Cluster analysis

Petr Ocelík

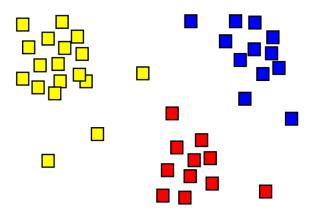
MVPd002 Quantitative Research in International and European Politics

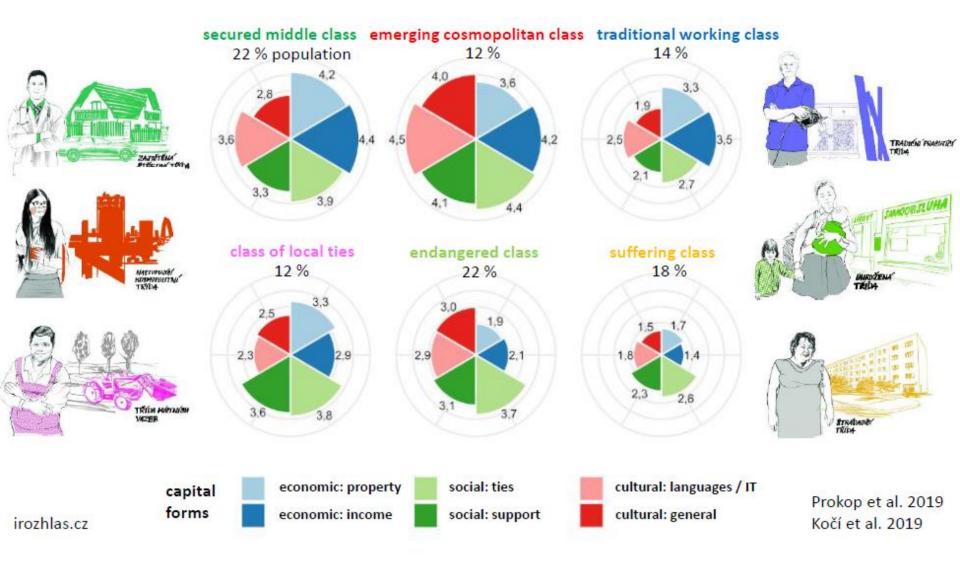
Plan for today

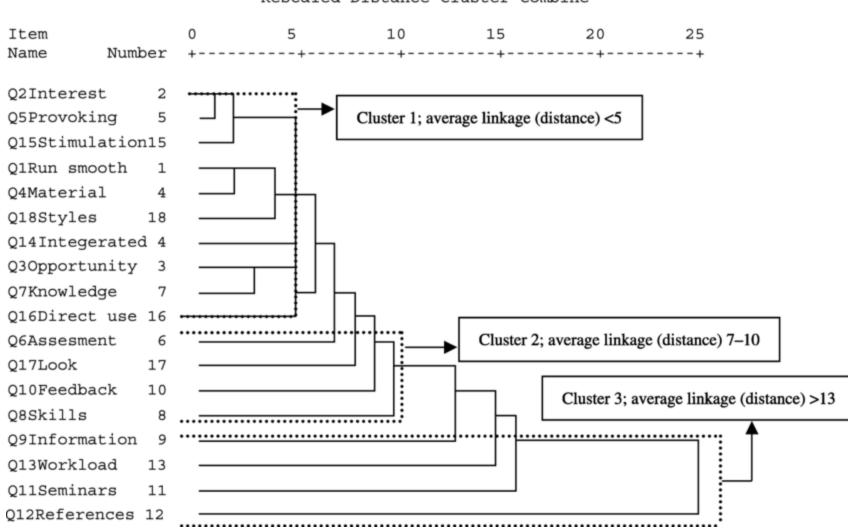
- Intuition
- Cluster analysis step-by-step
- Exercise

Cluster analysis

- Data reduction technique
- **Cluster:** a grouping of similar objects
- Basic idea: identifying groups of mutually **similar objects** based on particular variable(s)
- Unsupervised technique





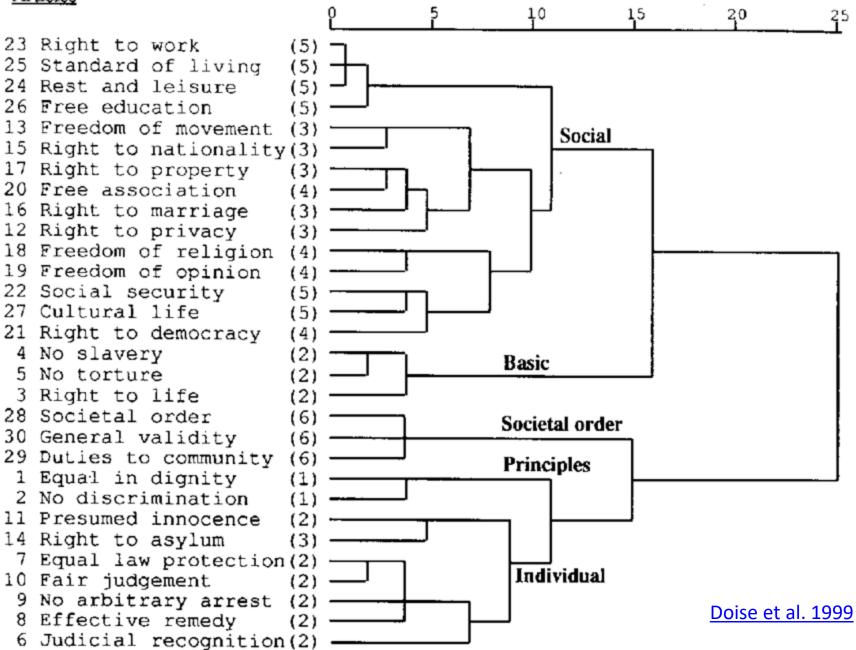


Rescaled Distance Cluster Combine

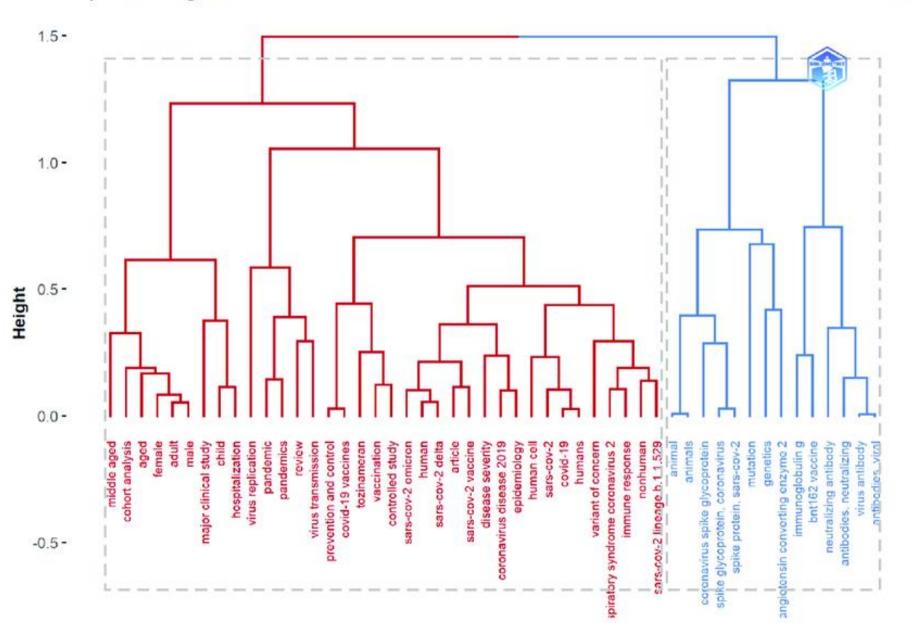
Ansari & Oskrochi 2006

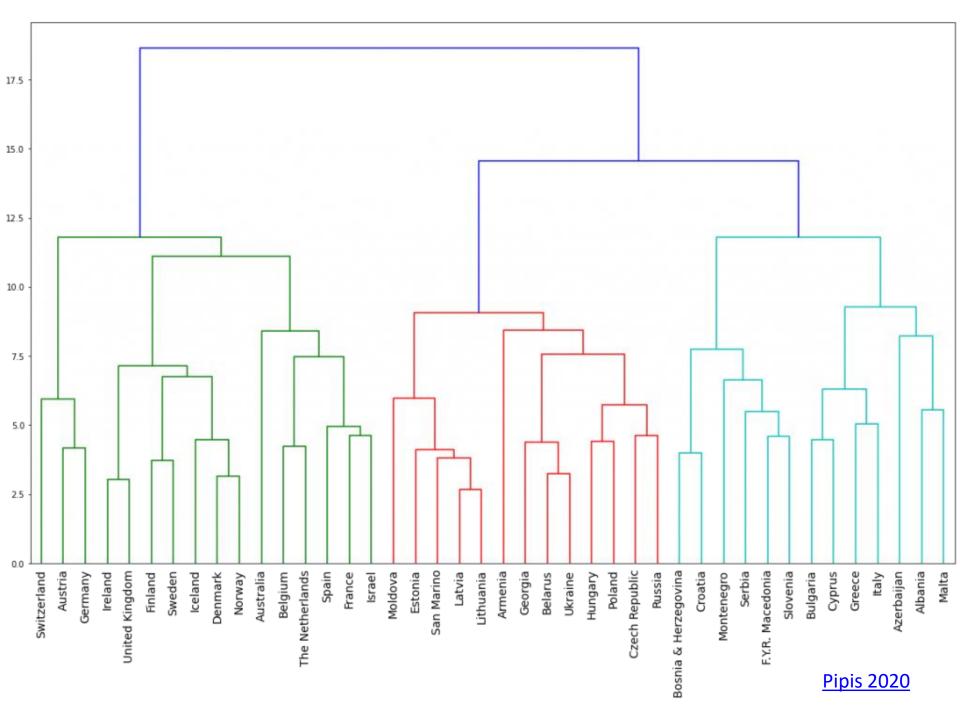
Rescaled dissimilarity coefficient

<u>Articles</u>



Topic Dendrogram





Cluster analysis: process

- 1. Sampling and data collection
- 2. Similarity measures
- 3. Clustering methods
- 4. Cluster solution interpretation
- 5. Cluster solution diagnostics

1. Sampling and data collection

- What is a **target population**?
- What is the **level of analysis**?
- What is the **unit of observation**?
- What **set of variables** are we interested in?
- Practical considerations

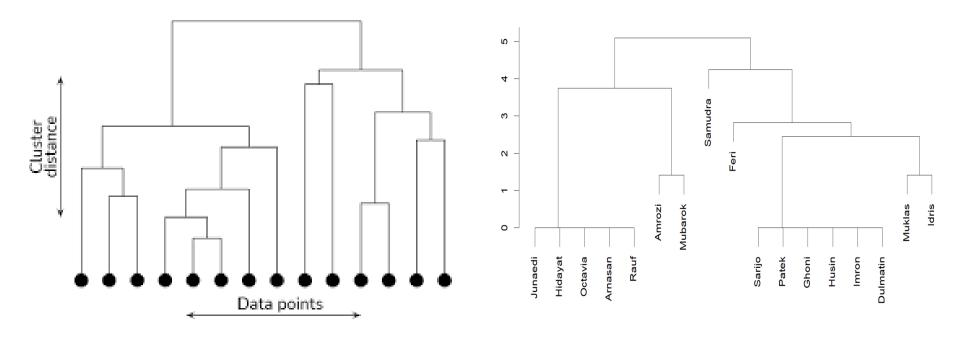
2. Similarity measures

- (Dis)similarity of objects is quantified by using **similarity measures**
- Choice of similarity measure needs to consider:
- 1. level of measurement: categorical vs continuous
- 2. data dimensionality: number of variables (vars)
- **3.** scale sensitivity: small vs large data, vars scales
- We distinguish between **association-based** and **distance-based** similarity measures (not exhaustive)

2. Similarity measures: representations

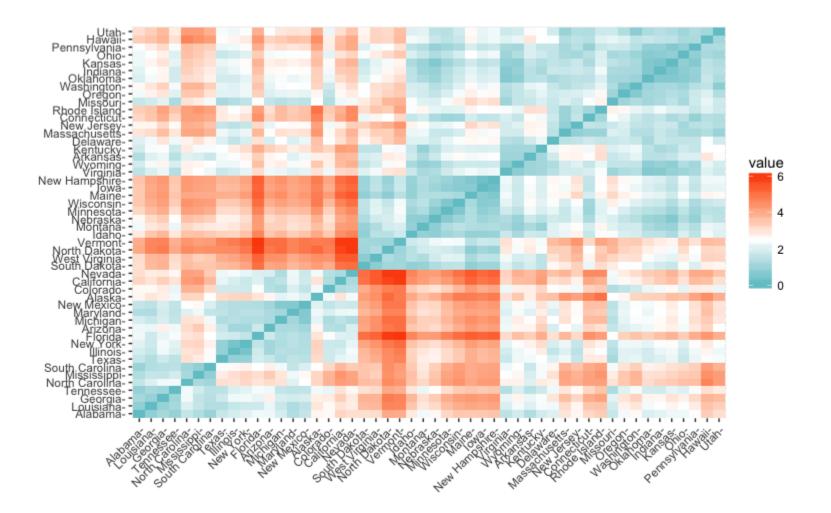
- The degree of (dis)similarity can be captured numerically or **graphically**.
- Dendrogram
- Heatmap
- Cluster profile

Dendrogram



<u>Pai 2021</u>

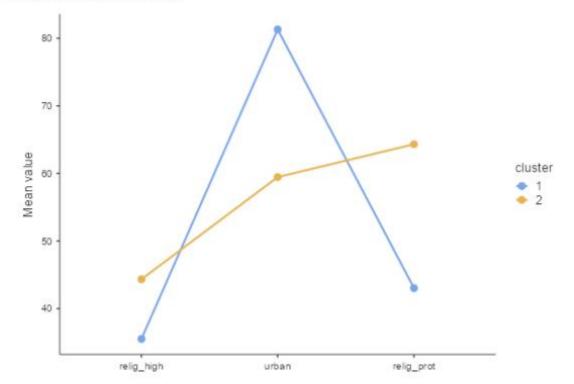
Heatmap



UC Business 2024

Cluster profile

Plot of means across clusters

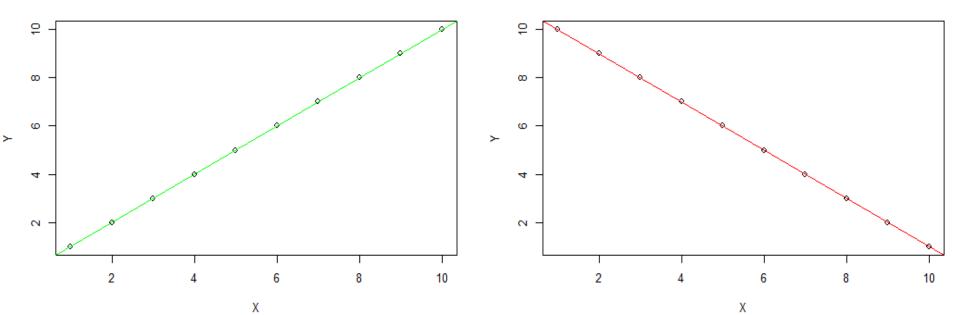


2.1 Pearson's coefficient

 Pearson's r measures the existence, strength and direction of the linear relationship between two variables

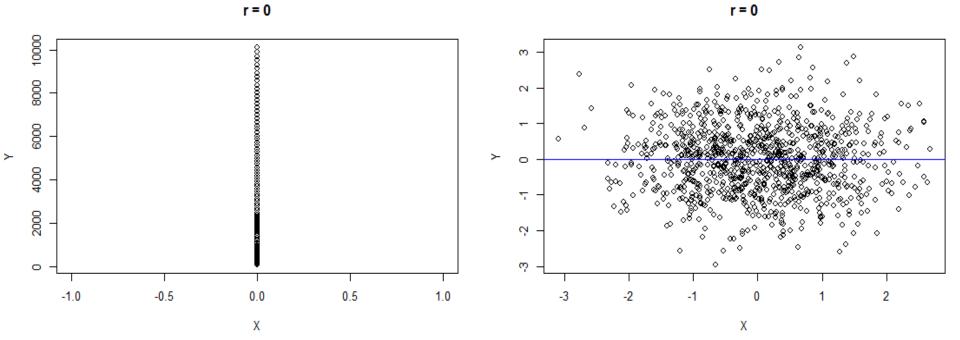
measurement level	number of values	range	coefficient
continuous-continuous	many-many	<-1, 1>	Pearson's r
			Soukup et al. 2022

• Not suitable for heterogeneous data and/or nonlinear relationships between variables

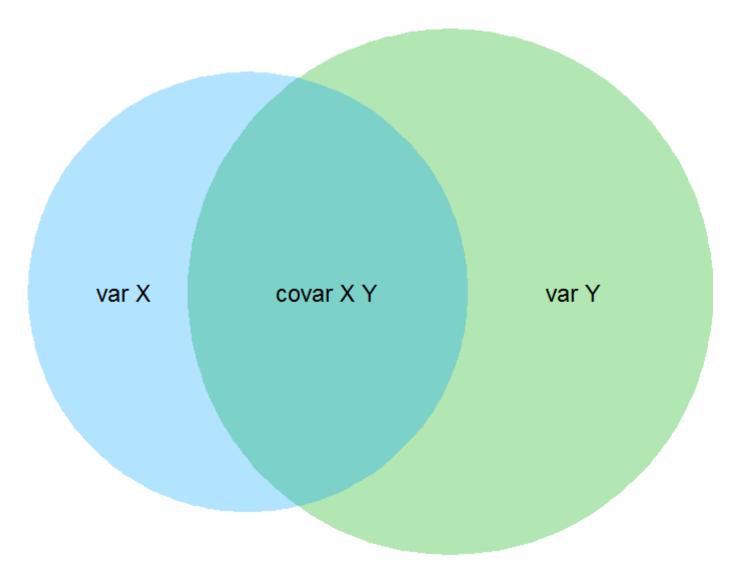


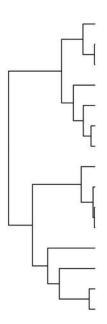
http://guessthecorrelation.com/

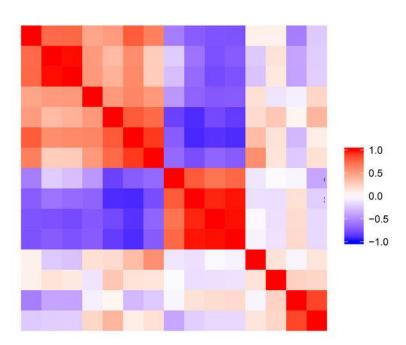
r = 0

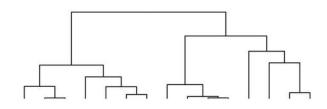


• r = covariance / combined total variance



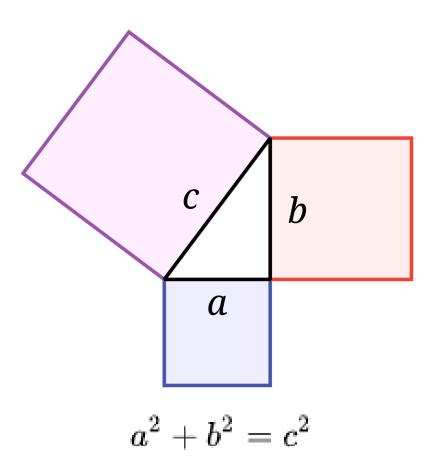






2.2 Euclidean distance

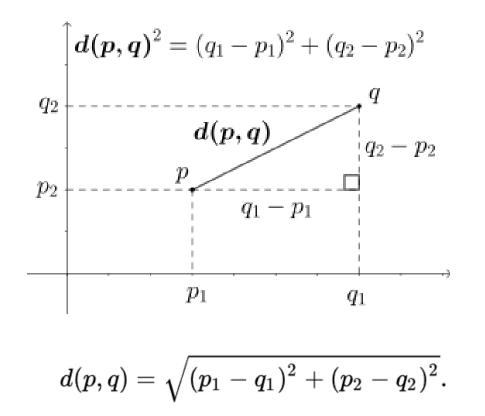
• Do you recall this?



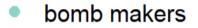
wikimedia commons

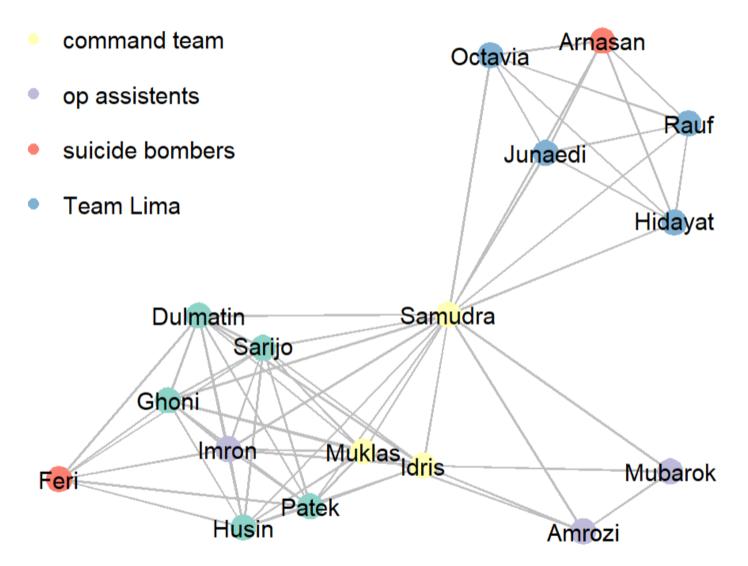
2.2 Euclidean distance

- Euclidean distance (d) is a generalization of the Pythagorean theorem
- d(p, q), of two objects (p, q) equals the length of the straight line between them



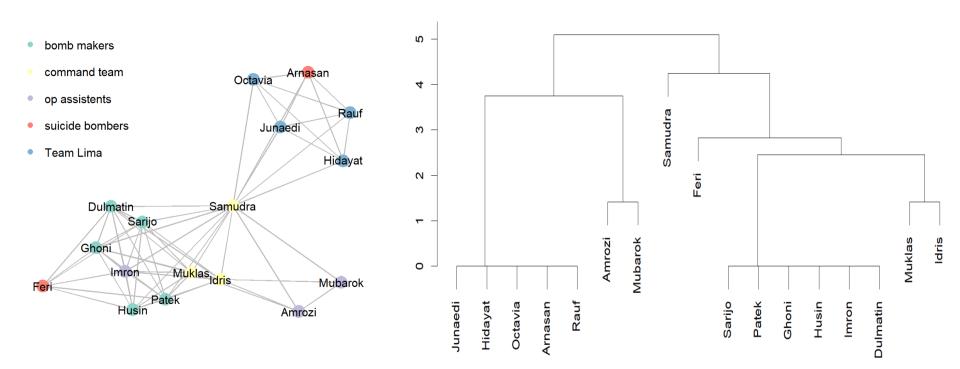
wikimedia commons





Koschade 2007

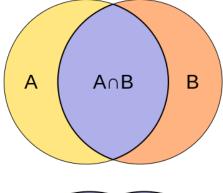
2.2 Euclidean distance



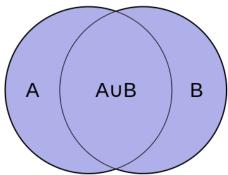
2.3 Jaccard's coefficient

measurement level	number of values	range	coefficient
categorical-categorical	binary	<0, 1>	Jaccard's

		sample B	
		present	absent
sample A	present	A ∩ B	A – B
	absent	B – A	∉A∪B

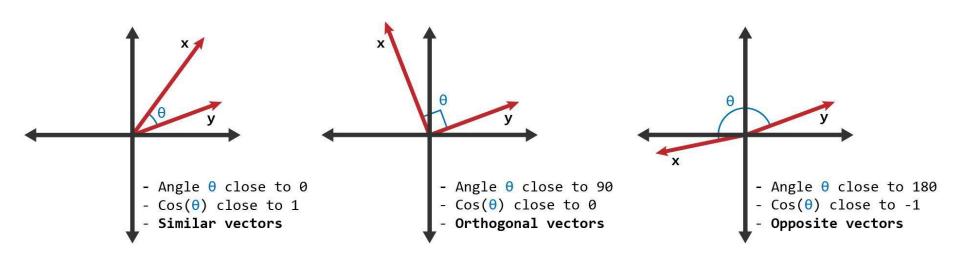


- J = the size of the intersection (A ∩ B) by the size of the union (A + B = A ∪ B) of the samples
- $J = A \cap B / (A \cup B)$
- Does not account for observations missing in both samples (∉ A ∪ B)



wikimedia commons

2.4 Cosine distance



Karabiber 2024

2.4 Cosine distance (CD)

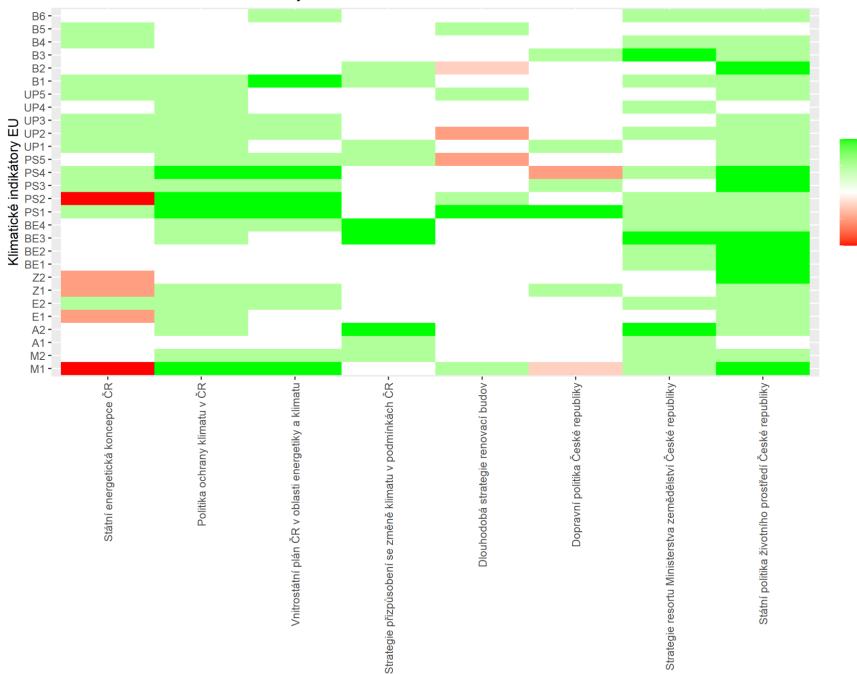
	doc_A	doc_B
geopolitics	4	0
climate change	0	1
Brexit	0	12
Euro	3	9
sovereignty	5	2

$$cosine \ similarity = |A||B|cos\theta = \frac{A \cdot B}{|A||B|} = \frac{\sum_{i}^{n} A_{i}B_{i}}{\sqrt{\sum_{i}^{n} A_{i}^{2}} \sqrt{\sum_{i}^{n} B_{i}^{2}}}$$

• CS =
$$\frac{(4*0+0*1+0*12+3*9+5*2)}{\sqrt{(16+0+0+9+2)}*\sqrt{(0+1+144+81+4)}} = 0.345$$

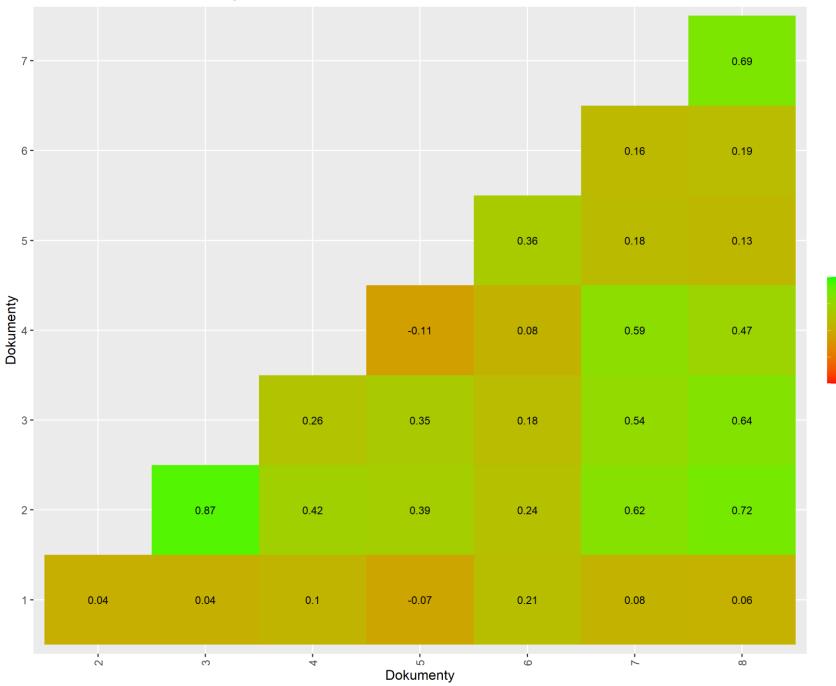
• CD = 1 - 0.345 = 0.655

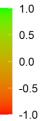
Koherence dokumentů s indikátory EU



2 1 0 -1 -2

Kosinová vzdálenost koncepčních dokumentů





2. Similarity measures: summary

- Cosine and Euclidean distances appropriate for higherdimensional data
- Cosine distance used for text-based data
- Euclidean distances and Jaccard coefficient used for network data
- Pearson coefficient appropriate for continuous data and linear relationships
- There are many more measures of similarity

Cluster analysis: process

- 1. Sampling
- 2. Similarity measure
- 3. Clustering method
- 4. Cluster solution interpretation
- 5. Cluster solution diagnosis

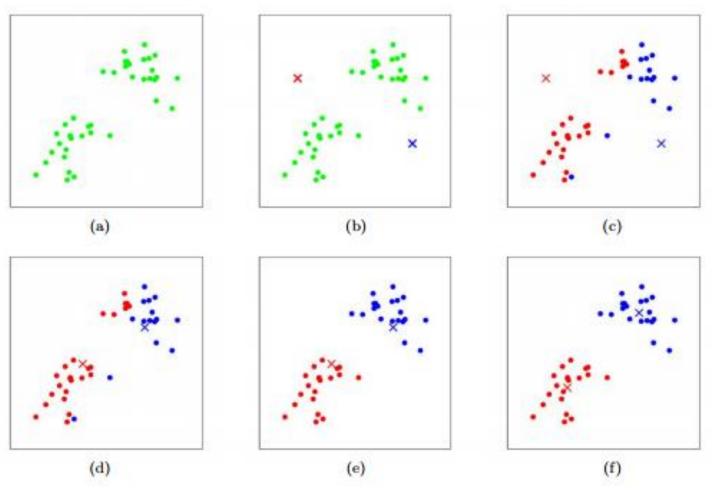
3. Clustering methods

- After the (dis)similarities between objects are calculated, we need to select a particular clustering method that partitions (clusters) the data according specific rules
- There are several clustering approaches, k-means clustering and hierarchical clustering belong to the most common

3.1 k-means clustering

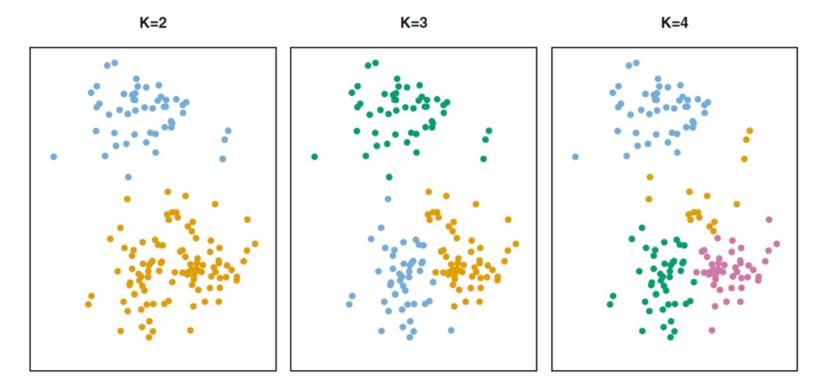
- **k-means clustering** partitions the data into *k* clusters based on the mean distances in each cluster
- 1. The number of clusters *k* needs to be **pre-selected**
- 2. The algorithm starts randomly assign cluster centers (centroids)
- 3. Each object is assigned to the nearest centroid based on a particular similarity measure
- 4. Within the clusters, **the centroids are updated** based on the mean similarity of the objects classified to the respective cluster
- 5. The steps 3-4 repeat until the centroids no longer change \rightarrow solution

2-cluster solution



Jordan 2012

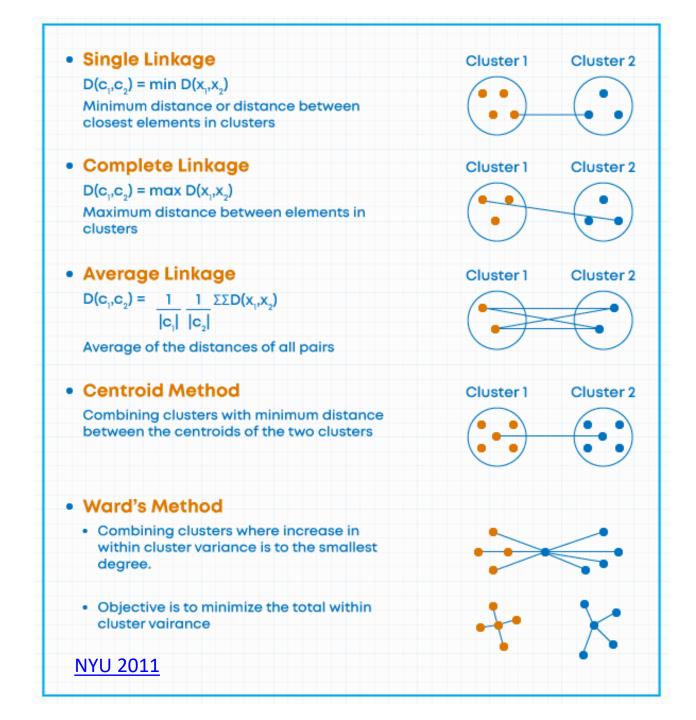
Determining k

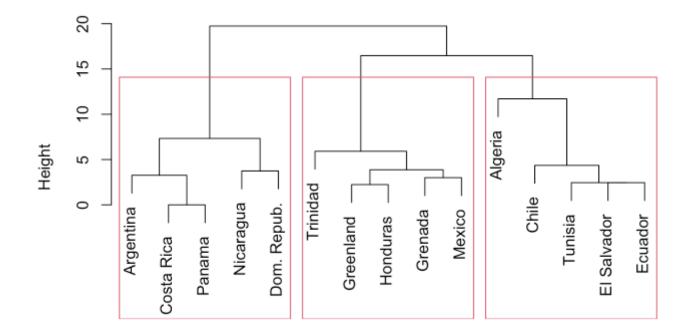


A simulated data set with 150 observations in two-dimensional space. Each figure show the results of applying K-means clustering with different values of K, the number of clusters. The color of each observation indicates the cluster to which it was assigned using the K-means clustering algorithm. Note that there is no ordering of the clusters, so the cluster coloring is arbitrary. These cluster labels were not used in clustering; instead, they are the outputs of the clustering procedure.

3.1 Hierarchical clustering

- Hierarchical clustering can be performed in agglomerative and divisive sequence
- The number of clusters is **not pre-selected**
- The linkage method (how are clusters merged/split) needs to be defined
- 1. Treat each objects as a separate cluster (**agglomerative** sequence)
- 2. The average distances between the clusters are calculated (average linkage)
- 3. The clusters with the lowest average distance are merged
- 4. The steps 2-3 are repeated until there is only a single cluster
- 5. The process is represented by **dendrogram**
- 6. Considering substantive insights, the *k*-cluster solution is identified





<u>NYU 2011</u>

Cluster analysis: process

- 1. Sampling
- 2. Similarity measure
- 3. Clustering method
- 4. Cluster solution interpretation
- 5. Cluster solution diagnosis

4. Cluster solution interpretation

- Do the clusters have **prima facie** validity (**eyeballing** test)?
- **Substantive** and **theoretical insights** are vital to what extent the solution aligns with our expectations?
- Size of the clusters do clusters markedly differ in their size?
- **Outliers** are there any?
- Do clusters **reduce our data well**? → cluster **solution diagnostics**

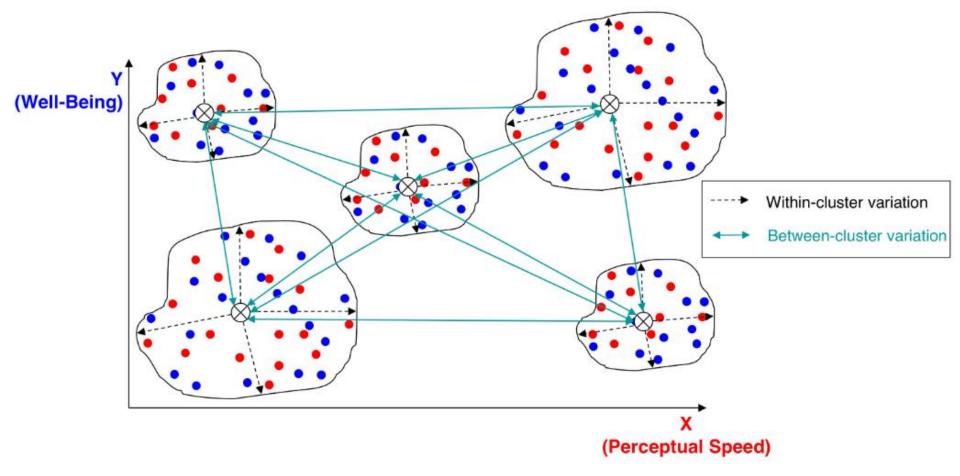
5. Cluster solution diagnostics

- Important to assess the **quality of our solution**
- Are the clusters internally **cohesive**?
- Are the clusters well **separated**?
- What is the optimal **number of clusters**?

5.1 Within/between sum of squares

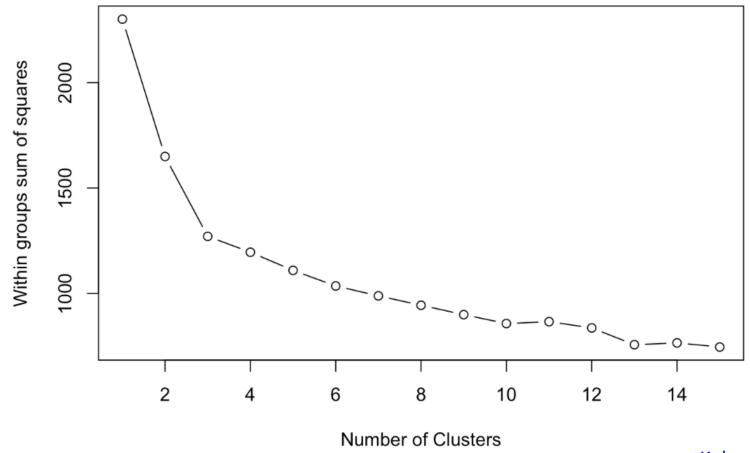
- The within-cluster sum of squares (WCSS) calculate the sum of squared distances between each object and its cluster centroid (k-means clustering approach)
- The **between-cluster sum of squares** (**BCSS**) measure the sum of squared distance between centroid of each cluster and the overall centroid of all objects
- The WCSS capture the cohesiveness of clusters, while BCSS measure the separation between clusters

5.1 WCSS and BCSS



SSRI 2020

Elbow graph



<u>Kulma 2017</u>

5.2 Silhouette score

• The **Silhouette score** ranges <-1, 1>; where high positive values indicate a good fit of the object within its own cluster, zero indicates a borderline position, and negative values indicate that the object is misclassified

•
$$s = \frac{b-a}{\max(b-a)}$$
; *a* = average within-cluster d, *b* = average between-cluster d

- The Silhouette is calculated for each object and then average is taken to evaluate the cluster solution
- The Silhouette score can be applied both to the k-means and hierarchical clustering
- Rule of thumb: **s > 0.5** good solution; s < 0.25 bad solution

Exercise

Exercise

- Open Jamovi and install **snowCluster** extension
- Load into Jamovi file "state.csv"
- Check variables relig_prot, urban, and relig_high in the codebook
- Describe the variables
- Apply (1) k-means clustering and (2) hierarchical clustering
- Interpret the results