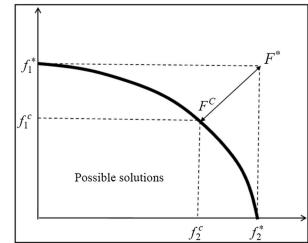


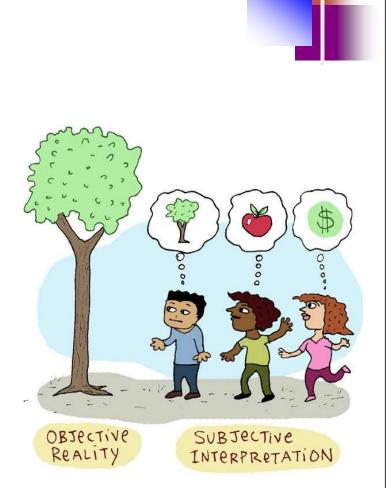
Second+third classes: Extension

Irit Talmor (Ph.D) Iritt@wgalil.ac.il

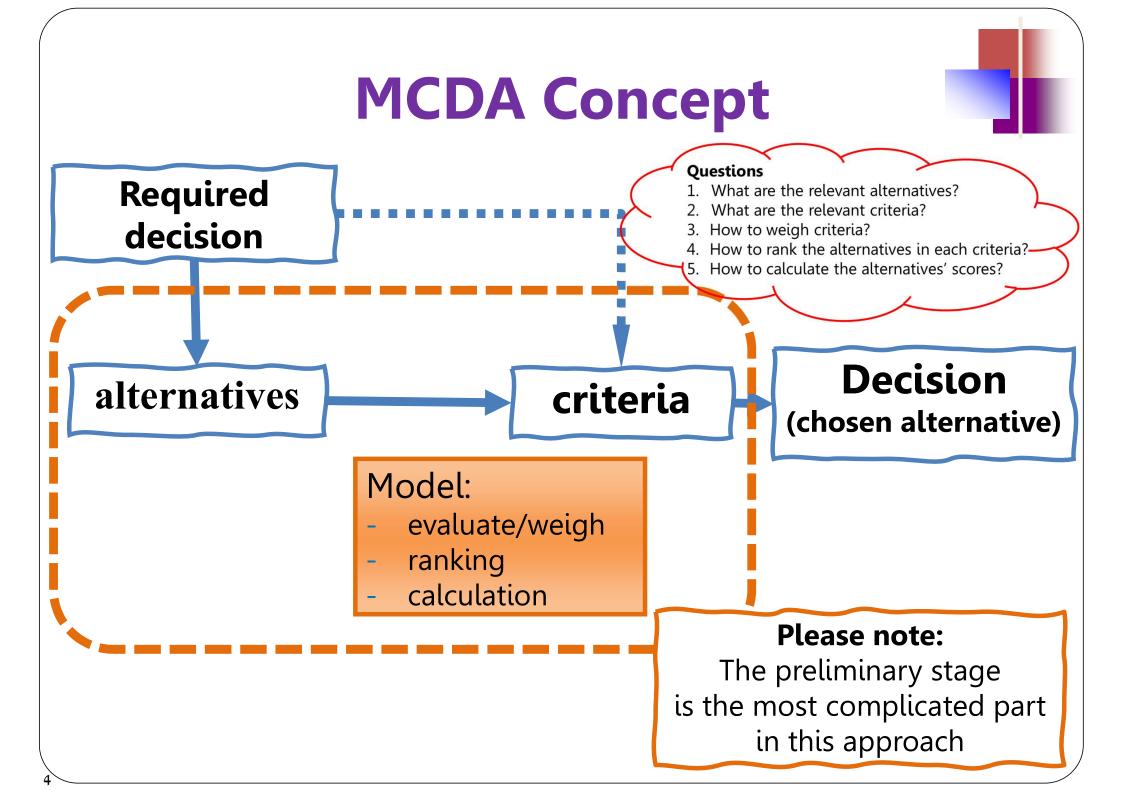
Reminder...

the application of science to decision-making





One vs. many criteria

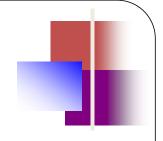


Ideal vs. compromise decision

Objective vs. subjective solution

MCDA (or MCDM) multi-criteria decision analysis (making)

Structure of class

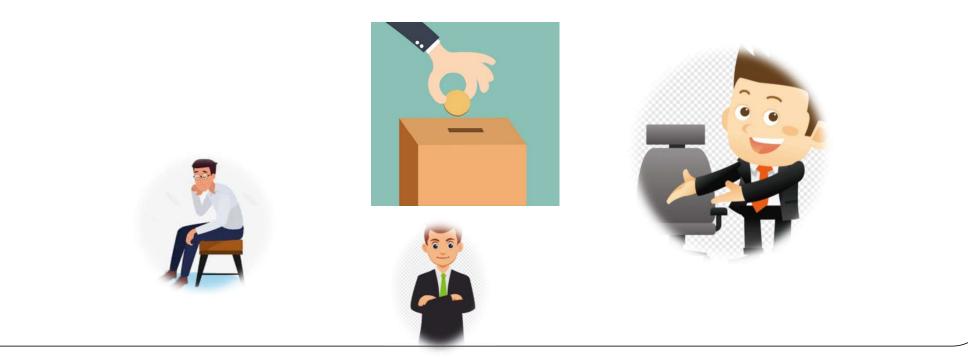

MCDA – real-world case

(using statistical data)

AHP (technique)

(using subjective preferences)

Workshop


Using MCDA for allocating budget of a political campaign

Background (1) Israeli government system

- A parliamentary democracy with a multi-party system.
- Three branches: legislative, executive, judiciary
- Designed to ensure a separation of powers, accountability, and representation of diverse political viewpoints, including minorities.
- The legislative branch is vested in the unicameral parliament, the Knesset.

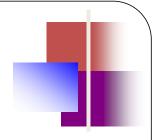
Background (2) Israeli electoral system

- nationwide proportional representation
- A barrier: threshold requirement: 1%→1.5% → 2% → 3.25%
- State's funding: depends on achievements.

Background (3)

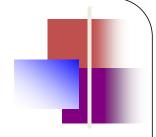
The pre-elections political campaign of a new party vs. marketing campaign for a new commercial product

huge efforts



degree of freedom

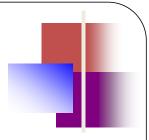
Background (4)



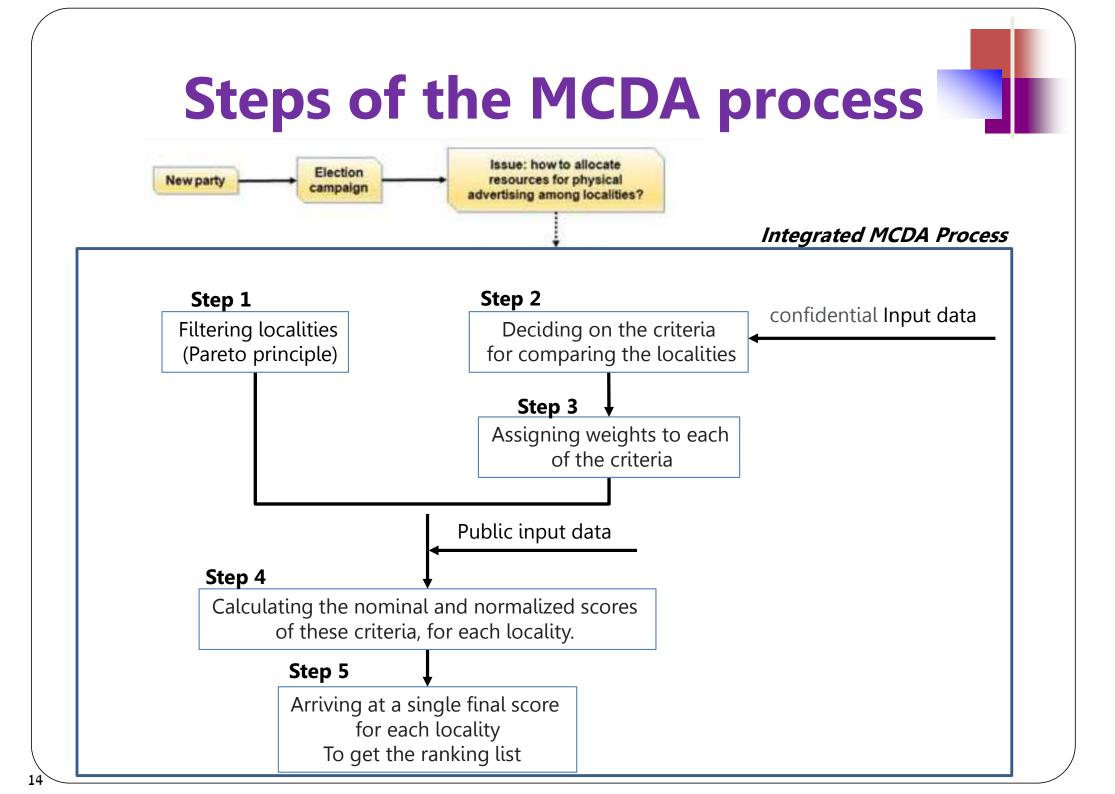
	large, established party	small, new party
Has a steady core of loyal voters who always vote for it		X
can present proof of tangible results to actual and potential constituents		×
has a steady federal budget to support its activities		X

It is critical for a new party's advertising campaign to be precise and targeted.

Achieving this goal is not a simple task...

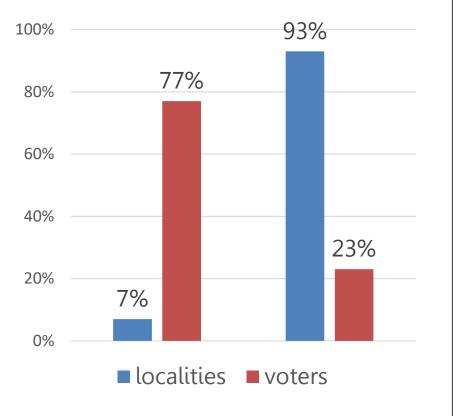

Frame

- 40 parties competed in Israel's 2019 election
- 29 of them were new
- "Zehut" ("Z") was one of them
- Although "Z" was unknown and resource-poor at the beginning of the campaign, its strategic team was determined to maximize the party's achievements in the elections



Decision required

How can Z's physical advertising resources be allocated among localities?


MCDA may help...

Filtering localities (Pareto principle)

Total	1195	4050K ^(*)
Number of voters in locality	No. Of localities	Total Number of voters (app.)
250K <voters< th=""><th>2</th><th>520K</th></voters<>	2	520K
100K <voters≤ 250k<="" th=""><th>6</th><th>750K</th></voters≤>	6	750K
50K <voters≤ 100k<="" th=""><th>8</th><th>580K</th></voters≤>	8	580K
10K <voters≤ 50k<="" th=""><th>54</th><th>1300K</th></voters≤>	54	1300K
voters≤ 10K	1115	900K

A great opportunity to promote "Z" !

(*) out of 5 million eligible voters

16

Deciding on the criteria for comparing the localities

confidential Input data

- Preliminary research: in-depth interviews (1,007 people) and six focus groups
 - \rightarrow Characterizing the potential voters:
 - Young
 Educated
 Earn an average income.
 Emigrated from the former Soviet Union

Other attributes were not found to be meaningful in this context

(ightarrow Decisions about the slogans and campaign topics)

Assigning weights to each of the criteria

- To avoid biased judgment, we set the weights in two stages:
 - Stage 1: ranking the criteria qualitatively
 - Stage 2: choosing 3 simple and easy to understand weighting techniques according to Barron & Barrett (1996):
 - Equal weights (EW)

25%, 25%, 25%, 25%

Arithmetic sequence weights (ASW)

40%, 30%, 20%, 10%

Rank-order centroid (ROC)

52%, 27%, 14%, 6%

Barron, F., & Barrett, B. (1996). Decision Quality Using Ranked Attribute Weights. *Management Science*, 42(11):1515-1523.

Assigning weights to each of the criteria

- To avoid biased judgment, we set the weights in two stages:
 - > Stage 1: ranking the criteria qualitatively

Arithmetic sequence weights (ASW)

Stage 2: choosing 3 simple and easy to understand weighting techniques according to Barron & Barrett (1996):

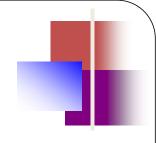
 $w_j = \frac{1}{N}$

 $w_j = \frac{N - j + 1}{\sum_{k=1}^{N} k} = \frac{2(N - j + 1)}{N(N + 1)}$

Equal weights (EW)

25%, 25%, 25%, 25%

40%, 30%, 20%, 10%


Rank-order centroid (ROC)

$$w_j = \frac{1}{N} \sum_{k=j}^{N} \frac{1}{k}$$

52%, 27%, 14%, 6%

Barron, F., & Barrett, B. (1996). Decision Quality Using Ranked Attribute Weights. Management Science, 42(11):1515-1523.

Assigning weights to each of the criteria

#	Criterion	Definition	Equal weights (EW)	Arithmetic sequence weights (ASW)	Rank order centtroid (ROC)
1	Age group	Rate of people ages 20-34 in locality	25%	40%	52%
2	Country of origin	Rate of people in locality who are immigrants from the former Soviet Union	25%	30%	27%
3	Educational level	Rate of highly educated people in locality	25%	20%	15%
4	Income	Gap, in absolute value, between the nationwide average income and locality's average income	25%	10%	6%

Public input data

Calculating the nominal and normalized scores of these criteria, for each locality

- Creating nominal score table:
 - \succ CBS \rightarrow demographic and socioeconomic attributes

הלשכה המרכזית לסטטיסטיקה Central Bureau of Statistics دائرة الإحصاء المركزية

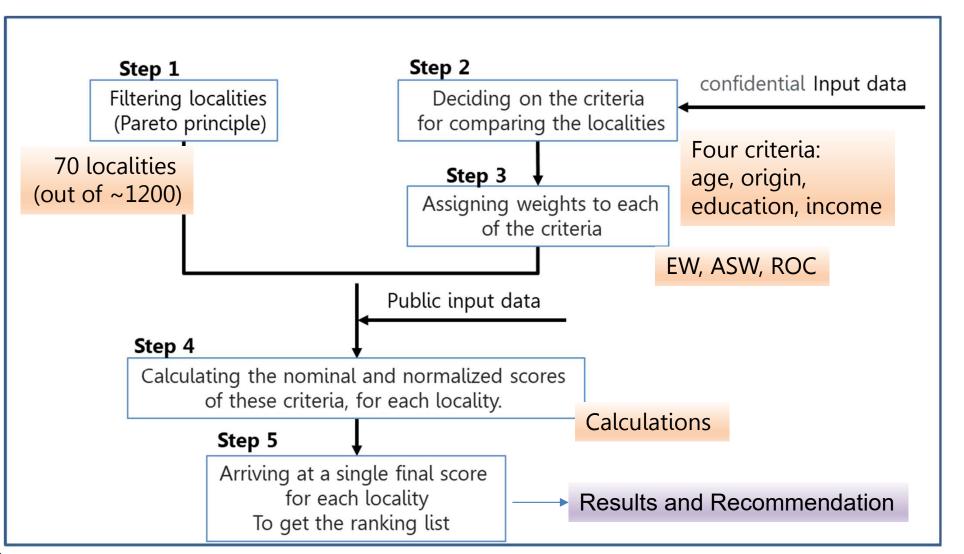
• Normalizing scores for each locality j in each criterion i

=

normalized score of the i criterion in the j locality

nominal score of locality j in criterion i maximal nominal score in criterion i

Arriving at a single final score for each locality To get the ranking list


We used the classic and popular weighted sum (WS) model:

final_score_of_locality_j = sumproduct(criteria weights, normalized scores)

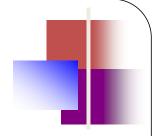
Example:

		Nor	malized sco	ores				
locality	Age group: 20-34 (%)	Fo	v of origin: rmer Union (%)	Higher education (%)	Income	EW	ASW	ROC
Tel Aviv-Jaffa	1.00	0	.38	0.76	0.81	73.8%	74.8%	77%
EW	25%	25%	25%	25%	$25\% \cdot 1 + 25\%$	0.38 + 25%	0.76 + 25% · 0.8	1 = 73.8%
ASW	40%	30%	20%	10%	40% · 1 + 30%	$56 \cdot 0.38 + 20\% \cdot$	$0.76 + 10\% \cdot 0.8$	31 = 74.8%
ROC	52%	27%	15%	6%	$52\% \cdot 1 + 27\%$	% · 0.38 + 15%	$\cdot 0.76 + 6\% \cdot 0$.81 = 77%

The process flow

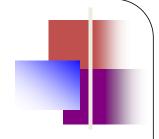
23

Results and Recommendation


18 localities

were ranked in the top15 of at least one technique (12 localities were ranked in top15 of all three techniques)

 Recommendation: focus party's efforts On these 18 localities ("focused list")


Epilog

- The elections were held on April 9th, 2019.
- None of the 29 new parties that competed won Knesset seats.
- Zehut, that started its campaign with only 0.4% support, ended up with 2.74% of the votes.
- It was close, but not enough. (2nd place in the "losers list")

	Sub list (top 70)	Focused list (top 18)
votes percentage \geq 3.25%	17 (<mark>24%</mark>)	9 (<mark>50%</mark>)
votes percentage \geq 2.74%	45 (<mark>64%</mark>)	16 (<mark>89%</mark>)

The model provides a simple, valid tool for making data-driven decisions about allocating resources that can be easily updated for future election campaigns

Analytical Hierarchy Process (AHP)

AHP - background

- Developed by Prof. Thomas Saaty
- AHP is a structured and organized technique for making complex multidimensional decisions, based on mathematics and psychology
- It is useful in various fields government, management, economy, industry...
- Two main reasons for its strength:
 - Transparency and clarity
 - The integration of subjective assessments, including human weaknesses, in the solution process

AHP – technique steps

 Evaluate preference for each pair of criteria (and/or pair of alternatives in each criteria), using a numeric scale ranging from 1 to 9

Degree of preference	Equal	Moderate	Strong	Very strong	extreme
Numeric value	1	3	5	7	9
Mid values may be chose	en: 2, 4, 6,	8			

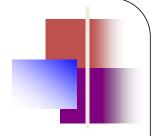
- Create a pair-preference matrix as follows: if criterion *i* is preferred to criterion *j* by *p*, then write *p* in cell (*i*, *j*), and 1/*p* in cell (*j*, *i*)
 [fill 1 in cells (*i*, *i*)]
- Normalize values to calculate weights
- Check inconsistency ratio (CR) the upper threshold is 10%

Implementation

Steps 1+2: evaluate preferences and create preference matrix

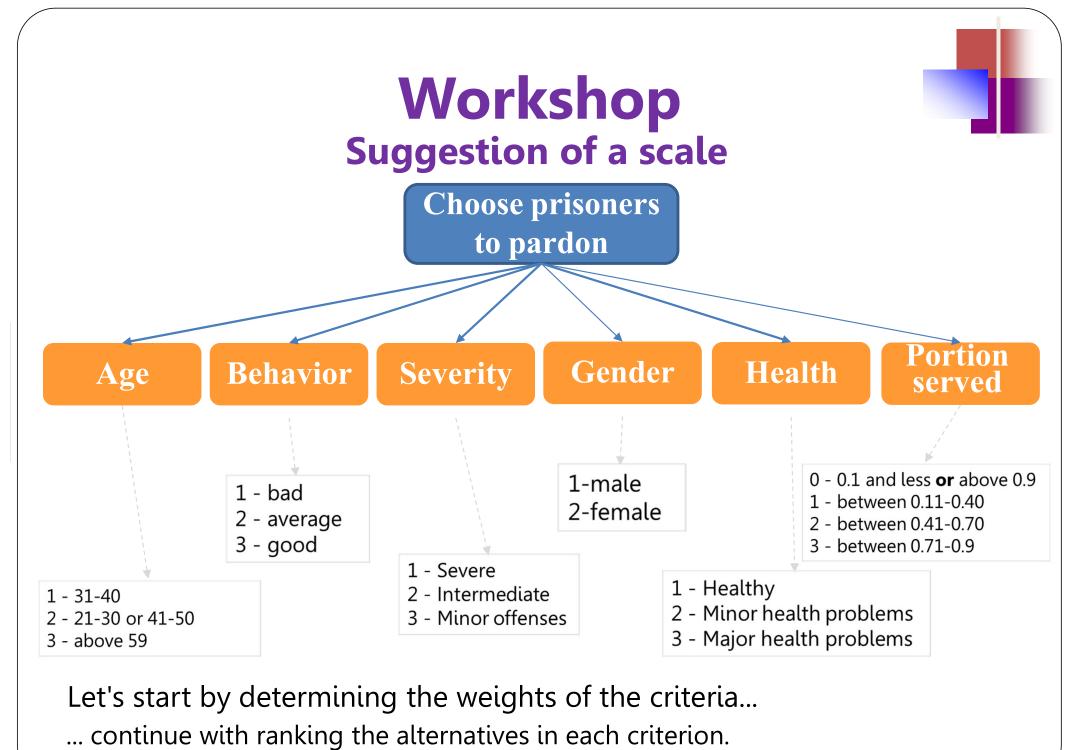
	Age group	Country of origin	Educational level	Income
Age group	1	5	9	7
Country of origin	1/5	1	5	3
Educational level	1/9	1/5	1	1/3
Income	1/7	1/3	3	1

Degree of preference	Equal	Moderate	Strong	Very strong	extreme
Numeric value	1	3	5	7	9
Mid values may be chose	en: 2, 4, 6,	8			

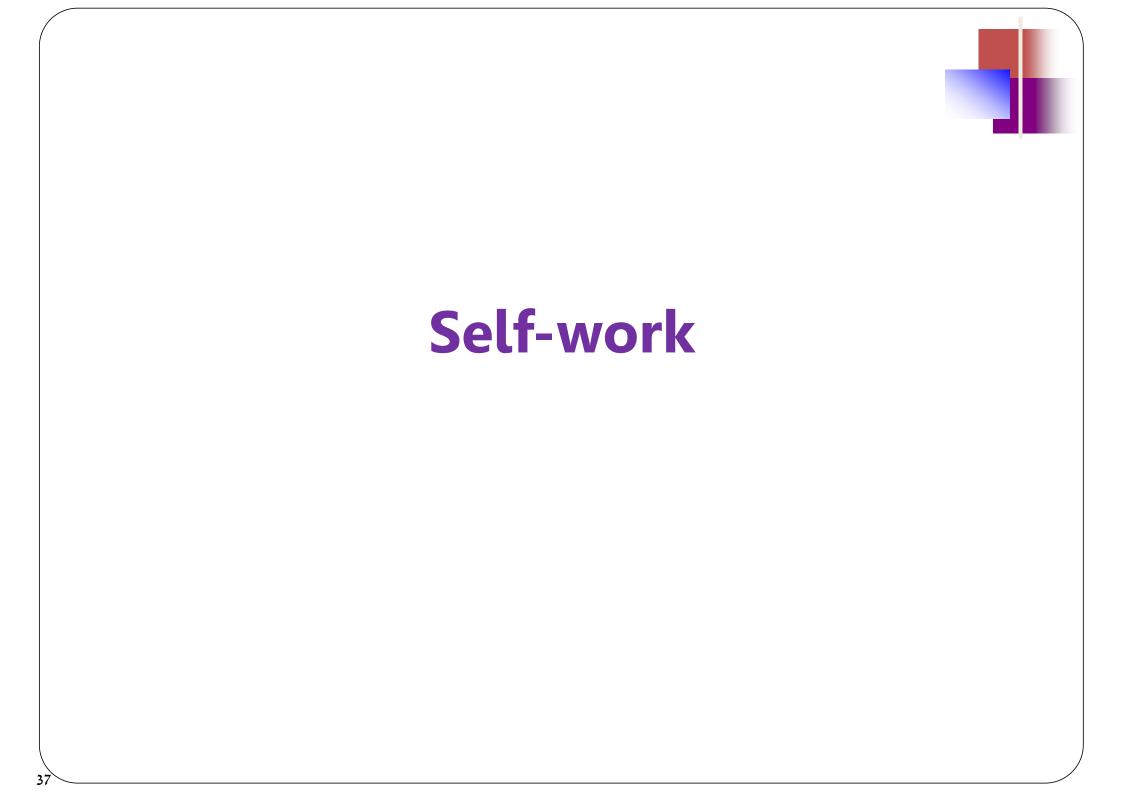

implementation

Steps 3+4: normalize, calculate weights and check consistency

We can do it ourselves

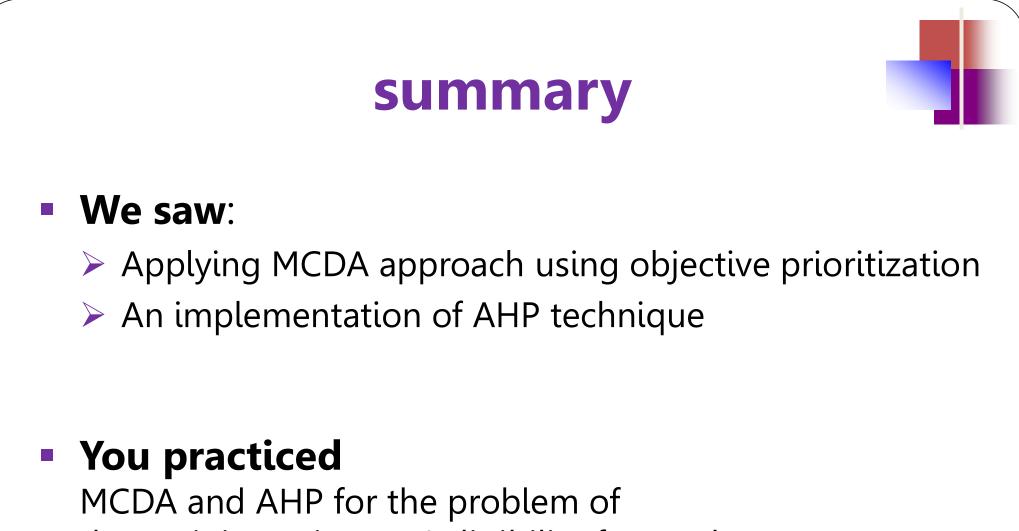

	Age group	Country of origin	Educational level	Income
Age group	1	5	9	7
Country of origin	1/5	1	5	3
Educational level	1/9	1/5	1	1/3
Income	1/7	1/3	3	1
sum	1.454	6.533	18	11.333
	0			
	Age	Country	Education	Income
	group	of origin	al level	mcome
Age group			al level 0.5	0.618
Age group Country of origin	group	of origin		
Country	group 0.688	of origin 0.765	0.5	0.618

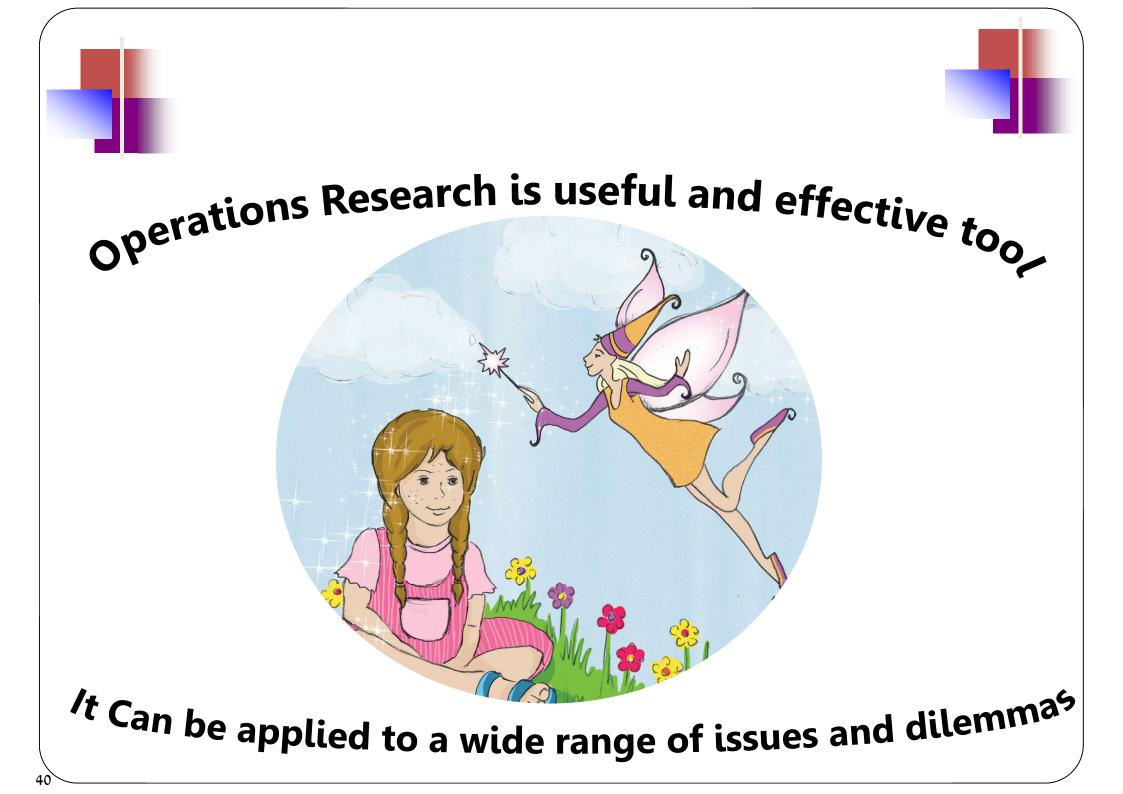
What's next?



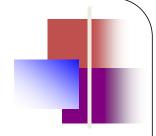
practicing:

Applying MCDA and AHP for the problem of determining prisoners' eligibility for pardon Workshop


Be aware to normalize the values in each criterion before the final scoring

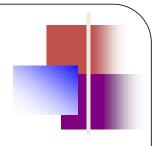

Results

Let's check who the lucky prisoners are... <u>all groups results</u>



determining prisoners' eligibility for pardon

A short survey



The purpose of this survey is to gather feedback on the short course you have just completed. Your input is valuable to me, as it will help me improve and better meet the needs of my students.

Please take a few moments to complete this survey.

Your feedback is greatly appreciated!

https://forms.gle/od15UcAHakyKSdYJ8

Irit Talmor (Ph.D) Iritt@wgalil.ac.il

Operations Research Understand \rightarrow **Analyze** \rightarrow **Decide**!