
4 Embodied Cognitive Science: Basic Concepts

In this chapter, we introduce the concepts that we need later on

when exploring the various approaches. Moreover, we need such a

framework if we actually want to build agents. One important con-

cept that we discuss is that of the complete agent. Complete agents

are inspired by natural agents, animals and humans, which areÐ

quite obviouslyÐcapable of surviving in the real world. They are

``complete'' because they incorporate everything required to per-

form actual behavior. (Standard computer programs, for example,

are not complete because they cannot behave in the real world.) We

argue that it is such complete agents that we want study and syn-

thesize. We provide a characterization of what we mean by com-

plete agents, and we show that if we want to model, to synthesize

such agents, we must take into account some special considerations

relating to the idea of emergence, that is, to the fact that behavior

emerges from the agent-environment interaction. Emergence is in

turn a consequence of the frame-of-reference problem, which con-

ceptualizes the relationships among those involved in the design

process, namely the designer (who is often also the observer), the

natural agent (if we are doing modeling work), the agent to be

designed, and the environment. One important implication of

frame-of-reference considerations is that behavior cannot be

reduced to an internal mechanism. This in turn necessitates a new

design methodology, which is this chapter's central topic.

We begin the chapter with a characterization of complete agents

and discuss a number of basic concepts like adaptivity, autonomy,

self-suf®ciency, embodiment, and situatedness. We then turn to

agentsÐboth simulated and real robotsÐand discuss how they can

be used as modeling tools. We examine the pros and cons of work-

ing with real robots and with agent simulations. We also compare

this new kind of agent simulation with more traditional forms of

simulation. We then outline the framework for design that focuses

on emergence, including a description of the frame-of-reference

problem. Finally, we discuss what we mean by a good explanation



and how we can ®nd explanations of agent behavior by running

experiments.

This chapter is dif®cult and covers a lot of ground. This is un-

avoidable. At ®rst reading, all the points may not become immedi-

ately clear. All the issues raised here, however, will be illustrated

in greater detail later on. The reader may ®nd it helpful to return to

this chapter after having read through some of the subsequent

chapters.

4.1 Complete Autonomous Agents

Biological agents have to perform a number of tasks: searching for

food, eating and drinking, grooming, reproducing, and caring for

their offspring. The term ``task'' is normally used in a design con-

text to designate something the agent needs to get done. Typical

tasks for autonomous robots, for example, are marking all the mines

in a mine ®eld with color, or mowing the lawn of a soccer ®eld.

Note that the task of mowing the lawn implies certain desired

behaviors on the part of the agent. What is really meant is that the

agent's task is to keep the grass short. And because the designer

can't think of any other way to accomplish the job, he simply

equates the task with the method, that is, with the behavior by

which the task is to be achieved, namely mowing. Note that ani-

mals don't have tasks. Rather, a task is an observer-based attribu-

tion summarizing the effect of certain behaviors of the animals. In

the ®eld of embodied cognitive science, researchers often talk

about tasks of animals. What they mean is either the behavior

involvedÐcollecting foodÐitself or the effect of the behavior, that

is, the fact that if the animals behave in a particular way, the food

ends up in the nest. What is important is that we observe the frame-

of-reference problem: There need be no internal representation of

the task within the agent. Often, the distinction is not so relevant:

Both task and desired behaviors can be used to specify what an

agent should do.

The ability to survive in complex environments is a given for all

biological systems. Achieving this ability in arti®cial agents turns

out to be an extremely hard problem. Complete autonomous agents

are physical systems that are able to resolve these issues. For fun

and for historical reasons we also call these complete autonomous

systems ``Fungus Eaters.'' Let us brie¯y look at the story of these
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``Fungus Eaters.'' They illustrate the main intuitions underlying the

embodied cognitive science framework.

In 1961 the Japanese psychologist Masanao Toda1 proposed to

study ``Fungus Eaters'' as an alternative to the traditional methods

of academic psychology (Toda 1982, chap. 7). Rather than per-

forming ever more restricted and well-controlled experiments on

isolated faculties (memory, language, learning, perception, emo-

tion, etc.) and narrow tasks (memorizing lists of nonsense syllables,

letter perception on degraded stimuli, etc.), we should study

``complete'' systems, though perhaps simple ones. ``Complete'' in

this context means that the systems are capable of behaving auton-

omously in an environment without a human intermediary. Such

systems have to incorporate capabilities for classi®cation, for navi-

gation, for object manipulation, and for deciding what to do. The

integration of these competences into a system capable of behaving

on its own, according to Toda's argument, will yield more insights

into the nature of intelligence than looking at fragments of the

complex human mind.

The ``Solitary Fungus Eater'' is a creatureÐin our terminology,

an autonomous agentÐsent to a distant planet to collect uranium

ore (see ®gure 4.1). The more ore it collects, the more reward it will

get. If feeds on a certain type of fungus that grows on this planet.

The ``Fungus Eater'' has a fungus store, means of locomotion (e.g.,

legs or wheels), and means for decision making (a brain) and col-

lection (e.g., arms). Any kind of activity, including thinking,

requires energy, if the level of fungus in its fungus store drops to

zero, the Fungus Eater dies. The Fungus Eater is also equipped with

sensors, one for vision and one for detecting uranium ore (e.g., a

Geiger counter).

The scenario Toda describes is interesting in a number of

respects. Fungus Eaters must be autonomous: They are simply too

far away to be controlled remotely. This autonomy in turn implies

situatedness: Because they cannot be remote controlled, they have

to view the world from their own perspective; that is, the only

information the agent has available is acquired through the sensors

in interaction with the environment. Fungus Eaters must be self-

suf®cient, because there are no humans to exchange their batteries

and to repair them. They must be embodied, otherwise they would

not be able to collect anything in the ®rst place. All this implies

1 This is our own interpretation of his paper; Toda may not agree with it.
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that they must be adaptive, because the territory in which they

have to function is largely unknown. These concepts are funda-

mental to embodied cognitive science, and we now discuss each in

turn.

Before we do so, however, let us ®rst examine another reason

why Fungus Eaters are of particular interest for the study of intel-

ligence, one that relates to evolutionary considerations. Nature

has always produced Fungus Eaters, that is, creatures capable of

surviving in the real world. There are, for example, the single-cell

entities that emerged from the primordial soup 3.5 billion years

ago. Only 550 million years ago, the ®rst ®sh and vertebrates

arrived, insects 450 million years ago. Reptiles came 370 million

years ago, dinosaurs 330, and mammals 250 million years ago. Pri-

Figure 4.1 Toda's Fungus Eater, a complete autonomous agent. The robot is operating on a
distant planet. Its task is to collect uranium ore. It feeds on a certain type of fungus.
It is autonomous (too far away for remote control), self-sufficient (it must take care
of its own energy supply which, in this case, is a particular type of fungus that grows
on this planet, thus the name Fungus Eater), embodied (it exists as a physical sys-
tem), and situated (its knowledge about the environment is acquired through its own
sensory system). In the figure, it is in the process of devouring fungus.
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mates appeared 120 million years ago, the great apes 18 million

years ago, man in its present form only 2.5 million years ago.

Writing was invented less than 5,000 years ago. Based on these

considerations, Brooks (1991a) argues that the really hard part for

nature was to get to the level where creatures could move around

and had sensory abilities. Once that was in place, things became

much simpler. If we do not understand this sensory-motor basis,

we have no chance of ever understanding intelligence. This is

another fundamental reason why we must study Fungus Eaters,

that is, complete autonomous systems.

Self-Suf®ciency

MULTIPLE TASKS AND BEHAVIORS

Self-suf®ciency means an agent's ability to sustain itself over

extended periods of time. This implies that the agent must main-

tain its energy supply. A biological agent must eat and drink.

Moreover, it has to eat and drink the right combination of foods. A

prerequisite of eating and drinking is that the food and drink be

there: Humans have to go to the grocery store or a restaurant; an

animal typically has to look for food in the environment, an activity

called foraging. An agent must also take care of itself; that is, it has

to stay suf®ciently clean, and it has to try not to get hurt. In other

words, it also has to avoid predators. Moreover, it has to get enough

sleep. If these conditions are ful®lled, the biological agent can

engage in activities leading to reproduction. (Note that this de-

scription in terms of tasks is our description as observers. It has

nothing to do with what is going on inside the animal.)

Similar considerations apply to arti®cial systems. A robot, for

instance, has to maintain its battery level, or if it is fuel driven, it

has to maintain a suf®cient fuel supply. To be considered self-

suf®cient, the robot should be able to maintain its energy supply

without external human intervention. Thus, a robot running off a

power cable is not self-suf®cient. A robot should also maintain a

certain operating temperature. If it gets too hot or too cold, it might

be damaged. Moreover, it should not bump into things, and it

should avoid perils. In addition, robots are always designed for a

particular task, or several tasks. They have to clean a factory ¯oor,

vacuum a carpet, mow a lawn, deliver mail in an of®ce, collect soda

cans, give tours of a university institute, and so on. Hence, agents
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in the real world, be they animals or robots, always have to engage

in multiple behaviors. From an observer's perspective, we can say

that they are able to perform multiple tasks.

TRADE-OFFS AND DEFICITS

In the real world, there are always trade-offs. If a robot is collecting

soda cans or food or cleaning a park, it always expends energy. So

at some point, it must replenish its energy resources; that is, it must

go to the charging station and plug itself into an outlet. While doing

that, it cannot collect soda cans: It must remain at the charging

station until its energy supply is suf®ciently high again. So there is

a trade-off: Doing one thing implies not being able to do another.

Note that losing energy while collecting soda cans or mowing a

lawn is a given, determined by the physics of the agent: It will

happen without the agent's knowing about it. If a cleaning robot is

recharging, the of®ce space gets cluttered with soda cans or the

grass keeps growing without the robot's doing anything about it:

Remember, the real world has its own dynamics. If it remains at the

charging station for a long time, enough soda cans might have

accumulated so that it is no longer possible for the robot ever to

collect all of them again. Or, to put it differently, it has incurred an

irrecoverable de®cit. Another way of de®ning self-suf®ciency, then,

is as follows: An agent is self-suf®cient if it can avoid irrecoverable

de®cits. In nature, evolution has ``solved'' this problem, but robot

designers must explicitly deal with it. Figure 4.2 shows a robot that

has incurred an irrecoverable de®cit.

CIRCADIAN CYCLES

Natural environments have circadian cycles: environmental con-

ditions that change over one day, such as lighting conditions, tem-

perature, or humidity. Similarly arti®cial environments often

have cycles: day-night cycles, or cycles in the frequency of people

attending a place (coffee rooms are attended more during day time

than at night), and so forth. Conditions for certain types of tasks are

usually better during one segment of the cycle than during another.

For example, an agent equipped with vision is better off during the

day, whereas one with infrared (IR) sensors is better off at night, for

the following reason. IR sensors are active sensors: They send out

an IR signal and measure the intensity of the re¯ected IR light, a

process that works well in the dark. By contrast, a robot equipped

only with IR sensors has trouble during the day. Daylight contains
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a certain amount of IR light, which may cause interference with

the re¯ected IR light. For the robot in ®gure 4.2, soda cans typi-

cally accumulate more quickly during the day. The target for a self-

suf®cient agent is always based on a circadian cycle: It should not

incur a de®cit over one cycle. If it does, then the de®cit is likely to

increase inde®nitely, because the following day will typically bring

an additional de®cit. The concept of circadian cycles has not been

widely used in embodied cognitive science and will not be further

elaborated.

THE PROBLEM OF BEHAVIOR CONTROL

Complete systems always have several behaviors in which they

must engage. Some of the behaviors will be compatible, others

mutually exclusive. Because not all behaviors are compatible, a

decision must be made as to which behaviors to engage in at each

point in time. This is the problem of behavior control.

The most straightforward solution to this problem is to assume

that there is an internal module or representation for each observed

behavior category. For example, if we observe that a rat (or a robot)

is following a wall, we might postulate that it has an internal mod-

ule or a representation for wall following. Such a representation is

often called an action. Because there are always multiple actions an

agent has to engage in, to control behavior under this assumption,

Figure 4.2 Robot incurring an irrecoverable deficit. Because the robot has been sitting at the
charging station for too long, the soda cans have piled up in the meantime to a level
where the robot is no longer capable of removing them all, even if it were to spend all
of its ``spare time,'' that is, all of the time it has available when not at the charging
station, on can collecting. This robot is not self-sufficient.
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you need a mechanism for deciding which action to choose for

execution at any given point in time, that is, which internal module

to excute. In other words, you have to solve the action selection

problem.

The problem with this approach to behavior control is that the

assumption of a straightforward, one-to-one mapping from a spe-

ci®c behavior to a speci®c internal action does not re¯ect what

actually occurs in natural systems. (Even the concept of an internal

action represents an assumption.) To illustrate this point, let us

look at an example. Assume that you are sitting in the cafeteria

talking to a friend. Your friend has to attend a class and you are

trying to describe his behavior. He gets up and starts moving

toward the exit, avoiding chairs, tables, and people who stand

around. To describe his behavior, you may want to use terms like

``avoiding a chair,'' ``going toward the exit,'' or ``going to class,''

implying that you somehow carve up your friend's behavior into

distinct segments. There are two issues of which to be aware: First,

the segmentation of an agent's behavior is observer-based and

largely arbitrary. For example, you could also choose a more ®ne-

grained segmentation such as ``getting up from chair,'' ``moving left

leg forward,'' ``moving right leg forward,'' and so forth. Not sur-

prisingly, segmentation of behavior is a notorious problem in psy-

chology and ethology. For empirical purposes such a segmentation

obviously has to be made, but we need then to make explicit that

we are talking about purely observer-based categories. Second, it is

not appropriate to conclude that for each of these behavioral seg-

ments there is an internal module.

There are mechanisms for behavior control, however, that do not

require the existence of internal actions. Chapter 6 discusses an

example, Braitenberg vehicles. In fact, we think that the problem of

behavior control should be approached differently than described

above. This follows from one of our design principles, the principle

of loosely coupled, parallel processes (see chapters 10 and 11).

Autonomy and Situatedness

We have been using terms like ``autonomous agents'' and ``autono-

mous mobile robots.'' In this context, autonomy generally means

freedom from external control. Autonomy is not an all-or-nothing

issue, but a matter of degree. Complete, total autonomy does not

exist; no agent is totally autonomous. It always depends to some
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degree on external factors, factors beyond the agent's control. There

are two aspects of autonomy here: dependence on the environment

and dependence on other agents. Organisms depend on the envi-

ronment for food, drink, oxygen, building materials, and the like. If

agents are not capable of acquiring these resources on their own,

they depend on other agentsÐthey are less autonomous.

The main difference between dependence on the environment

and dependence on other agents is that we do not attribute inten-

tions to an environment, whereas an agent may want another agent

to do certain things. Most parents want their children to do their

homework and to perform well in school. We know, however, that

parents have only a limited in¯uence on their children: The latter

have some degree of autonomy. The same holds for animals. We

can get horses to do certain things we want them to do. But as

the saying goes, ``You can lead a horse to the water but you can't

make him drink,'' again implying that the horse does have a certain

degree of autonomy. So, in general, agents can be in¯uenced, and

they depend on others, but they are not completely controllable, as

®gure 4.3 illustrates.

From this discussion it becomes clear that when we use the term

``autonomous agent,'' we mean an agent that has a certain degree of

autonomy. It is not the case that an agent is either fully autonomous

or not at all. From our discussion of self-suf®ciency, it should be

evident that self-suf®ciency increases an agent's degree of auton-

Figure 4.3 A horseback rider trying to control his horse. He is trying to force his horse to drink,
not very successfully. The rider does exert some influence on the horse, and the
horse is dependent on the rider for some things, but the horse is also to some
degree autonomous. This is why the adage that ``you can lead a horse to the water
but you can't make him drink'' has the ring of truth to it.
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omy, because a self-suf®cient agent does not depend on another

agent for its energy supply. The extent to which one agent can

control another depends on the controlling agent's knowledge of

the state and the internal mechanism of the agent to be controlled.

The more precisely parents know what their children feel and

think, the better they can in¯uence them toward desired behaviors.

One important reason that humans have only a very limited degree

of controllability is that they have their own history, which is not,

or is only indirectly and to a very limited extent, accessible to

others.

Controllability and the capability of acquiring one's own history

are correlated: The more an agent can have its own history, the less

controllable it will be. The less parents know what their children

do and what sorts of experiences they have, the less they know

about what they feel and think. If they knew everything about them

(including their reaction to all types of events)Ðwhich, of course,

is impossibleÐthey could easily make them do whatever they

wanted, simply by manipulating the consequences of the children's

actions according to what they knew the children's reactions would

be. Because parents actually have only limited knowledge of their

children's reactions, they have only limited control over them.

Abstractly speaking, if the controlling agent (A) has access to the

controlled agent's (B) internal state, and if he knows the laws by

which the state of B can be in¯uenced, A can control B completely,

that is, A can get B into whatever state A wants B to be in. The less

knowledge A has about B's internal state, the less A can control B.

Thus, autonomy is not so much a property of an agent as a property

of the relationship between agents (i.e., what one agent knows

about the other). Stated differently, B has a certain amount of

autonomy relative to A, and the amount of B's autonomy isÐ

qualitatively speakingÐinversely proportional to the amount of

knowledge A has about B's internal state.

This property can be translated to robots. If a robot is equipped

with a learning system, it can have its own experiences; that is, it

can acquire its own knowledge over time. Note that this requires

the agent to be situated. Recall the notion of situatedness from

chapter 3: An agent is situated if it acquires information about its

environment only through its sensors in interaction with the envi-

ronment. A situated agent interacts with the world on its own,

without an intervening human. It has the potential to acquire its

own history if it is equipped with the appropriate learning mecha-
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nisms. Such an agent is potentially more autonomous than its

preprogrammed, purely reactive counterpart. One implication of

learning is that if the agent, after learning, encounters the same sit-

uation it has previously encountered, it will react differently than

earlier on. Thus the more the agent has learned in the meantime,

the more experiences of its own it has had, the less it will do the

same as before, and thus, the less another agent will be able to

control it, because its internal state will have changed, and the

second agent will now have less knowledge of its internal state

than it did previously. From this we can conclude that if we are

interested in building autonomous agents, we must design them

with learning components, because the capacity to learn increases

an agent's autonomy. An agent's degree of autonomy can, in prin-

ciple, be further increased by applying evolutionary methods

(described in chapter 8). If he designs a robot not directly but via an

additional evolutionary process, the designer has less control over

how the robot will work and how it will behave in a particular sit-

uation. Applying evolutionary techniques often makes it dif®cult

for designersÐand for other agents in generalÐto understand why

the agent is doing what it is doing; as the agent evolves and

acquires its own history, it is progressively more dif®cult for the

designers to understand (and manipulate) its behavior. Evolution

makes the agent more independent of designers, and therefore

evolved agents have the potential for higher levels of autonomy.

Embodiment

Autonomous agents are real physical agents; in other words, they

are embodied. Because we have talked so far exclusively about

biological agents (humans or animals) or about robots, it has been

implicit that the agents of interest have to be embodied. Embodi-

ment has proven to be an essential characteristic whose impor-

tance can hardly be overemphasized. A fundamental consequence

of embodiment is that embodied agents must interact with their

environments. To understand this interaction, we have to study, for

example, how organisms acquire experience: knowledge about

the environment obtained by interacting with it. This is one of the

hardest problems in the study of intelligence. The vast research

®eld of perception is devoted to elucidating the underlying mech-

anisms and processes.

Embodiment implies that the agent is continuously subjected to

physical forces, to energy dissipation, to damage, in general to any
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in¯uence in the environment. On the one hand, this complicates

matters considerably. On the other, this often leads to substantial

simpli®cations, because advantage can be taken of the physics

involved. It has been demonstrated, for example, that walking

robots can be built that require no electronic control: They are

entirely brainless machines, their actions governed totally by the

laws of physics.

The focus on embodied agents often leads to surprising insights,

and throughout the book, we provide examples of such insights.

We discuss embodied perspectives on learning, categorization,

perception, memory, and sensory-motor processing. As the name

of the ®eld indicates, embodiment is at the core of embodied cog-

nitive science. It is one of the central constituents in Brooks's

(1991a,b) approach, which he called ``embodied intelligence.'' The

idea that intelligence can emerge only from embodied agents is one

of the fundamental assumptions of embodied cognitive science.

(For other perspectives on embodiment see, for example, Lakoff

1987 and Varela, Thompson, and Rosch 1991).

Adaptivity

CHARACTERIZATION AND DEFINITION

Adaptivity is really a consequence of self-suf®ciency. If an agent is

to sustain itself over extended periods of time in a continuously

changing, unpredictable environment, it must be adaptive. Re-

member that several of the de®nitions of intelligence given in

chapter 1 alluded, in one way or another, to the concept of adap-

tivity, that is, the ability to adjust oneself to the environment. Thus,

adaptivity and intelligence are directly related.

By adaptation, we mean that some structure is maintained in

changing environmental conditions. Ashby (1960) used the term

``homeostasis,'' meaning that certain variables, the essential vari-

ables, remain within given limits (®gure 4.4). Within those limits the

organism can function and stay alive. This is called the ``viability

zone'' (Meyer and Guillot 1990).

KINDS OF ADAPTATION

The term ``adaptation'' has various meanings and is used in dif-

ferent ways by different people. In our discussion, we follow

McFarland (1991):
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Biologists usually distinguish between (1) evolutionary adaptation,

which concerns the ways in which species adjust genetically to

change in environmental conditions in the very long term; (2)

physiological adaptation, which has to do with the physiological

processes involved in the adjustment by the individual to climatic

changes, changes in food quality, etc.; (3) sensory adaptation, by

which the sense organs adjust to changes in the strength of the

particular stimulation which they are designed to detect; and (4)

adaptation by learning, which is the process by which animals are

able to adjust to a wide variety of different types of environmental

change.'' (p. 22)

Here are a few illustrations of the types of adaptation McFarland

discusses (see also McFarland 1991):

1. Evolutionary Adaptation: An illustration of evolutionary adapta-

tion is the peppered moth (Biston betularia). Originally these

moths were light in color, which made them well camou¯aged

against lichen-covered, light-colored trunks of trees. In regions that

became industrialized, industrial smoke darkened the tree trunks.

Gradually the peppered moth population in industrial areas became

predominantly composed of a dark variety, which was well cam-

ou¯aged against the dark trees.

2. Physiological Adaptation: Many species can adapt to changes in

environmental temperature: sweating, in man, is an example of

adapting to heat changes.

Figure 4.4 Adaptivity. The figure shows the viability zone (enclosed area) between two variables
V1 and V2 (e.g., level of blood sugar and body fluid). Within this zone, the agent can
stay alive and function. The solid arrow marks the agent's trajectory, that is, the de-
velopment of the two variables over time. At point B, there is a danger that the agent
might leave the viability zone (marked by the broken line) if it does not act. The agent
is adaptive because it takes corrective action to prevent itself from leaving the via-
bility zone. (Adapted from Meyer and Guillot 1991.)
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3. Sensory Adaptation: If we are in a dark room and then the light is

turned on, the eye adjusts to the change in a sensory stimulus, light

intensity, by changing the diameter of the pupil.

4. Adaptation by Learning: This is a very general form of adaptation

and is exploited in many ways. Animals can learn which food is

most nutritious, where food can be found, which place gives the

most shelter, and so forth.

Note that these different kinds of adaptations work on different

timescales. Typically, sensory adaptation is the quickest, whereas

evolutionary adaptation takes many generations. In this book, we

focus mainly on adaptation by learning and through evolution.

Ecological Niches and Universality

DEFINITION

If we look at biological agentsÐanimalsÐwe ®nd that they require

a particular kind of environment for survival that is suited to satisfy

their needs. Such an environment is called an animal's ``ecological

niche''. Wilson (1975) de®nes ``ecological niche'' as follows: ``The

range of each environmental variable such as temperature, humid-

ity, and food items, within which a species can exist and repro-

duce'' (p. 317). It should be added to this de®nition that niche

occupancy by a particular species usually implies competition.

Different occupants of the niche compete for the same resources

like food and space.

In nature, there is no such thing as a ``universal animal.'' Ani-

mals (and humans) are always ``designed'' by evolution for a par-

ticular niche. (We put the term ``designed'' between quotation

marks to indicate that it is meant metaphorically: Evolution does

not have a particular design goal.) Agents behave in the real world.

As we pointed out, they always require certain conditions for their

survival. A robot always requires some kind of energy source. It

must be equipped with sensors and effectors in order to perform its

task in a particular environment, or more precisely, in a particular

ecological niche. To take the earlier example, if the robot has to

work at night, it may be better to equip it with IR devices rather

than with vision sensors. So, the idea of an ecological niche holds

for robots as well (focus 4.1). It follows that there can be no uni-

versal robot, because the robot must perform in the real world,

which consists of many varied environments to which a particular
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Focus 4.1: A Market View of Robot Adaptation

David McFarland (1991), a leading ethologist and head of the animal robotics
group at Oxford University, proposed an enjoyable analogy between ecological
niche in animals and market niche in robots: ``Niche occupancy usually
implies competition. When animals of different species use the same
resources or have certain preferences or tolerance ranges in common, niche
overlap occurs. This leads to competition between species, especially when
resources are in short supply'' (p. 24). Just as animals occupy biological
niches, robots occupy market niches: they are toys, cleaning robots, or
whatever. A cleaning robot has to compete with human cleaners and other
cleaning machines. The customer evaluates the performance of the robots and
selects the ones that best fill his or her needs. This induces selective
pressures which, in the end, determine whether a robot will ``survive'' in the
marketplace. Table 4.1 provides an overview of the analogy between animals
and robots (adapted from McFarland 1991, p. 24).

Table 4.1 Analogies between animal and robotic life cycles (from McFarland, 1991, p. 24).

Biology (Animal) Market (Robotic)

Return on investments Number of offspring Gross sales income assuming
no failures

Reproductive probability Chance of juvenile
surviving to breed

Chance of product reaching
the market

Development period Age at breeding Development cost

Design success
(Rate of return)

Net rate of increase
of genes (Fitness)

Net rate of increase of money
invested in design
( Instantaneous interest rate)
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Figure 4.5 A robot designed for a particular ecological niche: (a) The desert ant Cataglyphis,
(b) its niche, and (c) its navigation behaviorÐsearching for food in a winding path,
returning to the nest in a straight line; (d) the entire robot; and (e) the polarized light
sensor module it uses for navigation. The Sahabot II (for Sahara Robot II) has to
operate in the Sahara Desert. Because its ecological niche is the desert, this robot is
equipped with polarized light sensors and an onmidirectional camera (see figure
16.1). The robot is used for experiments to investigate the navigation behavior of
CataglyphisÐmore specifically, to evaluate different models of acquiring compass
information from the polarized light pattern of the sky, and to test different models
of visual landmark navigation. (Figures a, b, c by RuÈdiger Wehner; reprinted with
permission.)
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robot may or may not be suited. Figure 4.5d shows an example of

a robot, called the Sahabot (for Sahara Robot) designed for a

very special ecological niche, the Sahara desert (®gure 4.5b). The

Sahabot was developed to investigate the navigation behavior of

the desert ant Cataglyphis (®gures 4.5a and 4.5c).

This nonuniversality is quite in contrast to computation. As dis-

cussed earlier, computation is universal: Turing machines are the

only machines that need to be studied. This is, of course, only

possible because computation, by de®nition, takes place in a vir-

tual world. And universality holds only in this virtual world.

Computers are sometimes said to be universal, universal in the

world of computation. If we look at computers as real machines,

they depend very much on their environments. They need a con-

tinuous supply of electricity, they must be handled by their users

with care, they must not be exposed to too much heat, and so forth.

In that sense, computers, just like any other artifact, are designed

for a particular ecological niche. Of course, some robots can exist in

more different types of environments than others, so their niche is

broader, but it is still there.

The fact that agents in the real world are not universal but have

to function in a particular niche sounds like a severe restriction.

But there is a lot of leverage to be gained by it, too. The fact that the

ecological niche is restricted and has its own laws and character-

istics, its types of objects, its types of agents, its temperature pro®le

(i.e., how temperature changes over time), its lighting conditions,

and so forth, can be exploited. Assume, for example, that in a par-

ticular niche only large objects are relevant. Then there is no need

for a high-resolution sensor for distinguishing really small objects.

If the niche is ¯at, wheels are suf®cient. Often, learning problems

that seem intractable at the purely computational level converge in

real time if the constraints of the ecological niche are exploited. For

example, if all objects of interest have a bilateral symmetry, as

many living beings, this implies that learning can be restricted to

one side, cutting computational costs in half. However, as always,

there is a trade-off: The more constraints we exploit in our designs,

the less universal the agent is. We return to this issue in chapter 13

when we discuss the principle of cheap design.

CHARACTERIZING NICHES

If we want to exploit the constraints of an ecological niche system-

atically, we also need a systematic characterization of niches, a
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kind of taxonomy. Coming up with such a taxonomy, as it turns

out, is not nearly the trivial matter it would ®rst appear, because

such chacterizations have to be made with respect to a particular

agent, to its sensors and its motor system. Only those properties of

environments matter that are behaviorally relevant. For example, to

an ant, small pebbles, twigs, and puddles are behaviorally relevant

Ðit can sense them and avoid themÐwhereas to an elephant, they

are notÐits sensory-motor system is not suf®ciently ®ne-grained.

Intuitively, one important distinction is whether the environment

is static or contains objects that move on their own, such as other

agents. Another concerns the size of objects, the distribution of

food, circadian cycles, the roughness of the terrain, and so forth.

Although such a taxonomy would clearly be important, it has so

far resisted efforts to create it. Only a very few papers have even

ventured into this topic area. One approach is to de®ne environ-

ments by the constraints they satisfy. Horswill (1992) identi®ed a

number of ``habitat constraints.'' One example is what he de®ned

as the ``background texture constraint.'' If the carpets or ¯oors in

a building have only ®ne-scale texture, from a distance, the ¯oor

appears uniform. If the illumination is uniform, then the areas of

a camera image that correspond to the ¯oor should have uniform

brightness. Any deviation from this uniformity must therefore be

an object. Horswill also de®ned the ``ground plane constraint.'' An

environment satis®es the ground plane constraint if all objects

in the environment, including the agent, rest on a single planar

surface. Obviously, exploiting these constraints enormously sim-

pli®es vision processing. Of®ce environments usually satisfy both

of these constraints, as do some home environments, though some

will have more textured grounds. We return to these constraints in

chapter 10.

Another approach to classifying niches is to de®ne environments

by the predictability of the results of actions within the environ-

ment. Certain environments are more predictable than others; the

less predictable an environment, the harder it is to design an agent

for it. Thus, it would clearly be desirable, from the agent's point of

view, to be able to characterize environments in terms of their pre-

dictability. (For more detail on this approach, see Wilson 1991.)

The important factor in characterizing an environment is that it be

done not in isolation, but with respect to an agent's complexity. We

have more to say about this topic in chapter 13, where we discuss a

particular measure of complexity.
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In sum, for our purposes we use the terms ``complete agent'' and

``Fungus Eater'' to mean autonomous, self-suf®cient, situated,

embodied, agents designed for a particular ecological niche.

4.2 Biological and Arti®cial Agents

From our characterization of complete agents, it should be obvious

that biological agents, animals and humans, ful®ll all the criteria we

set out: They are self-suf®cient, autonomous, situated, embodied,

and they are designed for a particular ecological niche. This is not

surprising: The characterization was developed to explain natural

intelligence. If creatures, including humans, had not met these cri-

teria, they would not have survived in the ®rst place.

Every psychologist, every biologist, in fact everyone in cognitive

science, recognizes that in the best case, one would investigate

complete agents and all their behaviors. However, from a method-

ological perspective it is not possible to study, for example,

humans in all their intricacies. Thus, we must cut the problem

down into manageable chunks. So even if we endorse a complete-

agent view, we must make simpli®cations. The question, therefore,

is not whether to make simpli®cations, but how to make them. In

contrast to the classical way of modeling, in the embodied

approach, the agents are ``cut up'' in a different way. An excellent

illustration is the subsumption architecture that we discuss in

chapter 7. The important point to be made here is that whatever

aspect of intelligence we investigate, we must keep the entire agent

in mind. This is not always easy to do, but it represents an essen-

tial design principle. It is summarized as design principle 1, the

complete-agent principle, in chapter 10.

Our methodology for studying naturally intelligent systems is

synthetic, meaning that we have to build arti®cial agents to mimic

natural ones. The remainder of this chapter develops a basic

framework for designing arti®cial agents.

Arti®cial Agents

In chapter 1 we mentioned three goals that we may want to pursue

when building arti®cial agents:

1. building an agent for a particular task or a set of tasks

2. studying general principles of intelligence
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3. modeling certain aspects of natural systems, that is, humans or

animals

Goal (1) is from the engineering perspective, goals (2) and (3) per-

tain to cognitive science. All three goals are intimately related. In

particular, goals (1) and (3) contribute to goal (2). We discuss these

goals in more detail in chapters 16 and 17 when we discuss how to

design and evaluate the agents we have built. For now we simply

provide, as a very cursory review, a few examples illustrating goals

(1) and (3), with the intention of providing an idea of what agent

models can be used for.

The arti®cial agents we will design and study are of two types,

robotic agents and simulated agents. Both are important tools.

Some researchers have a preference for robots, others for simula-

tion. We argue that both are needed, depending on the particular

purpose of investigation.

ROBOTIC AGENTS

We now discuss a number of robots developed for various pur-

poses. Let us ®rst look at an example that illustrates the goal (1)

above, the Mars Sojourner. Even though it was developed for a

particular set of tasks (conducting experiments and collecting data

on Mars), it nicely illustrates some of the fundamental issues such

as autonomy, self-suf®ciency (goal 2). We then turn to a few exam-

ples from biology to illustrate goal (3): cricket phonotaxis and

human development and cognition.

Mars Sojourner

The Mars Sojourner has recently received a lot of attention in the

media. Though today's robotic agents, in contrast to biological

agents, do not ful®ll all the criteria for complete agents that we set

forth in section 4.1, the Sojourner comes relatively close. It is

obviously embodied: It is a physical robot equipped with sensors

and means of locomontion (wheels). It is self-suf®cient, that is, it

has to worry about its own energy supply: There is no human to

exchange its batteries. It is also situated: The only means it has for

acquiring information about its environment is its own sensory

system. Further, it has a certain degree of autonomy, at least during

real-time operation, though its autonomy is very limited, because

most of its decisions are made by the mission control staff in the Jet

Propulsion Lab in Pasadena. For instance, the ground staff decides
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on what task the Sojourner is to execute next, what area it has to

explore, what data it has to collect, and what pictures it should

take. Focus 4.2 discusses the Mars Sojourner in more detail.

Cricket Phonotaxis

In chapter 1 we mentioned a robot built to model the phonotactic

behavior of crickets (®gure 1.10). Remember that by phonotaxis we

mean those processes by which animals move toward a sound

source, in this case the calling song of a potential mate. Our

description here is short, just suf®cient to make our point. (For

details, see Webb 1993, 1994). Male crickets produce a particular

sound by rubbing one wing against the other. Females can ®nd a

male by this cue over distances of 20 meters through rough vegeta-

tion. One would think that the cricket would need mechanisms for

distinguishing the sound from the songs of other species and for

analyzing the direction from which the sound is coming. It turns

out that this is unnecessary because of the way phonotaxis works

(Webb 1993). Instead of using a neural mechanism for recognizing

the male's calling song, or an information process, the cricket uses a

physical mechanism. Through this physical mechanism the irrele-

vant parts of all the sounds present in the environment are ®ltered

out, so that only the ones concerning the calling song of the mate

are registered by the cricket. Thus, without ``analyzing'' the sound,

the cricket reacts only to the appropriate songs. This is an example

of what biologists call ``matched ®lters.''

Webb's robot that models this phonotactic process in crickets has

no legs and but two wheels. From this example it becomes clear

that however close one tries to mimic a natural system, abstractions

will always have to be made. This statement is generally true of

models of any sort. Whether one considers Webb's model a valid

one is a matter of the criteria to be applied and what one is inter-

ested in. Webb was particularly interested in the sensory-motor

coupling and the theoretical question of the inseparability of per-

ception from action. (We discuss how to evaluate models in

chapter 17.)

Other examples of how robots are used to investigate biological

agents are Franceschini's house¯y navigation robot (Franceschini

et al. 1992), and Lambrinos's ant navigation robot (Lambrinos et al.

1997; ®gure 4.5). Like Webb, these researchers have also made sig-

ni®cant abstractions in constructing their robot models. For exam-

ple, their robots are wheeled and much bigger than real insects.
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Focus 4.2: SojournerÐThe Mars Microrover

On December 4, 1996, NASA launched the Mars Pathfinder spacecraft from
Kennedy Space Center. The spacecraft landed on Mars on July 4, 1997, and
released Sojourner (figure 4.6), the first robotic roving vehicle to be sent to
Mars. Sojourner is named after Sojourner Truth, an African-American
reformist who lived during the Civil War; the name was chosen because it
means ``traveler.'' Sojourner was built at the Jet Propulsion Laboratory of the
California Institute of Technology in the southern California city of Pasadena.
Sojourner's main function is to demonstrate that small mobile robots can
actually operate on Mars. Sojourner is designed to conduct various science
and technology experiments. For example, its cameras were used to take
images from which a map of the landing site was constructed. Sojourner is
unique not only because it is the first robot sent to Mars, but also because its
total cost of development was only 25 million, a very low cost compared to
that of previous interplanetary spacecraft, and also because its total
development time was only three years.

Sojourner weighs 11 kg on earth and is 630 mm long and 480 mm wide.
The ecological niche on Mars is a very rocky, uneven surface, and one major
task of the NASA engineers was to equip the robot with means to operate in
such a difficult environment: The robot therefore has six wheels instead of
four: Six-wheeled robots can overcome obstacles three times larger that those
that can be crossed by four-wheeled robots. Sojourner moves on its six

Figure 4.6 A picture of the Mars Sojourner (credit: NASA/JPL/CALTECH).
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Focus 4.2 (continued)

wheels in a radius of about 10 meters around the spacecraft at speeds up to
0.6 meters per minute. Moreover, Sojourner's wheels and suspension system
are built in such a way that the robot can tip up to 45 degrees as it climbs over
rocks without falling over. Sojourner is equipped with a large number of
sensors for detecting obstacles and hazards. Onboard sensors include simple
bumper sensors for collision detection; cameras for imaging, distance
calculations, and identification of target objects; accelerometers for hazard
detection; and devices for measuring the speeds of the wheels (wheel
encoders) that are used for estimating distance traveled.

Communication with the microrover, which is the general name for a robot
of Sojourner's type, is accomplished via a radio communications system. The
robot operates in a kind of supervised autonomous control. It receives remote
commands from engineers on Earth instructing it where to go next.
Commands are generated as follows: The camera system on the Pathfinder
takes images of the robot. These images, together with additional images from
the robot's cameras, are displayed on a computer at the control station on
Earth. The engineers can designate goal locations on these displayed images.
The robot then receives commands in the form ``Go . . . ,'' which it executes
autonomously while simultaneously avoiding obstacles and hazards.
Communication with the robot does not occur in real time because it takes
about 11 minutes for a signal to travel from Earth to Mars. This means that
after the engineers have sent the instructions for the next goal location, the
robot navigates there autonomously, that is, without human intervention. But
it still has a very limited autonomy.

Like that of every other robot, Sojourner's equipmentÐcomputers, motors,
communication system, sensorsÐrequires power. The robot generates most
of its power by means of a solar array that provides about 16 watts of power
at noon on Mars, allowing the robot to perform most of its required tasks. In
addition to this solar array, the robot is equipped with batteries that are
needed when there is insufficient sunlight for the solar array to provide
adequate power. Once depleted, these batteries cannot be recharged. Thus,
redundancy has been built into the robot's power system: Should either the
batteries or the solar array fail, the robot can still complete its tasks using the
other power source. As discussed in Chapters 10 and 13, redundancy in
design is very important. More detail on the Mars Sojourner can be found in
Matijevic 1996 and Stone 1996.
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Human Development and Cognition

Whereas some people would agree that robots can be used to model

aspects of insect behavior, there is general skepticism that this

can be done for human intelligence. However, a number of recent

projects are highly promising. An ambitious approach is the Cog

project at the MIT Arti®cial Intelligence Laboratory (e.g., Brooks

and Stein 1993). The main goal of the Cog project is to study devel-

opmental processes from the very beginning by focusing on the

sensory-motor aspects of intelligence using a complex humanoid

robot. (Details of the project are given in chapter 7.) Experiments

by Scheier and Pfeifer (Scheier and Pfeifer 1995; Pfeifer and

Scheier 1997) demonstrate category-learning capabilities on robots

interacting with the real world. Scheier and Pfeifer's working hy-

pothesis is that ``high-level cognition'' can be achieved by having

many, largely peripheral processes working simultaneously with-

out central integrating mechanisms. This strategy is now pursued

by a number of research labs around the world. (These experi-

ments will be discussed in greater detail in chapter 12.) Yasuo

Kuniyoshi, a leading robotics researcher at the Electrotechnical

Laboratory in Tsukuba, Japan, near Tokyo, ventured to build a full-

featured humanoid robot to conduct experiments on human devel-

opment. The project is in its initial stages but holds great promise

(e.g., Kuniyoshi and Nagakubo 1997). The point here is that just

as it is possible to use robots to model insect behavior, we can

use them to model human behavior. But the simpli®cations and

abstractions are of a different nature (see chapters 16 and 17 for

more detail).

Conclusions

None of the robots discussed in this section ful®lls the criteria of a

complete agent as discussed in section 4.1. The Mars Sojourner

comes closest, but the Sojourner's autonomy is extremely limited:

It is, in fact, deliberately kept within limits to minimize risk. Still,

all the robots discussed in this section are, by the very fact that they

are robots, embodied. They are also situated, in the sense that they

interpret their environments from their own perspective. Some do

have a certain level of autonomy: They are equipped with learning

mechanisms that enable them to acquire their own history. They

are not entirely preprogrammed. Their behavior depends on the

situations they have encountered in the past. Finally, they are self-

suf®cient; only to a very limited extent. We believe that all the

robot studies mentioned are highly valuable and provide impor-
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tant insights, but we also see a need to investigate more complete

agents.

SIMULATED AGENTS

It is, in principle, possible to simulate any physical process on a

computer. As a consequence, it is possible to simulate any physical

robot whatsoever: There are no restrictions. Let us look at some

examples of such simulated agents.

Insect Walking

Randy Beer, a computer scientist with a strong interest in biology,

developed a model of insect walking in simulation (Beer 1995) and

used arti®cial evolution to study what sorts of gaits would evolve.

He made many simpli®cations in his model. For example, the legs

he employed were sticks without mass; that is, they had only one

joint. Elasticity in the joints, friction, energy dissipation, and the

like were ignored. In spite of these simpli®cations, Beer's simulated

insect evolved to the point that it walked with very natural gaits

that can be found in biological insects. Other agent simulation

studies on insect walking have been conducted by prominent

German biologist and neuroethologist Holk Cruse at the Center for

Interdisciplinary Research in Bielefeld (e.g., Cruse et al. 1996).

Ant Navigation

Not only insect locomotion has been studied, but also insect navi-

gation: how insects ®nd their way to a food source and back. A

famous example of simulation that took into account the situated

character of the agent is the ``snapshot model'' by Cartwright and

Collett (1983). The hypothesis to be tested in the models is that the

insects, as they leave the nest, take some sort of image, a snapshot

of their environment, to be used on their way back. The image is

called a snapshot because it is thought to be relatively unprocessed.

This idea is currently being vigorously debated.

Locomotion in Fish

Demetri Terzopoulos and his research group of the University of

Toronto were interested in complex computer animations that

would feature lifelike animals, such as, for example, ®sh. To

achieve natural-looking movement, they decided to simulate not

only the movements of the ®sh itself, but its physical interaction

with the environment, the ¯uid dynamics as the ®sh is moving its

body and its ®ns (Terzopoulos, Tu, and Grzesczuk 1994). More-

over, they modeled visual perception from an entirely situated
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perspective. The movements achieved in this way look remarkably

natural (see chapter 8). In the ®eld of arti®cial life, agent simu-

lations are very common.

Humanoid Interaction

The humanoid robot of Kuniyoshi mentioned earlier not only is

being built as a physical robot, but is also being tested in simulation

before the robot is constructed. This combined philosophy is used

in many projects and is highly productive. Kuniyoshi and his

colleagues have made a great effort to capture the dynamics (i.e.,

the physical forces) and not only the geometry (Kuniyoshi and

Nagakubo 1997) of movement. Many simulations of robotic systems

neglect dynamics or do not take them suf®ciently into account.

Arti®cial Creatures

Simulated agents from the class of arti®cial life agents are used

in studies of goal (2) discussed above, that is, to investigate prin-

ciples of intelligence. Karl Sims has created a number of fasci-

nating arti®cial organisms (Sims 1994a, 1994b). Not intended to

mimic speci®c natural organisms. Sims' creatures ``live'' in a

simulated physical environment: There is gravity, so the creatures

have a certain weight, and there is friction. Moreover, similar to

Terzopoulos's ®sh, ¯uid dynamics is modeled for creatures living

in water. This environment is independent of the creatures them-

selves, which gives the simulation the strong ¯avor of real agent-

environment interaction. This kind of simulation is becoming

increasingly popular in virtual reality settings. We give a detail

account of Sims' creatures in chapter 8, on evolution.

Real-World Robotic Agents and Simulated Agents

Our main interest in building autonomous agents is ultimately to

improve our understanding of intelligence. There is an ongoing

debate whether in order to achieve this goal, one can work with

simulations or whether it is necessary to build real robots. To pro-

vide a short answer: Both are needed. The pros and cons are listed

in table 4.2. At ®rst sight, it seems best to use simulation because

simulation is fast, cheap, and ¯exible. Closer inspection, however,

reveals that a physically realistic simulation, which is often

required, for example, when the results are to be tested on a real

robot, is extremely hard to develop. Let us illustrate this point with

two examples.
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Table 4.2 Comparison of real robotic and simulated agents.

Criterion Robotic agents Simulated agents

PHYSICAL SYSTEM

Agent Must be physically built and
run; great potential for
breakdowns, slow, cannot be
run in the absence of
experimenter

Arbitrary number of copies
can be produced; well-suited
for systems involving many
agents and arti®cial
evolution; functions reliably
even in the absence of the
experimenter

Physical environment Given; environment has its
own dynamics

Everything must be taken
into account by programmer;
often hard to simulate;
realistic simulations
computationally expensive

Sensors Given; no idealizations, no
``cheating''; often
unanticipated effects occur
(interference, re¯ectory
properties of surfaces,
drastic changes in intensity)

Sensors hard to simulate
realistically; idealized
sensors common, e.g.,
distance, object or agent
recognition

Motor system Dynamics given; complex
ones hard to build and hard
to control; imprecisions

Dynamics hard to simulate
realistically

Dynamics in general Given; exploitation of
dynamics necessary and
natural (cf. the passive
dynamic walker, chapter 13)

Hard to simulate; often
ignored in simulations;
dynamics often not exploited

RESEARCH

Emergent phenomena Inde®nite richness of
physical environment offers
great potential for emergence

Emergent phenomena
frequent, but limited to basic
speci®cation present in
simulation

Effort required Can be considerable;
experiments take a long time;
experimenter must be
present; debugging is hard

Effort to develop physically
realistic simulations
considerable; experiments
can be run easily; presence
of experimenter not required;
changes quickly realizable

Gaining insights (heuristic
value)

Highly productive Highly productive
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First, IR sensors are often used to measure proximity (nearness)

to an object. But in fact, IR sensors yield an accurate measure of

proximity only under unrealistic conditions: IR sensor are active

sensors, that is, they send out an IR signal and measure the inten-

sity of the re¯ected IR light. This creates several problems. First,

the amount of light re¯ected depends on the properties of the

materials in the environment. Second, a particular IR sensor cannot

distinguish between its own IR signal and those coming from other

sensors. And third, sunlight and arti®cial light contain IR light,

which the sensor also measures.

Second, physical robots have mass, and gravity acts on them

automatically as it does on any object in the real world (®gure 4.7).

If we want our simulated robot to have mass and weight (i.e.,

gravity acting on it), we must explicitly introduce it into the simu-

lator. If a robot has the task of moving around in an of®ce space

without getting stuck, one strategy for accomplishing this is to

exploit its own inertia to get out of impasses. By rushing into

objects with relatively high speed, the robot bounces off, slides

around and, very often by chance, faces in a direction in which it

can move forward again. This process, which in the real world

simply happens, would be extremely hard to capture formally in a

simulation.

Table 4.2 (continued)

Criterion Robotic agents Simulated agents

Abstractions Signi®cant and obvious Signi®cant but less obvious

Scaling to more complex
systems

Sensory systems are
relatively easily made more
complex; motor systems are
much harder

Highly complex robotic
systems are often not
simulated; rather,
abstractions are introduced
(e.g., a grasp operation as a
given elementary action)

Arti®cial evolution Only possible for control
architecture, not for
complete robots

Simulation currently the only
possibility; many surprising
effects

Agent societies Currently signi®cant effort
to build multiple robots
(restricted to small
numbers); all sensor
processing based on real
sensory inputs

Easy to simulate; duplication
of agents trivial; idealized
sensors (e.g., for object
recognition) easily
introduced
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Abstractions

Let us stop and summarize what we have said so far in this section.

Whenever we are making a model, robot, or simulation, we have to

make abstractions. As pointed out above, the insect robots, that is,

the cricket and the ant robots, have wheels instead of legs, have

electrical motors instead of a carbon-based physiology, and are

much bigger and heavier than real insects; the ant robot only has

three polarization elements (rather than about 200, as the real ant).

Still, the claim is that the robot models reproduce interesting

aspects of insect navigation. In building a model, we have to choose

a level of abstraction, a level at which we are comparing the bio-

logical system and the robot model. Note that the robot model is not

only a model, but a behaving system itself that can be studied in its

own right. Beer's walking insect, for example, has six massless

sticks as legsÐa potential source of error.

Implicitly, we are assuming, when we build robot models of

insects, that the navigation mechanisms of the insects are not

in¯uenced by the means of locomotion, the size, and the body

weight, to mention just a few of the assumptions we make. We have

to be aware of the fact that these may turn out to be blatantly false.

On the other hand, we have fully embodied and situated systems:

all the information about the environment is acquired through

the models' sensory systems in the interaction with their envi-

ronments. The models do have a certain level of autonomy: The

Sahabot can acquire some information about the environment, and

Figure 4.7 Comparison of real world and simulation. In both cases, gravity has not been pro-
grammed into the system. In the real world (a), the robot drops to the ground any-
wayÐgravity is part of the real world and does not have to be programmed. In the
virtual world (b), the robot moves off the edge of the table and does not fall, making
the simulation a poor representation of real-world events in this case.
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its later behavior depends on this information. However, this

autonomy is limited. The last property, self-suf®ciency, is not

characteristic of any of the models. Thus, we are excluding an

important consideration from our models.

Another assumption in creating these insect models is that the

insects' navigational mechanisms are independent of energy

supply. This, once more, may turn out to be false. Although we

consider this to be unlikely, we have to keep it in mind and be

prepared for it.

Agent Simulation versus Classical Simulation

So far we have been talking about agent simulation, which is con-

cerned with the simulation of a complete agent with as many of its

essential characteristics as possible (embodiment, self-suf®ciency,

situatedness, autonomy). This contrasts with the more classical

style of simulation, in which certain aspects of an agent's behavior

are simulated in isolation. The differences are best illustrated with

an example.

In psychology, connectionist models have become very popular.

A prominent example is the ALCOVE model of categorization

(Kruschke 1992), explained in more detail in chapter 12. Here

we focus on the differences between this model and agent-based

models. The point is not to critize this particular modelÐwhich in

fact explains the results of many psychological experimentsÐbut

rather to point out the limitations, from an embodied cognitive

science perspective, of connectionist models in general. The

schematic overview in ®gure 4.8 shows the essential differences

between connectionist and agent models.

Figure 4.8 The principle of operation of the ALCOVE model. The model receives its input data
from a file prepared by an experimenter (illustrated by the diskette). This input is
used for learning. The model has no real interaction with the environment. A human
(illustrated by the magnifying glass) must interpret the meanings, of the bit strings
produced by the network.
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In the ALCOVE model, there is an input, an intermediate, and an

output layer (the category layer). The data are provided by the

model designer: the model reads one input vector after another and

processes it. In contrast to agent simulations, the model has no

direct interaction with its environment. One important implica-

tion is that the model's output has to be interpreted by the designer

and does not lead automatically to the next input. In agent-based

models, the loop from input to output to input is closed; so there is

no human intermediary in the loop. This characteristic is highly

constrainingÐerrors in the output lead to subsequent erroneous

input patterns; the model has to be consistent with respect to its

own outputsÐand can be exploited in various ways. (In fact, we

devote chapter 12 to mechanisms that allow an agent to structure

its own input by interacting appropriately with the world.) Finally,

the ALCOVE model processes all data it receives; it does not have

to determine which of the data are relevant. In agent models, one of

the hard tasks is to determine which of the continously changing

input data should be considered relevant by the agent, for example,

for learning. This book focuses on agent simulation and, of course,

real-world physical agents.

We have looked at the kinds of agents that we want to build.

Let us now look at how to go about designing agents and how to

conduct experiments using the synthetic methodology.

4.3 Designing for EmergenceÐLogic-Based and Embodied Systems

This entire book is about design. In this chapter, we lay out some of

the groundwork for design. The considerations outlined in this

section are fundamental to every design effort, and getting them

right from the beginning can help you avoid a lot of confusion and

fundamental problems later on. The kinds of considerations rele-

vant for agent design and design of classical systems are very dif-

ferent, as we will see shortly. In this section we use examples from

two areas, medical diagnosis and agent design, to illustrate both

so-called domain ontologies and low-level speci®cations. We also

use the term ``high-level ontologies'' to clearly distinguish these

from low-level designer commitments.

The section proceeds as follows. We ®rst discuss classical design,

starting with high-level concepts. We then introduce agents and

show that the commitments involved in designing agents must be

made at a different, lower level: What we are really interested in is

adaptivity, which requires diversity and emergence. The art of
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agent design is design for emergence, as Luc Steels (1991) has

called it: Make design commitments that leave room for emergence

of behaviors as the agent interacts with its environment. Through-

out the book, we refer to emergence, a concept that we have already

introduced and brie¯y discuss again below.

The Frame-of-Reference Problem in Autonomous Agent Design

Whenever we are involved in designing an intelligent system, we

have to be aware of the frame-of-reference problem. As we dis-

cussed in chapter 3, the frame-of-reference problem concerns the

relation between the observer, the designer (or the modeler), the

artifact, the environment, and the observed agent. The artifacts

that we study in embodied cognitive science are autonomous

agents, but the argument holds for computer programs as well.

Again we emphasize, because we can hardly overstress it, the

importance of getting this problem straight from the very start. Our

outline of the problem is based on Clancey's (1991a) extensive

treatment. The frame-of-reference problem has three main aspects:

1. Perspective issue: We have to distinguish between the perspective

of an observer looking at an agent and the perspective of the agent

itself. In particular, descriptions of behavior from an observer's

perspective must not be taken as the internal mechanisms under-

lying the described behavior.

2. Behavior-versus-mechanism issue: The behavior of an agent is

always the result of a system-environment interaction. It cannot be

explained on the basis of internal mechanisms only.

3. Complexity issue: The complexity we observe in a particular

behavior does not always indicate accurately the complexity of the

underlying mechanisms.

Let us brie¯y illustrate these points with a famous example,

Simon's ant on the beach.

SIMON'S ANT ON THE BEACH

Simon (1969) has used the metaphor of an ant to illustrate some

basic principles of behavior; here we use his metaphor to illustrate

the three aspects of the frame-of-reference problem. Let us assume

that an ant starts on the right and its nest is somewhere on the left.

So it travels roughly from right to left. Figure 4.9 shows a typical

path the ant might take. From the perspective of the observer, the

path is seen as a trajectory on the beach between pebbles, rocks,
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puddles, and other obstacles. From the perspective of the ant, the

world looks completely different because of its entirely different

embodiment (different sensors, different brain, different body): To

the ant, there are no pebbles, rocks, and puddles as we see them.

This illustrates the perspective issue.

What the observer sees as a complex path is the result of the ant's

behavior, that is, of the interaction of the ant with its environment.

How does this behavior come about? It would be a mistake to

assume that the entire path of the ant is stored in the ant's brain

and then used to guide its behavior. More likely, the mechanisms

driving the ant's behavior are actually very simple, implementing

``rules'' that we could describe as follows: ``if obstacle sensor on left

is activated, turn right (and vice versa).'' (These rules are, of course,

implemented in the ant's neural structures). This illustrates the

behavior-versus-mechanism issue: behavior must be clearly distin-

guish from internal mechanism.

The behavior-versus-mechanism issue is directly related to the

complexity issue: The trajectory, the result of the ant's behavior,

looks complex to an outside observer, but in fact it came about by

applying simple rules.

The point is that the complexity of the ant's trajectory emerges

from the interaction of the ant with its environment, not from the

internal mechanisms alone. Therefore, the complexity of the envi-

ronment is a prerequisite for the complexity of the ant's behavior.

To further illustrate this point, let us assume that we increase the

size of the ant, say, by a factor of 100, and let it start in the same

Figure 4.9 Simon's ant on the beach. Herbert A. Simon suggested that an ant walking on the
beach illustrates that behavior that looks complex to an outside observer may in fact
come about by very simple mechanisms.
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location with exactly the same behavioral rules as before, it would

go more or less in a straight line! What appeared to the normal ant

as obstacles would no longer be obstacles for the giant ant, whose

sensors would not be suf®ciently ®ne grained even to detect the

irregularities of the beach. Thus in order to fully explain the ant's

behavior, we need to take the internal mechanisms, the environ-

ment and their interaction into account. Behavior cannot be

reduced to internal mechanisms, i.e. it cannot be explained on the

basis of internal rules alone. We must take the agent's body into

account; Changing the body leads to different behavior.

An example from robotics that also demonstrates the dependence

of the behavior on the embodiment concerns the position of the

sensors. Figure 4.10a shows a Didabot, a very simple kind of

robot used for classwork exercises. In this experiment, only two IR

sensors are used. The position of the sensors is shown in ®gure

4.10b. The control architecture consists of a very simple neural

network that implements the rules of Simon's ant on the beach: If

sensory stimulation on left, turn right; if sensory stimulation on

right, turn left. This leads to obstacle avoidance behavior. However,

if the robot encounters an object head-on, it pushes it, because it

gets no stimulation from its sensors. If we now change the position

of one of the sensors by moving it to the front (®gure 4.10c), the

pushing behavior disappears, (the robot will either turn left or

right) even though exactly the same neural network was used. This

illustrates the general point that the neural substrate of any agent

can be understood only in the context of its embodiment.

BUILDING A MODEL OF THE ANT'S BEHAVIOR

Let us further illustrate the frame-of-reference problem by looking

at how a biologist might go about understanding the behavior of

Simon's ant on the beach. Assume the biologist employs a synthetic

approach; that is, he tries to understand the ant's behavior by

building a model capable of reproducing certain aspects of its

behavior.

The most straightforward approach he could take would be to

suppose that the trajectory of the ant is stored in its head, repre-

sented, for example, as some kind of network structure (®gure

4.11a). This trajectory can be used as a plan for generating be-

havior: To ®nd its nest, the ant simply replays the trajectory. Note

that the biologist is making a category error: He is confounding a

description of behavior (the trajectory) with the internal mecha-

nism. To test the model, he now wants to use it to control a robot.
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Figure 4.10 Illustration of embodiment. (a) The Didabot. (b) Sensor configuration 1. (c) Sensor
configuration 2. Sensor configuration 1 leads to pushing and obstacle avoidance
behavior, whereas sensor configuration 2 leads to obstacle avoidance only. Both
configurations use the same internal neural control mechanism.
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Figure 4.11 A biologist trying to understand the behavior of an ant. (a) First, he develops a model
that directly maps the behavior onto an internal model. This illustrates the perspec-
tive issue. (b) Then he tries to use this model to control a walking robot. He dis-
covers that it does not work wellÐthe robot does not move. In other words, the
model he hypothesized in (a) does not lead to the desired behavior. This illustrates
the behavior-versus-mechanism issue. (c) Next, he realizes that a much simpler
network will lead to the desired behavior. This illustrates the complexity issue.
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This does not work very well (®gure 4.11b) because of the category

error. Because behavior is the result of a system-environment

interaction, it is of little use to record past behavior and employ it

to generate future behavior. If there is even the slightest of changes

in the environment, the plan no longer works. This illustrates

the behavior versus mechanism issue and the perspective issue.

Behavior is something different from internal mechanism; it can be

observed by an outside observer, whereas the mechanism is inter-

nal to the agent. Because of these considerations, the biologist

realizes that a different kind of mechanism is required, and to his

delight he ®nds that it is much simpler than the previous one

(®gure 4.11c).

We have deliberately chosen to illustrate the frame-of-reference

problem with two somewhat whimsical examples, the ant on the

beach, and the hypothetical biologist building a model of the ant's

behavior. Here we only wanted to provide an intuition of the issues

involved; the application of the problem to the scienti®c study of

intelligence follows later.

High-Level Domain Ontologies and Low-Level Speci®cations

The title of this section may sound a bit cryptic but the basic idea is

actually very simple. Whenever we design a system, we have to

de®ne the basic concepts or components, the primitives, that the

system will use. For classical systems, databases, or AI systems, a

high-level ontology or domain ontology has to be designed. It con-

tains items such as, for a database system, a personnel record (with

®elds for name, age, sex, salary, department, projects, address, etc.),

or for a medical system, symptoms and diseases. When designing

an agent that has to interact with the real world, however, this no

longer works. Designer commitments can no longer be made at this

levelÐotherwise the designer runs into all sorts of problems, such

as the symbol-grounding problem, to mention only one particularly

thorny one. For an agent in the real world, design commitments

have to be at a lower level, concerned with the agent's physical

setup, its body, sensory, and motor systems. Whatever the agent

learns about its environment should then result from the agent's

interaction with the environment. We call these designer commit-

ments a low-level speci®cation.2

2 We prefer the term ``low-level speci®cation'' to ``low-level ontology'' because ontology

triggers associations with logic-based systems.
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HIGH-LEVEL ONTOLOGIES

Let us now be a bit more precise with some de®nitions. We use the

term ontology very simply, in the standard way of the arti®cial

intelligence literature (e.g., Russell and Norvig 1995, p. 222). A

domain (or high-level ) ontology has three essential characteristics:

1. It designates the basic vocabulary, the primitives, that are going to

be used in designing the system. These are the only components

that can be used: Everything in the system is built on top of these

basic elements.

2. The meaning of these primitives is assumed to be given and shared

by those involved, that is, the designers and the users.

3. The domain ontology remains constant for an extended period of

time, often for the entire life of the system.

Thus, a domain ontology is a systematic accountÐa listÐof all the

basic concepts (i.e., the objects, relations, and operations) that are

needed in a particular domain. The primitives have to be de®ned

for any system whatsoever, be it a database system, a communica-

tion system, an expert system, a system for understanding natural

language, or a robot. However, the kinds of primitives employed

for computational systems and robots differ considerably. In a

medical expert systemÐa computational systemÐthey might

include symptoms (red spots on skin, fever, diarrhea), patient

characteristics (age, race, history), diagnoses (organisms, diseases),

medical procedures to be applied (tests, treatments, therapeutic

programs), and medical knowledge combining the concepts (bac-

terial meningitis is a subclass of meningitis). For each of the

attributes within the primitives, all possible values have to be

given. For example, for the attribute ``red spots,'' the values could

be ``absent,'' ``present,'' ``strongly present.'' Table 4.3 offers a highly

simpli®ed sample domain ontology for a medical system.

All that the system to be designed will be able to do springs from

and depends on this set of primitives initially speci®ed by the

designer. A state is a description of the current situation in terms of

the primitives of the domain ontology. By means of the rules of

inference, states are transformed into other states. For example, the

state described by high fever, muscle pain, and high sensitivity to

light, might be transformed into a new state called ``¯u.'' In this

perspective, learningÐthat is, the formation of new conceptsÐ

consists only of combining basic components or compound con-

cepts in different ways. As an example, recall the robot JL that we

designed in chapter 2. It combined the basic concepts ``green,''
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``ripe,'' and ``apple'' to form the compound concept ``Granny

Smith.'' Here is another example: If we want to develop a natural

language processing system that understands stories about restau-

rants (e.g., Schank and Abelson 1977), we must have an ontology

that includes, for example, the components used in the restaurant

script shown in ®gure 2.7, either as part of the ontology itself, or as

concepts accessible by combining more basic parts. An ontology

for a restaurant would have to contain elements like glasses, cups,

tea, coffee, beer, serving, checks, eating, and so forth, again either

as elements, or as compound concepts made up of more basic

components.

Ontologies at the computational level are well de®ned because

they have their origin in logic. The situation is much messier in the

case of robots, in which we have to de®ne low-level speci®cations.

LOW-LEVEL SPECIFICATIONS

Above we de®ned a domain ontology as the vocabulary, the primi-

tives that will be used in the design of the actual system. For clas-

Table 4.3 A simpli®ed high-level domain ontology for a medical expert system. (To keep the
example simple, the ontology here is based entirely on intuition and should not be
taken seriously from a medical point of view.) Realistic medical systems can contain
hundreds and even thousands of components in their domain ontologies.

Category Attributes

Symptoms . Red spots on skin (absent, weakly present,
strongly present)

. Fever (none, weak, strong; alternatively: �C)

. Diarrhea (absent, present, strongly present)

Characteristics of patient . Age (a number)
. Race (Caucasian, Indo-European, Pan-Asian,

Semitic, etc.)
. Weight (a number)
. History (medical history)

Diagnoses . Organisms (bacteria, viruses)
. Diseases (in¯uenza, pneumonia)

Medical procedures . Tests (blood tests, growing cultures, urine tests)
. Treatments and therapeutic programs (cures,

diets, operations, physical therapy,
psychotherapy, medication, radiation, etc.)

Relations, medical knowledge,
problem solving methods

. Bacterial meningitis is a subclass of meningitis

. Heuristic classi®cation

. Hypothesize and test
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sical systems, it is fairly easy to decide at what level to designate

the domain ontology. It is much less clear, however, at what level

these primitives should be designated in the case of a robot. Obvi-

ously the robot's body, its sensory system, and its motor system

have to be designed. Moreover, the individual components have to

be connected in appropriate ways. Table 4.4 provides an overview

of the components for a low-level speci®cation of robots. The

table's second column provides an abstract characterization in

terms of states; the third suggests possible implementations.

As an example of a component in a low-level speci®cation, let

us take a standard vision sensor which is normally realized as a

camera. What are its basic characteristics? It contains a number of

light-sensitive cells. These cells can be in various states that are

determined by physical processes, that is, the intensity of light

registered at the cell. The output of the cell, that is, the signal pro-

duced by it (to be further processed), is roughly proportional to the

light intensity. In other words, the interpretation of the signals from

the light-sensitive cells is straightforward.

By contrast, attributes of high-level ontologies are often open to a

great deal of interpretation. For example, what does ``red spots

(weakly present)'' really mean? When do we talk about red spots?

How red do they have to be? How big do they have to be? How

dense is ``weakly present''? As a consequence of the great room

a b

Figure 4.12 Comparison of high-level ontologies and low-level specifications. For the robot (a),
there is no ambuiguity about the amount of stimulation at the sensory level, whereas
the doctor (b) has a lot of room for interpreting whether red spots are present in the
patient.
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Table 4.4 A simpli®ed low-level speci®cation for a robot. The second column provides
an abstract characterization in terms of states; the third suggests possible
implementations.

System Component Characterization

Typical

implementations

Body body (without sensor
and motor system
components)

shape, weight, size,
rigidity
points of attachment
for sensory and motor
components

rigid frames (wheeled
robots)
multisegment ¯exible
(humanoid robots)

Sensory system visual sensors light-sensitive cells
(states: on-off,
grayscale, color)

camera

proximity/distance sensor readings
related to distance
(states: number of
different readings)

IR, ultrasound, or
laser range-®nder
sensor

touch requires physical
contact (states:
on-off )

microswitch;
saturation of IR
sensor; skin sensors

speed sensors sensor stimulation
related to speed
(states: number of
different readings)

wheel encoders
(wheel turns); optical
¯ow

Motor system wheel drive system speed and direction of
wheels (states:
speeds, steering
angles)

wheels driven
individually by
electrical motors

leg locomotion system (states: joint angles,
forces)

forces supplied by
electrical motors

arm (states: joint angles,
forces)

forces supplied by
electrical motors

body motion system (states: joint angles,
forces)

forces supplied by
electrical motors

Interactions
among
components

mechanical type of connection
between mechanical
parts

mechanical
connections always
(implicitly) given

electrical types of signals that
can be exchanged
within the robot

bus system connected
via a microprocessor;
separate physical
connnections possible

electromagnetic components interact
without a wire
connection

given by physical
system; not
deliberately designed

thermal interactions through
materials surrounding
a component

given by physical
system; not
deliberately designed

environment not explicit given by
system-environment
interaction
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for interpretation, such systems always require a human for their

operation; in fact, they require a human expert, as ®gure 4.12

illustrates.

Many more sensors could be added to table 4.4 (torque sensors in

the joints, position sensors, ¯ow sensors, temperature sensors, etc.).

The particular choice of sensors depends on what the designer

intends to use. The position of the sensors on the robot is also an

essential part of the low-level speci®cation.

Let us now look at the motor system for a moment. Just as on the

sensory side, the ways in which motor systems can be designed are

virtually unlimited. Take a legged robot. Its legs have joints that can

assume different angles, and various forces can be applied to them.

Depending on the angles and the forces, the robot will be in differ-

ent positions and behave in different ways. Further, the legs have

connections to one another and to other elements. The details of

how the various elements are connected are not important for

here, but it is important to note that these connections are often not

made explicit in the speci®cation, though they are essential for the

robot's performance. If a six-legged robot lifts one of its legs, this

changes the forces on all the other legs instantaneously, even

though no explicit connection needs to be speci®ed. The con-

nections are implicit: They are enforced through the environment,

because of the robot's weight, the stiffness of its body, and the

surface on which in stands. Although these connections are ele-

mentaryÐand the robot's behavior builds on themÐthey are not

explicit in the low-level speci®cations, although they could be

made explicit and included if the designer wished. Connections

may exist between elementary components that we don't even

realize. Electronic components may interact via electromagnetic

®elds that the designer is not aware of. What is normally explicitly

designed are wire or data bus connections. So we see once again

that because robots, bodies, sensor systems, and motor systems are

real physical entities, it is not possible to de®ne neatly what

belongs into a low-level speci®cation, certainly not as neatly as we

can de®ne the components of a high-level ontology. Moreover, the

agent has a body with a particular shape, and it is not clear how

shapes should be generally described.

We mentioned that the communication between the legs of a

robot can be implicit. As a general rule, much more is implicit in a

low-level speci®cation than in a high-level ontology, simply because

the physical world is always a given and it has its own properties,
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irrespective of whether a designer is fully aware of them. Here we

are encountering a fundamental implication of simulated agents

versus real agents: In simulated agents, only what is made explicit

exists, whereas in the real world, many forces exist and properties

obtain, even if the designer does not explicitly represent them.

The Sensory Space, the Motor Space, and the Sensory-Motor Space

The notion of sensory space denotes all possible con®gurations of

the sensory states. If we have a black-and-white camera with only

two intensity levels (activation or no activation) and a 100� 100

image, that yields a sensory space with 210000 possible states. (There

are 10,000 sensors, each having two possible states.) Remember

that 210 is roughly 1,000, so we have approximately 1030 different

states. If instead of just these two intensity levels, we have 256 dif-

ferent gray levels, this yields an incredibly large number of states.

We do not discuss the implications of this here, but simply point

out that this very large number of possible states is a prerequisite

for the generation of diversity (in other words, for adaptivity).

Similarly to the sensory space, the motor space can be de®ned as

the ensemble of possible states the motor system can assume, given

a particular low-level speci®cation. In this book we rarely look at

sensory and motor systems in isolation: we normally consider the

entire sensory-motor space, which denotes the entire range of

possible con®gurations of sensory and motor states together. Logic-

based systems, such as expert systems or natural language pro-

cessing systems for written text (in electronic form), have no sensory

space in the same sense robotic systems do, simply because they

lack sensors. Nevertheless, we can de®ne the sensory space for

logic-based systems as the set of potentially different inputs the

system can accept. This is precisely given by the domain ontology.

Anything not prede®ned in the ontology (or not combinable from

the elements of the ontology) cannot be presented as input to the

system. De®ned in this way, the sensory space (or better, the input

space) is typically much smaller for an expert system: there are

only the prede®ned concepts, and the values they can assume

are restricted (e.g., the concept ``red spots'' can have the values

``absent,'' ``weak,'' ``clearly present,'' or ``strongly present''). More-

over, the number of basic concepts in such an input space is com-

paratively small, on the order of a few hundred. The input space

can still be of considerable size, leading sometimes to combinato-

rial problems, but it is normally considerably less than 210000 (and
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that's a very simple case). Complexity in expert systems (and logic-

based systems in general) is therefore computationally manageable.

From this discussion it follows that a system always communi-

cates with its environmentÐincluding other agentsÐthrough its

primitives. If we want to put a request to a database system, we can

do this only by using terms that are already de®ned in the system,

that is, terms either contained in the basic domain ontology or

combinations of the latter. The same holds for the output of the

system. If we want to interact with a robot, it has to be via compo-

nents of the low-level speci®cation.

Emergence

Our goal is to design agents that display emergent behaviors. The

term emergent is used mainly in three different ways. First, it is

often applied to situations, agent behaviors, that are surprising and

not fully understood. Second, it refers to a property of a system that

is not contained in any one of its parts. This is the typical usage in

the ®eld of arti®cial life, dynamical systems, and neural networks

for phenomena of self-organization. Third, it concerns behavior

resulting from the agent-environment interaction whenever the

behavior is not preprogrammed. It is thus not common to use the

term if the behavior is entirely prespeci®ed like a trajectory of a

hand that has been precalculated by a planner. Agents designed

using high-level ontologies have no room for emergence, for novel

behaviors. High-level ontologies are therefore used whenever we

know precisely in what environments the systems will be used, as

for traditional computational systems (like an accounts payable±

accounts receivable program) as well as for factory robot systems.

In unknown environments, a better strategy is to de®ne the low-

level ontology, introduce redundancyÐand there is a lot in the sen-

sory systems, for exampleÐand leave room for self-organization.

The following question immediately arises: Given a set of desired

behaviors, how do we design the agent so that these behaviors will

be emergent? How does design for emergence work? Chapter 16

discusses these topics; in chapters 11 through 13, we show con-

crete examples of how we can actually design for emergence.

Novel Situations and Novel Actions

In chapter 1, we saw that one of the important aspects of intelligent

systems is adaptivity, that is, the ability to perform in novel situ-
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ations. This implies on the one hand recognizing that a situation or

environment is novel, and on the other generating new behavior

appropriate to the now-changed situation. Let's investigate this

point a little further.

``Computers can act only in situations that have been prede®ned

by humans!'' computer skeptics often assert, ``and this is why

computers cannot be used in environments in which there may be

potentially novel situations.'' Computer enthusiasts reply: ``No

problem. If a situation is encountered that has not been prede®ned,

the computer simply displays a message on the screen saying

something like `no information available,' in which case the human

operator can handle the situation.'' We can use the idea of domain

ontologies to de®ne more precisely what is meant by ``prede®ned''

and ``novel.''

Take our medical expert system. If the system encounters a

patient with a combination of symptoms, say red spots, fever, liver

pain, and a broken leg, and there is no rule that covers that partic-

ular symptom pattern, the system might display the message ``no

information available,'' and the physician could take over. Such a

case presents no problem. All the symptoms involved have been

prede®ned; certain combinations have not been foreseen, but such

cases are covered by the domain ontology: In these cases, a perti-

nent message can be displayed. However, if a symptom is not pre-

de®ned, the system does not even recognize that it is faced with

something new, and that does present a problem. Another example

is a system for some type of process control: If there is no temper-

ature sensor, the systemÐquite obviouslyÐcannot sense tempera-

ture. So if the temperature rises above an unacceptable level (a

novel situation), the system does not even know that it is a new

situation because it does not ``know'' anything about temperature.

Note that precisely the same point holds for robots, and for animals

and humans, for that matter. Anything they can learn is constrained

by the basic primitives, the low-level speci®cations. The reason

humans can recognize truly novel situations is because of the large

redundancy contained in their sensory systems. This point is of

fundamental importance, and is incorporated as a design principle,

the redundancy principle (see chapters 10 and 13).

A Hybrid Speci®cation

We have discussed high-level ontologies and low-level speci®ca-

tions. We have also said that agents should ®rst be designed by
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de®ning the low-level speci®cations and then use mechanisms of

self-organization. But why not have both a low-level speci®cation

and a high-level ontology on top?

Assume that you have the task of developing a robot to serve

tea in a restaurant, like the Japanese robot in ®gure 4.13. Because

you have to design a robot, you need a low-level speci®cation

that lists your commitments about the robot's physical setup and

the potential connections between the components. Moreover, the

robot needs to know about tea, teacups, saucers, properties of

liquids, and serving, so you may want to include those concepts in

its domain ontology. If you do this, you are de®ning a high-level

ontology that implies a designer-based categorization of the real

world. So there are now two levels at which you, as a designer, are

making commitments. This introduces a new problem: the two

levels have to be compatible. Achieving this compatibility has

turned out to be extremely dif®cult, as the problems with model-

based computer vision show (e.g., Tistarelli 1995). Moreover,

de®ning a high-level ontology on top of a low-level one entails the

symbol-grounding problem that we discussed in chapter 3. Thus, if

the agent is to be situated and adaptive, it must learn about the

environment as it is interacting with it, thus it is nonstatic. This

Figure 4.13 A Japanese robot serving tea (from Kurzweil 1990, p. 319). The robot has to know
about tea, teacups, saucers, the properties of liquids, and serving. But it also has to
recognize and manipulate them through its sensory-motor system, its hardware.
(Picture by Georg Fischer; reprinted with permission.)
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nonstatic bottom-up component must then match the high-level

concepts. This is a notoriously hard problem to solve, because if

implies solving the symbol grounding problem. But what should

we do then, if we want to design a tea-serving robot? This is a fun-

damental research issue, and the interested reader is referred to

issue 4.1 at the end of the chapter.

To conclude, the idea of this section has not been so much to

map out a general low-level speci®cation for robot design. From

what we have said so far, it should be clear that it is not possible to

de®ne low-level speci®cations as clearly as high-level ontologies.

Instead, the section has stressed the distinction between high-level

and low-level design decisions. Low-level speci®cations make no

mention of high-level categories corresponding to what we, as

observers, would call objects (coffee cup, saucer, tea, beer, etc.). As

we argue later, if concepts are going to be grounded, they have to

emerge from this low-level speci®cation, and the way of proceeding

that we suggest does not work with high-level ontologies.

What we have said about design of agents so far must be em-

bedded into the context of conducting agent experiments. We dis-

cuss this topic next.

4.4 Explaining Behavior

In placing our discussion of design of agents into the context of

conducting agent experiments, we must ®rst ask ourselves what the

goal of these experiments is. The main goal of doing experiments

within a synthetic approach is explaining behavior, as we have

said. This can be the behavior of a natural agent, or of an arti®cial

one. Before describing the experimental steps that need to be fol-

lowed, let us highlight some core aspects of explaining behavior.

Time Perspectives for Explanations

Given that our stated goal in conducing agent experiments is to

®nd mechanisms that underlie behavior, we can examine in more

detail the kinds of explanations we are looking for. Again, what we

regard as good or interesting explanations strongly depends on our

research goals. Our general goal is to understand the phenomena

reviewed in chapter 1. To do so, we must discuss intelligence at

three different levels or time perspectives: short-term, ontogenetic,
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and phylogenetic. One might add a fourth perspective concerned

with what purpose a behavior serves.

1. The short-term perspective explains why a particular behavior is

displayed by an agent based on its current internal and sensory-

motor state. It is concerned with the immediate causes of behavior.

We used the short-term perspective when we explained the behav-

ior of Simon's ant on the beach. In that case, we referred to the ant's

current sensory states: If stimulation on right, then turn left, and

vice versa. Figure 4.14 shows how short-term explanations can be

found in a robotic setup. The robot's behavior is shown in the lower

right corner. Its internal state is displayed (sensors, activation

levels, and weights of the neural network) in the other windows,

and we can use this information to explain the behavior we are

seeing. For example, we can explain why the robot has turned away

from an obstacle based on its internal state, that is, the values of

sensor signals, activation levels, and perhaps motor speeds. This

setup has the advantage of enabling us to record anything we

would like about the robot's internal state, an option we do not

have for living beings like animals and humans. Clearly, if we do

not have a short-term explanation of an agent's behavior, we simply

do not understand how it works.

2. The ontogenetic perspective resorts not only to current internal and

sensory-motor state but also to some events in the more distant past

in order to explain current behavior. The ontogenetic perspective is

also called the learning and development perspective. Explana-

tions from the ontogenic perspective are almost universally used in

the study of intelligence. The entire ®eld of instructional sciences

is based on it. When we say a student has done well on a test

because he studied a lot, we reference a sequence of events in

the past: the student reviewing the materials for the test repeatedly.

If a robot initially crashes into obstacles but over time starts avoid-

ing them, it has learned a behavior. Both of these explanations of

the student's and the robot's behavior are framed in an ontogenic

perspective.

3. The phylogenetic perspective asks how the behavior evolved dur-

ing the history of the species. Finally, this perspective puts the

agent into the context of an evolutionary process, a timescale in the

very long term. An illustration of this has already been discussed:

The ``peppered moth'' that changed its color from light to dark

because the tree trunks had changed from light to dark as a result

of industrialization.
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Figure 4.14 Setup for generating short-term explanations. Short-term explanations can best be
made by displaying both the robot's internal state and its behavior on the screen. The
robot's behavior is recorded via a video camera mounted over the experimental area.
From this video information, the trajectory and other behavioral data (like the direc-
tion the robot is facing, its speed, and its direction of motion, which does not have to
coincide with its direction of movement) can be extracted. The information extracted
from the videotape is synchronized with the data about internal state (such as battery
level, activation levels, and weights of neural networksÐsee chapter 5) and a time
series file containing all this information is created. If this recording is performed
over extended periods, behavior changes over timeÐthat is, learning behaviorÐcan
be studied.
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Throughout this book, different theoretical positions we examine

attribute different weights to the three perspectives: dynamical

systems place emphasis on the short-term perspective (chapter 9),

connectionism and neural networks place it on the ontogenic, spe-

ci®cally learning (and partly developmentÐchapter 5), and evolu-

tionary approaches place it on the phylogenetic (chapter 8). All

three kinds of explanations contribute in important ways to our

understanding of intelligence. None can replace all the others.

4. One could add a fourth perspective that is not a temporal one: One

can ask what a particular behavior is for; that is, how it contributes

to the agent's overall ®tness, a concept we elaborate on in chapter

8. In biology, this is called the ultimate or functional perspective.

This question can only be answered if ®tness has been de®ned.

Except in the ®eld of arti®cial evolution, this is generally not the

case for autonomous agents. Moreover, in many cases, it is not

obvious how a particular behavior contributes to ®tness. We return

to this point in chapter 8. In this book, we focus on perspectives (1),

(2), and (3).

These perspectives can perhaps be best illustrated with an

example. Suppose we ask why drivers stop their cars at red traf®c

lights. One answer would be that a speci®c visual stimulus, the red

light, reliably leads to speci®c behaviors like changing gear and

applying the brakes: This would be an explanation in the short

term. A different answer is that individual drivers learn this rule

from books, television, and driving instructors: This would be an

explanation in terms of ontogenesis, learning, or development. An

evolutionary explanation would deal with the historical process

whereby a red light came to be used in many countries as a way of

stopping traf®c at road junctions. A functional explanation would

be that drivers who do not stop at traf®c lights are liable to have an

accident, or at least be stopped by the police. (Example adapted

from Martin and Bateson 1993.)

These perspectives closely resemble what is called ``the four

whys'' in biology (e.g., Huxley 1942; Tinbergen 1963). What we

have called the short-term perspective is also called a proximate

explanation by biologists. What we have called the ontogenetic

perspective is similar to its use in biology, but we have a stronger

focus on learning. Our use of the phylogenetic perspective is iden-

tical to that in biology.
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Conducting Experiments with Complete Agents

We have pointed out three main purposes for which one might

pursue building complete agents: modeling certain aspects of

natural agents, studying general principles of intelligence, and

building agents for a particular task (or tasks). We have also

described and compared two types of arti®cial, complete agents:

simulated and robotic agents. In this section we summarize the

guidelines to conduct scienti®c experiments with complete agents.

An overview is provided in table 4.5. We give only a short de-

scription here; details are left for chapter 16.

Before we start conducting experiments, we have to know what

research issues we want to investigate. Normally this should be

fairly obvious: navigation behavior of desert ants, for example,

or phonotactic behavior of crickets, category learning in human

infants, cooperation in primate societies, or data collection on

Mars. The next things to decide upon are the tasks or the desired

Table 4.5 Guidelines for conducting agent experiments. Note that this is the basic scheme and
is more like a checklist rather than a step-by-step procedure.

Step Description Chapters

0. Decide on research goal. 16

1. De®ne the tasks/desired behaviors and the ecological niche,
i.e., the task environment.

16

2. De®ne the low-level speci®cations. 5, 16

3. Choose a platform. 16

4. De®ne the control architecture. 11±14, 16

5. De®ne the concrete experimental setup and the experiments
to be run.

17

6. Before running the experiments, formulate predictions and
hypotheses and provide the rationale for them. Think about
how the agent's performance is to be evaluated.

17

7. Perform the experiments; collect data about 17
. agent behavior
. internal state of the agent
. sensory-motor state.

8. Describe the agent's behavior and perform various kinds of
statistical analyses.

4, 17

9. Formulate explanations of the agent's behavior. Analyze the
model's limitations. Report on failures.

4, 17
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behaviors of the agent and its ecological niche. Because behavior

always takes place in a particular environment, we use the term

task environment to designate the two together. The task of the

Sojourner, for example, is to collect data on the planet Mars, and its

ecological niche is the surface of Mars. We have also discussed the

robot cricket built by Webb (e.g., 1993). The desired behaviors of

Webb's robot cricket (e.g., 1993), which we discussed earlier, are to

approach a sound source from various initial positions according to

principles observed in the real cricket. Then, the low-level speci®-

cation needs to be de®ned. In other words, a decision must be

madeÐgiven the agent's task and ecological nicheÐas to what the

agent should be able to sense, what its body should look like, how

it should interact with its environment, and so on. The Sojourner,

for example, has to navigate on the surface of Mars while avoiding

obstacles. Thus, it needs an appropriate set of sensors. On the

Sojourner, cameras, bumper sensors, and proximity sensors were

used to provide this ability. Its body and motor system had to be

built to enable it to overcome obstacles of considerable height,

which is why six wheels were incorporated, rather than four.

Similar considerations apply for the robot cricket, which needs

means of detecting sounds of particular wavelengths and of navi-

gating toward the sound source.

Then, a platform has to be chosen; that is, how should the low-

level speci®cation be realized (implemented)? Among other things,

a decision must be made whether to use simulation or a real robot.

For the Soujorner, this choice was obvious: A simulation on Earth

cannot produce measurements on Mars. It may not have been so

obvious in the case of the robot cricket. If the designer opts for a

robot, the choice is between buying a platform off the shelf or

building one. The decision strongly depends on resources and

know-how already available (see also chapter 16).

The next step involves de®ning the control architecture, which

essentially speci®es how the various parts of the low-level speci®-

cation, the primitives, should be connected to produce the desired

behavior. In the case of the robot cricket, this was in fact the main

research issue: How can the robot cricket be ``wired up'' or pro-

grammed so that it produces a behavior comparable to the one

observed in the real cricket? The control architectureÐappropri-

ately embedded in the robot cricketÐthus implements hypotheses

about the mechanisms underlying the real cricket's behavior. The

Sojourner robot's purpose was not to understand natural intelli-
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gence, but rather to achieve a particular task: Biological or psycho-

logical considerations were irrelevant. The particular control ar-

chitecture chosen for an agent crucially depends on the purpose for

which the robot is being designed. If the goal in building the robot

is to model natural intelligence, the main considerations are bio-

logical or psychological plausibility, whereas if it is to ful®ll some

task, the control architecture must be chosen to implement ef®cient

task-related behaviors.

The ®nal step before the actual experiments can be run entails

formulating predictions (hypotheses) about what is going to hap-

pen, given the agent's platform, control architecture, low-level

speci®cation, ecological niche, and task. In addition, decisions

about the evaluation of the robot's performance have to be made. It

is not effective research design simply to run a large number of

experiments, collect data, then think about evaluation at the very

end. One should be clear before any experiments are run about

what types of data one wants to collect and how one wants to

analyze that data, for example, in terms of statistical analyses. Of

course, this can be an iterative process whereby preliminary experi-

ments reveal what kinds of data are most relevant, but as a general

rule of thumb, it is good practice thinking about these issues

beforehand. The case of the Sojourner robot makes the point very

clearly: Imagine what would have happened if evaluation criteria

had been derived only after the robot had been sent to Mars! The

same case could be made about the robot cricket. In any case, from

a purely scienti®c perspective, hypotheses always have to be

formulated before the experiments are actually performed.

When running the actual experiments you need to collect data

about all relevant aspects of the robot's behavior. This includes the

behavior as seen by an outside observer and the robot's internal

state, for example, the sensor data and data on the neural network

dynamics and motor states. The setup from ®gure 4.14 can be

used to record behavior and internal states automatically. Finally,

once you have all the data you need, you can start describing the

robot's behavior and analyzing these data. There are many ways to

describe behavior, and the descriptions can be made on very dif-

ferent levels. For example, we can give verbal descriptions, or we

can draw the trajectories exhibited, preferably automatically. We

can approach this more quantitatively and do various kinds of

statistical analyses. Statistics often lend themselves most readily to

interpretation if they are represented graphically. We can also

Embodied Cognitive Science: Basic Concepts 133



describe agent behavior in terms of mathematical models (e.g., dif-

ferential equations). Additional methods can be found in any text-

book on general experimental methodology. Note that a description

of behavior implies a segmentation of behavior: The behavior has

to be cut up into meaningful pieces, the segments, to be described

effectively. For example, saying that someone is eating, drinking,

getting up, and leaving the table represents a segmentation of

the behavior ``eating dinner.'' In the robotic domain, examples of

behavior segments would be turning toward a light source, picking

up a peg, following a wall, or recharging its batteries. In addition to

a description of its behavior, the robot's performance needs to be

evaluated. Experiments can be evaluated in many ways. We leave

providing a detailed overview to chapter 17 but present examples

of experiment evaluation as we go along.

Issues to Think About

Issue 4.1: Hybrid Speci®cationsÐChoice of Tasks

Earlier in the chapter, we made a preliminary try at designing a

robot to serve tea in a restaurant. On the one hand, such a robot

has to know about its environment: about restaurants, objects, and

procedures in the restaurant. On the other, it has to act physically

in the restaurant: It must actually bring the tea to customers. We

argued that if you start by designing the high-level ontology and the

low-level speci®cation using a design in which concepts emerge

through agent-environment interaction, there will be incompati-

bilities between the two. If that is so, how do we design a tea-

serving robot in a principled way? We honestly don't know. You

will ®nd, as you read through this book, that the kinds of behaviors

we can engender through emergent designs are, though interesting,

not suf®cient to produce such complex behaviors as those required

in a restaurant. The object recognition problems are enormous, the

object manipulation skills, considerable. Just think of preparing a

cup of tea, putting it on a small tray, and carrying it to theÐrightÐ

customer. It is also implied that the robot would need some way of

communicating with the customers. We could probably produce

a ``hack'': We could try to introduce physical constraints in the

environment: For example, we could specify that the cups are

always found in exactly the same location, we could put identi®ers
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on the tables and the different kinds of tea, and we could arrange

for smooth grounds so the robot could use wheels. We could also

scale down the robot's task by not having it manipulate the tea cups

themselves: Personnel could put them on the robot, and the cus-

tomers could pick them up themselves once the robot has arrived at

their tables. But what would we then learn about the principles of

intelligence? Presumably not too much. So the conclusion seems to

be that it may be premature to actually try to build a tea serving

robot. But we might be able to make a compromise. We could make

some simpli®cations, changes to the environment, and try to cause

at least some of the behaviors to emerge. If these changes were

done right, the robot might actually be able to learn to look out for

cluttered tables with no customers, for example, and recharge its

battery on its own, if required. Alas, this kind of study has not been

widely attempted. One project that moves in this direction, how-

ever, is the sewage system robot project that we outline in chapter

18. As we see later on, the choice of appropriate tasks is crucial to

the success of an agent experiment. Try to apply these consid-

erations to an application of your choice.

Issue 4.2: Limitation by Low-Level Speci®cation

We have stressed the limitations imposed by high-level ontologies.

But robots, and humans for that matter, are also constrained. Any-

thing for which our sensory system makes no provision, we can

simply not sense. Our visual system can detect electromagnetic

waves only within a certain limited range. Anything outside is

simply not accessible to the visual system. (We function as well as

we do because of the redundancy built into our sensory system that

enables us to detect events beyond the capacity of a sensor. For

example, although our eyes can't measure temperature, we can

often ``see'' whether objects are really hot or really cold.) Try to

think of other limitations of our sensory system to get an idea of

what our own ``low-level speci®cation'' is and how it constrains

our potential interactions with the real world.

Points to Remember
1 The agents of highest interest for our purposes are complete agents.

They are autonomous, self-suf®cient, embodied, and situated. They

have been given the name ``Fungus Eaters.''
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1 Self-suf®cient agents can perform multiple tasks, can exhibit

multiple behaviors in the real world over extended periods of

time; that is, they do not incur an irrecoverable de®cit in any of

their resources. Self-suf®ciency implies adaptivity.
1 Self-suf®ciency always pertains to a particular ecological niche. An

ecological niche is the range of environmental variables within

which a species, or an autonomous agent, can exist. Agents are

always designed (by an engineer or by evolution) for a particular

ecological niche: There is no universal agent in the real world. If

the speci®c properties of the ecological niche are exploited, scal-

ability of learning algorithms can often be achieved.
1 Because self-suf®cient agents always have many tasks, they have

to solve the problem of behavior control: loosely speaking, the

problem of doing the right thing at the right time. Action selection

designates the problem of choosing an action in a particular situa-

tion from a given set of actions. The problem with the action-

selection approach is that in general there is no straightforward

mapping of desired behaviors to internal actions.
1 Autonomy means independence of control. This characterization

implies that autonomy is a property of the relation between two

agents, in the case of robotics, of the relations between the designer

and the autonomous robot. Self-suf®ciency, situatedness, learning

or development, and evolution increase an agent's degree of

autonomy.
1 A situated agent acquires all information about the environment

from its own perspective through its sensory system.
1 Embodiment means existing as a physical entity in the real world,

that is, as a robot. Embodied agents can also be simulated, as is

often done in virtual reality environments. The positioning of the

sensors on the agent must be speci®ed because where the sensors

are positioned affects system-environment interaction. Moreover,

how the control architecture is embedded in the agent must also be

de®ned.
1 There are four kinds of adaptation: evolutionary, physiological,

sensory, and adaptation by learning. All operate on different

timescales.
1 There are three potential goals when building an arti®cial agent: (1)

building an agent for a particular task or a set of tasks, (2) studying

general principles of intelligence, and (3) modeling certain aspects

of natural systems, that is, humans or animals.
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1 Standard simulations differ from agent simulations in that a simu-

lated agent interacts with a simulated environment through its own

sensory-motor system, whereas in a standard simulation, the agent

does not interact with the environment at all.
1 The frame-of-reference problem conceptualizes the relation be-

tween the designer, the observed agent, the artifact to be designed,

and the environment. There are three issues: perspective, behavior-

versus-mechanism, and complexity.
1 A high-level domain ontology is a systematic account of the basic

components, the primitives, that will be used in the system. Any-

thing the system will be able to do builds on this ontology. This

holds also for the communication with the environment.
1 A low-level speci®cation is the equivalent of a domain ontology

for a robot: It includes the body, the sensory and motor systems,

and potential connections. Robots should be speci®ed in terms of

low-level speci®cations rather than high-level ontologies. Hybrid

speci®cations should be avoided.
1 Sensor spaces typically have very large numbers of states. To make

them manageable, we need to exploit constraints that we get from

interaction with the environment.
1 The term ``emergence'' is used primarily in three different ways: (1)

something surprising and not fully understood, (2) a property of a

system not contained in any one of its parts, and (3) behavior that is

not preprogrammed that arises from agent-environment interaction.

De®nition (2) is the meaning intended in the self-organization and

arti®cial life communities, and (3) is the one in the autonomous

agents ®eld. Our goal in building autonomous agents is to design

for emergence.
1 When conducting agent experiments, the following steps must be

taken (though not necessarily in this order): decide on research

goal; de®ne tasks or desired behaviors and ecological niche; de®ne

low-level speci®cations; de®ne control architecture; choose a plat-

form; de®ne concrete experimental setup and experiments to be

run; formulate predictions; run experiments and collect data;

describe agent's behavior; and formulate explanations.
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