agree with them about a controversial issue. In experiments looking at the selection of less controversial information, people selected more information when anticipating any social interaction (e.g., Atkin, 1972; Dillman-Carpentier, 2009). The new media environment allows for mass-sharing without actual conversation via profiles, “liking,” and so on, providing a new context in which to study affiliation goals. There is evidence that popularity cues can drive entertainment and news media-consumption per a bandwagon effect (e.g., Fu, 2012; Salganik, Dodds, & Watts, 2006). Importantly, the exact nature of the anticipated social interaction can shape selective exposure in distinct ways. For instance, people intuitively understand that it is important to express socially acceptable moods in interactions and that the quality of social interactions depends on how well affective states match. Media use can facilitate functioning accordingly: Anticipating interaction with a stranger was shown to prompt news reading that reflected attempts to neutralize the mood induced beforehand, because participants preferred news stories with an emotional tone that contrasted their mood; the anticipated mood of the partner in the upcoming interaction also mattered (Erber, Wegner, & Therriault, 1996). Other examples of how an anticipated interaction may matter can be found in early challenges to the confirmation bias (Freedman, 1965). Anticipating a need to defend one’s views to others increased attitude-discrepant information selection. Selective exposure shows different patterns depending on whether the individual anticipates communicating with like-minded or different-minded others, which suggests that intentions to persuade others may shape selective exposure. Possibly the most overarching social influence on selective exposure, evident in many studies, is the importance of similarity between media user and featured characters or sources. Specifically, news consumers prefer portrayals of same-ethnicity (Knobloch-Westerwick, Appiah, & Alter, 2008), same-gender, and same-age characters (Knobloch-Westerwick & Hastall, 2006). Overall, it appears that audience members prefer sources and portrayals that signal similarity with themselves; the increasing prevalence of user-generated content may strengthen this tendency. However, people strike a balance between similarity and uniqueness (e.g., Chan, Berger, & Van Boven, 2012). For example, overly popular news or entertainment may be disdained in favor of moderately popular messages (e.g., Berger & Heath, 2007; Knobloch-Westerwick, Sharma, Hansen, & Alter, 2005; Messing & Westwood, 2014), in line with theories on impression management (Leary & Kowalski, 1990) and optimal distinctiveness (Brewer, 1991). Moreover, media users may seek out portrayals dissimilar to themselves, for self-improvement or self-enhancement, per the SESAM model. This brief sketch has outlined the complex ways that various influences shape selective exposure. Message characteristics, anticipations of social interactions and comparisons, currently accessible self-categorizations and self-perceptions, and technological circumstances all affect Media Choice and Selective Exposure • 157 media choices. More research is needed to disentangle and theorize these processes, especially as user-generated content further complicates them. Conclusion and Future Directions Over decades of research, communication science is becoming increasingly specific in conceptualizing and predicting what drives selective exposure to mediated messages. Contemporary approaches all view media effects as contingent upon individuals’ message selections, because media use occurs predominantly in a selective fashion in high-choice media environments. They further suggest that media effects evolve in dynamic, transactional ways, wherein the user brings motivations to the media use situation and is in turn influenced by media. Differences exist in how specific postulations are and whether overarching patterns or situational behaviors are emphasized in research, along with different research designs and methods. Factors known to shape selective exposure include issue interests, confirmation bias, mood management, informational utility, selective exposure, self and affect management via social comparisons, in addition to social factors. Due to space restrictions, the scope and level of detail of this review necessarily has limitations; for instance, approaches focusing on selective use of health messages were neglected. Interesting new research goes beyond antecedents of selective exposure and has begun to address how such exposure influences media users (Knobloch-Westerwick, 2015b). For example, political attitude polarization due to a confirmation bias garnered numerous studies; recent investigations also show that selective exposure shapes public opinion perceptions, as well as gender role and life role salience (Dvir-Gvirsman, Garrett, & Tsfati, 2018; Knobloch-Westerwick et al., in press; Sude, Knobloch-Westerwick, Robinson, & Westerwick, in press). The societal relevance of selective exposure is bound to remain crucial, which calls for more research. After all, media effects can only come about when media users choose to attend to a message. With the increasing number of channels, outlets, and sources, audiences become more segmented and fragmented, possibly also more disconnected. The increase in outlets does not necessarily mean that the content becomes more diverse as well. Certainly, when only three commercial TV channels were on air, and viewers often chose to simply attend to the least annoying programming available, audiences were more likely to consume the exact same message simultaneously with others and to encounter new and unexpected things that could broaden their horizon. With hundreds of TV channels available now, viewers will less frequently feel that the public is largely attending to the same content. Also, when algorithms customize and pre-select content for individual users based on their prior usage and big data patterns, do media users have more or fewer choices? Although they can choose what media options are presented to them, they may encounter and know fewer choices that are truly different from their habitual media diet. More research inspiration stems from the rise of social media and user-generated content: How do content generation and social and technological online cues affect selective media use and effects? This rise could imply that users generally become more self-aware and selfcentered, in which case the focus on the media user’s self (per SESAM) becomes even more compelling. In media contexts that allow for self-expression through a plethora of affordances to post, share, comment, like, personalize, and customize, media users likely connect mediated content to self-perceptions more often than in traditional settings (Johnson & Ranzini, 2018; Kang & Sundar, 2016). Possibly, high-choice media, along with more self-expression affordances, drive people into self-focused niches of media use and content generation, undermining social connectedness. We don’t know yet. 158 • Silvia Knobloch-Westerwick et al. References Atkin, C. K. (1972). Anticipated communication and mass media information-seeking. Public Opinion Quarterly, 36, 188–199. doi:10.1086/267991 Atkin, C. K. (1973). Instrumental utilities and information seeking. In P. Clarke (Ed.), New models for mass communication research (pp. 205–242). Beverly Hills, CA: Sage. Becker, L. B., & Schönbach, K. (1989). Audience responses to media diversification: Coping with plenty. Hillsdale, NJ: Lawrence Erlbaum Associates. Berger, J., & Heath, C. (2007). Where consumers diverge from others: Identity signaling and product domains. Journal of Consumer Research, 34, 121–134. doi:10.1086/519142 Biswas, R., Riffe, D., & Zillmann, D. (1994). Mood influence on the appeal of bad news. Journalism Quarterly, 71, 689–696. doi:10.1177/107769909407100319 Blumler, J. G., & Katz, E. (1974). The uses of mass communications: Current perspectives on gratifications research. Beverly Hills, CA: Sage. Bolsen, T., & Leeper, T. J. (2013). Self-interest and attention to news among issue publics. Political Communication, 30, 329–348. doi:10.1080/10584609.2012.737428 Brewer, M. B. (1991). The social self: On being the same and different at the same time. Personality and Social Psychology Bulletin, 17, 475–482. doi:10.1177/0146167291175001 Bryant, J., & Zillmann, D. (1984). Using television to alleviate boredom and stress: Selective exposure as a function of induced excitational states. Journal of Broadcasting, 28, 1–20. doi:10.1080/ 08838158409386511 Chaffee, S. H., & McLeod, J. M. (1973). Individual vs. social predictors of information seeking. Journalism Quarterly, 50, 237–245. doi:10.1177/107769907305000204 Chan, C., Berger, J., & Van Boven, L. (2012). Identifiable but not identical: Combining social identity and uniqueness motives in choice. Journal of Consumer Research, 39, 561–573. doi:10.1086/664804 de Vreese, C. H., & Neijens, P. (2016). Measuring media exposure in a changing communications environment. Communication Methods & Measures, 10, 69–80. doi:10.1080/19312458.2016.1150441 Dillman-Carpentier, F. R. D. (2009). Effects of priming social goals on personal interest in television news. Journal of Broadcasting & Electronic Media, 53, 300–316. doi:10.1080/08838150902908114 Donsbach, W. (2009). Cognitive dissonance theory—Roller coaster career: How communication research adapted the theory of cognitive dissonance. In T. Hartmann (Ed.), Media choice: A theoretical and empirical overview (pp. 128–149). New York, NY: Routledge. Dvir-Gvirsman, S. (2017). Media audience homophily: Partisan websites, audience identity and polarization processes. New Media & Society, 19, 1072–1091. doi:10.1177/1461444815625945 Dvir-Gvirsman, S., Garrett, R. K., & Tsfati, Y. (2018). Why do partisan audiences participate? Perceived public opinion as the mediating mechanism. Communication Research, 45, 112–136. doi:10.1177/ 0093650215593145 Erber, R., Wegner, D. M., & Therriault, N. (1996). On being cool and collected: Mood regulation in anticipation of social interaction. Journal of Personality and Social Psychology, 70, 757–766. doi:10.1037/0022-3514.70.4.757 Festinger, L. (1954). A theory of social comparison processes. Human Relations, 7, 117–140. doi:10.1177/001872675400700202 Festinger, L. (1957). A theory of cognitive dissonance. Stanford, CA: Stanford University Press. Freedman, J. L. (1965). Confidence, utility, and selective exposure: A partial replication. Journal of Personality and Social Psychology, 2, 778–780. doi:10.1037/h0022670 Früh, W., & Schönbach, K. (1982). Der dynamisch-transaktionale Ansatz. Ein neues Paradigma der Medienwirkungen [transl.: The dynamic-transactional model: A new paradigm of media effects]. Publizistik, 27(1–2), 74–88. Fu, W. W. (2012). Selecting online videos from graphics, text, and view counts. Journal of Computer-Mediated Communication, 18, 46–61. doi:10.1111/j.1083-6101.2012.01593.x Media Choice and Selective Exposure • 159 Graf, J., & Aday, S. (2008). Selective attention to online political information. Journal of Broadcasting & Electronic Media, 52, 86–100. doi:10.1080/08838150701820874 Herzog, H. (1944). What do we really know about day-time serial listeners? In P. F. Lazarsfeld & F. N. Stanton (Eds.), Radio research, 1942–43 (pp. 3–33). New York, NY: Ayer. Iyengar, S. (1990). Shortcuts to political knowledge: The role of selective attention and accessibility. In J. A. Ferejohn & J. Kuklinski (Eds.), Information and democratic processes (pp. 160–185). Chicago, IL: University of Chicago Press. Iyengar, S., & Hahn, K. S. (2009). Red media, blue media: Evidence of ideological selectivity in media use. Journal of Communication, 59, 19–39. doi:10.1111/j.1460-2466.2008.01402.x Jang, S. M. (2014). Seeking congruency or incongruency online? Examining selective exposure to four controversial science issues. Science Communication, 36, 143–167. doi:10.1177/1075547013502733 Jerit, J., Barabas, J., Pollock, W., Banducci, S., Stevens, D., & Schoonvelde, M. (2016). Manipulated vs. measured: Using an experimental benchmark to investigate the performance of self-reported media exposure. Communication Methods & Measures, 10, 99–114. doi:10.1080/ 19312458.2016.1150444 Johnson, B. K., & Knobloch-Westerwick, S. (2014). Glancing up or down: Mood management and selective social comparisons on social networking sites. Computers in Human Behavior, 41, 33–39. doi:10.1016/j.chb.2014.09.009 Johnson, B. K., & Knobloch-Westerwick, S. (2017). Steer clear or get ready: How coping styles moderate the effect of informational utility. Journal of Broadcasting & Electronic Media, 61, 332–350. doi:10.1080/08838151.2017.1309408 Johnson, B. K., & Ranzini, G. (2018). Click here to look clever: Self-presentation via selective sharing of music and film on social media. Computers in Human Behavior, 82, 148–158. doi:10.1016/j. chb.2018.01.008 Kang, H., & Sundar, S. S. (2016). When self is the source: Effects of media customization on message processing. Media Psychology, 19, 561–588. doi:10.1080/15213269.2015.1121829 Karsay, K., & Matthes, J. (in press). Sexually objectifying pop music videos, young women’s selfobjectification, and selective exposure: A moderated mediation model. Communication Research, Advance online publication. doi:10.1177/0093650216661434. Katz, E., & Foulkes, D. (1962). On the use of the mass media as “escape”: Clarification of a concept. Public Opinion Quarterly, 26, 377–388. doi:10.1086/267111 Kim, Y. M. (2009). Issue publics in the new information environment: Selectivity, domain specificity, and extremity. Communication Research, 36, 254–284. doi:10.1177/0093650208330253 Klapper, J. T. (1960). The effects of mass communication. New York, NY: Free Press. Knobloch, S. (2003). Mood adjustment via mass communication. Journal of Communication, 53, 233–250. doi:10.1093/joc/53.2.233 Knobloch-Westerwick, S. (2006). Mood management: Theory, evidence, and advancements. In J. Bryant & P. Vorderer (Eds.), The psychology of entertainment (pp. 239–254). Mahwah, NJ: Lawrence Erlbaum. Knobloch-Westerwick, S. (2007). Gender differences in selective media use for mood management and mood adjustment. Journal of Broadcasting and Electronic Media, 51, 73–92. doi:10.1080/ 08838150701308069 Knobloch-Westerwick, S. (2008). Informational utility. In W. Donsbach (Ed.), International encyclopedia of communication (pp. 2273–2276). Oxford, UK: Wiley-Blackwell. Knobloch-Westerwick, S. (2014). Selection, perception, and processing of political messages. In C. Reinemann Ed., Political communication (Vol. 18 of Handbook of communication sciences) (pp. 507–526). Berlin, Germany: De Gruyter Mouton. Knobloch-Westerwick, S. (2015a). Choice and preference in media use: Advances in selective exposure theory and research. New York, NY: Routledge. 160 • Silvia Knobloch-Westerwick et al. Knobloch-Westerwick, S. (2015b). The selective exposure self- and affect-management (SESAM) model: Applications in the realms of race, politics, and health. Communication Research, 42, 959–985. doi:10.1177/0093650214539173 Knobloch-Westerwick, S., & Alter, S. (2006). Mood adjustment to social situations through mass media use: How men ruminate and women dissipate angry moods. Human Communication Research, 32, 58–73. doi:10.1111/j.1468-2958.2006.00003.x Knobloch-Westerwick, S., Appiah, O., & Alter, S. (2008). News selection patterns as a function of race: The discerning minority and the indiscriminating majority. Media Psychology, 11, 400–417. doi:10.1080/15213260802178542 Knobloch-Westerwick, S., & Hastall, M. R. (2006). Social comparisons with news personae: Selective exposure to news portrayals of same-sex and same-age characters. Communication Research, 33, 262–284. doi:10.1177/0093650206289152 Knobloch-Westerwick, S., & Hastall, M. R. (2010). Please your self: Social identity effects on selective exposure to news about in- and out-groups. Journal of Communication, 60, 515–535. doi:10.1111/j.1460-2466.2010.01495.x Knobloch-Westerwick, S., Johnson, B. K., & Westerwick, A. (2013). To your health: Self-regulation of health behavior through selective exposure to online health messages. Journal of Communication, 63, 807–829. doi:10.1111/jcom.12055 Knobloch-Westerwick, S., & Meng, J. (2011). Reinforcement of the political self through selective exposure to political messages. Journal of Communication, 61, 349–368. doi:10.1111/j.1460- 2466.2011.01543.x Knobloch-Westerwick, S., Robinson, M. J., Willis, L. E., & Luong, K. T. (in press). Beauty or business queen: How young women select media to reinforce possible future selves. Communication Research, Advance online publication. doi:10.1177/0093650215626978. Knobloch-Westerwick, S., & Romero, J. P. (2011). Body ideals in the media: Perceived attainability and social comparison choices. Media Psychology, 14, 27–48. doi:10.1080/15213269.2010. 547833 Knobloch-Westerwick, S., Sharma, N., Hansen, D. L., & Alter, S. (2005). Impact of popularity indications on readers’ selective exposure to online news. Journal of Broadcasting & Electronic Media, 49, 296–313. doi:10.1207/s15506878jobem4903_3 Lazarsfeld, P. F., Berelson, B., & Gaudet, H. (1948). The people’s choice: How the voter makes up his mind in a presidential campaign (2nd ed.). New York, NY: Columbia University Press. Leary, M. R., & Kowalski, R. M. (1990). Impression management: A literature review and two-component model. Psychological Bulletin, 107, 34–47. doi:10.1037/0033-2909.107.1.34 Lugmayr, A., & Dal Zotto, C. (Eds.). (2016). Media convergence handbook, Vol. 2. Berlin, Germany: Springer. doi:10.1007/978-3-642-54487-3 Luong, K. T., & Knobloch-Westerwick, S. (2017). Can the media help women be better at math? Stereotype threat, selective exposure, media effects and women’s math performance. Human Communication Research, 43, 193–213. doi:10.1111/hcre.12101 Mares, M.-L., & Cantor, J. (1992). Elderly viewers’ responses to televised portrayals of old age: Empathy and mood management versus social comparison. Communication Research, 19, 459–478. doi:10.1177/009365092019004004 Markus, H., & Wurf, E. (1987). The dynamic self-concept: A social psychological perspective. Annual Review of Psychology, 38, 299–337. doi:10.1146/annurev.ps.38.020187.001503 Marquart, F., Matthes, J., & Rapp, E. (2016). Selective exposure in the context of political advertising: A behavioral approach using eye-tracking methodology. International Journal of Communication, 10. Retrieved from http://ijoc.org/index.php/ijoc/article/view/4415/ 1667 McQuail, D. (1994). Mass communication theory: An introduction (3rd ed.). London, UK: Sage. Media Choice and Selective Exposure • 161 Messing, S., & Westwood, S. J. (2014). Selective exposure in the age of social media: Endorsements trump partisan source affiliation when selecting news online. Communication Research, 41, 1042–1063. doi:10.1177/0093650212466406 O’Neal, E. C., & Taylor, S. L. (1989). Status of the provoker, opportunity to retaliate, and interest in video violence. Aggressive Behavior, 15, 171–180. doi:10.1002/1098-2337(1989)15:2<171:: AID-AB2480150205>3.0.CO;2-T Palmgreen, P., & Rayburn, J. D. (1982). Gratifications sought and media exposure: An expectancy value model. Communication Research, 9, 561–580. doi:10.1177/009365082009004004 Prior, M. (2009). Improving media effects research through better measurement of news exposure. Journal of Politics, 71, 893–908. doi:10.1017/s0022381609090781 Rousseau, A., & Eggermont, S. (2018). Media ideals and early adolescents’ body image: Selective avoidance or selective exposure? Body Image, 26, 50–59. doi:10.1016/j.bodyim.2018. 06.001 Rubin, A. M. (1983). Television uses and gratifications: The interactions of viewing patterns and motivations. Journal of Broadcasting, 27, 37–51. doi:10.1080/08838158309386471 Salganik, M. J., Dodds, P. S., & Watts, D. J. (2006). Experimental study of inequality and unpredictability in an artificial cultural market. Science, 311, 854–856. doi:10.1126/science. 1121066 Scherer, E. A., Bickham, D. S., Shrier, L. A., & Rich, M. (2015). Evaluating multiple intensively collected media use measures: Validity and reliability of momentary assessments. Communication Methods & Measures, 9, 170–187. doi:10.1080/19312458.2015.1061653 Sears, D. O., & Freedman, J. L. (1967). Selective exposure to information: A critical review. Public Opinion Quarterly, 31, 194–213. doi:10.1086/267513 Skovsgaard, M., Shehata, A., & Strömbäck, J. (2016). Opportunity structures for selective exposure. International Journal of Press/Politics, 21, 527–546. doi:10.1177/1940161216658157 Slater, M. D. (2007). Reinforcing spirals: The mutual influence of media selectivity and media effects and their impact on individual behavior and social identity. Communication Theory, 17, 281–303. doi:10.1111/j.1468-2885.2007.00296.x Slater, M. D. (2015). Reinforcing spirals model: Conceptualizing the relationship between media content exposure and the development and maintenance of attitudes. Media Psychology, 18, 370–395. doi:10.1080/15213269.2014.897236 Smith, S. M., Fabrigar, L. R., Powell, D. M., & Estrada, M.-J. (2007). The role of information-processing capacity and goals in attitude-congruent selective exposure effects. Personality and Social Psychology Bulletin, 33, 948–960. doi:10.1177/0146167207301012 Sude, D., Knobloch-Westerwick, S., Robinson, M., & Westerwick, A. (in press). “Pick and choose” opinion climate: How browsing of political messages shapes public opinion perceptions and attitudes. Communication Monographs. Sundar, S. S., & Limperos, A. M. (2013). Uses and grats 2.0: New gratifications for new media. Journal of Broadcasting & Electronic Media, 57, 504–525. doi:10.1080/08838151.2013. 845827 Tsfati, Y. (2016). A new measure for the tendency to select ideologically congruent political information: Scale development and validation. International Journal of Communication, 10, 200–225. Retrieved from http://ijoc.org/index.php/ijoc/article/view/3688/1534 Valkenburg, P. M., & Peter, J. (2013). The differential susceptibility to media effects model. Journal of Communication, 63, 221–243. doi:10.1111/jcom.12024 van der Schuur, W. A., Baumgartner, S. E., Sumter, S. R., & Valkenburg, P. M. (2018). Media multitasking and sleep problems: A longitudinal study among adolescents. Computers in Human Behavior, 81, 316–324. doi:10.1016/j.chb.2017.12.024 162 • Silvia Knobloch-Westerwick et al. Zillmann, D. (1985). The experimental exploration of gratifications from media entertainment. In K. E. Rosengren, L. A. Wenner, & P. Palmgreen (Eds.), Media gratifications research: Current perspectives (pp. 225–239). Beverly Hills, CA: Sage. Zillmann, D. (1988). Mood management through communication choices. American Behavioral Scientist, 31, 327–340. doi:10.1177/000276488031003005 Zillmann, D., & Bryant, J. (Eds.). (1985). Selective exposure to communication. New York, NY: Routledge.