Logika PSY 481 Proč logika? • Dobře vytvořený systém reprezentace. • Dlouhá historie v oblasti filosofie a matematiky • Velká expresivní síla • Možnost použití pro kognitivní modelování • Užití: normativní, formální, psychologické Normativní aspekt • Objektivní vyjádření dobrého a špatného myšlení. • Definuje důležité aspekty racionality • Logika sleduje vyplývání předpokladů. Neřekne nám ale, zda jsou předpoklady pravdivé. • Iracionální předpoklady mohou vést k iracionálním závěrům. Normativní aspekt •V CS, stejně jako v dalších vědách, používáme logiku normativně pro evaluaci teorií. •Pokud se vědecká hypotéza ukáže jako nepravdivá, musíme jí modifikovat. •Vyplývání mezi hypotézami a teorií stojí na pravidlech logiky (pokud jsou hypotézy správně operacionalizovány) Analytická a logická pravdivost Výrok je analyticky pravdivý, je-li pravdivý pouze v důsledku významu slov, z nichž se skládá. Pravdivost 1.kontingentní, empirická, syntetická (v důsledku významu a stavu světa) 2.nutná, analytická (v důsledku pouze významu) Pravdivost a validita •Pokud jsou pravdivé předpoklady, musí být pravdivý i závěr (vyplývání) vyplývání ≈ 'zachovávání pravdivosti' •Závěr může být pravdivý i pokud nejsou pravdivé předpoklady. Příklad: Lidé rádi nakupují. Karel je člověk. Karel má doma zlou ženu. Logická pravdivost •Vychází z teorie korespondence, podle které výrazy jazyka referují k objektům v externím světě. •Jedná se o jednosměrný vztah. Změny v externím světě znamenají změny v symbolické abstrakci, ale nikoliv opačně. •Významy mají svou kauzální příčinnost v externím (nesymbolickém) prostředí. Logikové od tohoto faktu, počínaje Fregem (2001), abstrahují a zajišťují korespondenci symbolické roviny s externím prostředím pomocí pravdivostní hodnoty, která je pouze součástí symbolické roviny. Psychologický aspekt Psychologistické koncepce logiky Logika = nauka o tom, jak se dostáváme od jedné pravdivé myšlenky k jiné (či jak bychom to měli v ideálním případě činit) Hilbert: "zaprotokolování pravidel, podle kterých skutečně postupuje naše myšlení" Psychologický aspekt Problémy s hranicemi Kdy jde již o vyplývání, a kde jenom o empiricky podmíněnou závislost? (vyplývá např. Výrok Bimbo má plíce z výroku Bimbo je slon?) Kdy jde o logické vyplývání, tj. co to jsou logické konstanty? (mají například anglické členy (the a a) povahu logických konstant?) Psychologický aspekt Formální logika Co nejmenší počet operátorů Bezesporný popis světa Pravidlo Ockhamovy břitvy Mentální logika Postavena na sémantice Spíše ve formě modelů Inferenčních schémata Common sense Dynamičnost, paralelnost, komplexnost Historie logických systémů - Aristoteles (5. st. před. n.l.) je zakladatelem logiky jakožto nástroje (řecky organon) poznání a uvažování; aristotelský sylogismus ( fragment predikátové logiky) - stoikové – výroková logika - středověk – scholastikové rozvíjeli aristotelský sylogismus (logika byla součástí tzv. trivia) Moderní logika - předchůdce Gottfried Wilhelm Leibnitz (pokud vznikne mezi filosofy spor, tak si své argumenty zapíší a „spočítají“, který argument je korektní a jehož závěr je platný); též Bernard Bolzano (první definice vyplývání); - bezprostřední předchůdci: George Boole (booleova algebra), či Charles Dodgeson (=Lewis Caroll – Alenka v říši divů), Charles Sanders Peirce; - konec 19. st., zakladatelé zejména Gottlob Frege (logicismus: snaha doložit, že všechna matematika je odvozena z logiky), Bertrand Russell (rovněž logicismus, dále významné uplatňování ve filosofii); vybudování predikátové logiky; - predikátová logika uplatňována při zkoumání základů matematiky: Alonzo Church, Kurt Gödel, aj.; matematická logika se začíná vyvíjet jiným směrem, než filosofická logika Historie logických systémů - moderní logika uplatněna jako základní nástroj tzv. logického novopositivismu (Vídeňský kruh, Rudolf Carnap, ale i Ludwig Wittgenstein) - Gödelovy objevy vedou k obratu pozornosti na výzkum algoritmů a rekurzívních funkcí Alonzo Church¸ Alan Turing, Turingův stroj, Church-Turingova teze; - Alfred Tarski definuje moderním způsobem vyplývání a korespondenční teorii pravdy, vybudoval teorii modelů; - modální logika (s operátory „je nutné“, „je možné“), C.I. Lewis, Ruth Barcan Marcus, sémantická reforma (60.léta): Saul Kripke (bohaté využití ve filosofii) - vícehodnotové logiky postupně vedou k současné fuzzy logice - v průběhu 60. let vzniká intenzionální logika - Richard Montague - Richard Montague: teze, že není žádný rozdíl mezi umělými (tj. formálními) jazyky logiky a jazyky přirozenými (jakými jsou čeština, angličtina apod.) - v současnosti jsou vyvíjeny hyperintenzionální logiky (Pavel Tichý) - v současnosti dochází i k pokusu změnit paradigma logiky (logika na základě teorie her - Jaakko Hintikka, dynamická logika, nonmonotonní logiky) Analytická filosofie Základní rozdíl mezi analytickou a fenomenologickou filosofii: (objektivní x subjektivní) Analytická filosofie - alternativa k intencionalitě (mimo pojem intence). Východisko: Svět se analyzuje pomocí řečových aktů. Kritika fenomenologie Pokud začneme analýzu ponořeni do subjektivity, už se z ní nedostaneme. Pouze jazyk nám umožní objektivní analýzu. Gottlob Frege Pojmové písmo Navazuje na Leibnitzův projekt mathesis universalis. Soubor symbolů který dokáže formalizovat jazyk jako uzavřený a konsistentní systém. Čísla definuje jako vlastnosti pojmů. Základem je vyplývání - koherenční teorie pravdy Významem je podle něj pravdivostní hodnota kterou přiřadíme výroku (pravda-nepravda) Podle Frega je symbolická logika jazykem, médiem souzení, ze kterého nelze vystoupit ven. Pojem funkce Fregeho analýza pojmu funkce vychází z úvahy, že výrazy, ať to jsou výroky přirozeného jazyka (případně jim odpovídající myšlenky), či aritmetické formule, můžeme rozložit do dvou částí, z níž jedna je relativně samostatná ("jméno"), druhá pak nesamostatná ("predikát")."Všechny části myšlenky nemohou být uzavřeny" píše Frege, "alespoň jedna musí být nenasycena nebo predikativní, jinak by do sebe nepasovaly." Příklad: Caesar ovládl Galii Ceasar - samostatná, ovládl Galii - nesamostatný predikát. Logika Podstatná část výsledku Fregovy práce se stala základem moderní logiky. Frege ale připouštěl, aby se predikáty mohly transformovat v termy, což vedlo k chybám v jeho systému. V roce 1902 upozornil na mezeru v jeho Zákonech mladý Bertrand Russell. Poukázal že jeho systém může obsahovat výrok, který je pravdivý právě když je nepravdivý - má jednu i druhou pravdivostní hodnotu. Jedná se o paradox, kdy množina považuje sebe sama jako svůj prvek. Subjektivita Frege oproti Husserlovi tvrdí, že poznávání není konstruktivní činnost (subjektivizace), ale pouze se zmocňujeme toho, co je k dispozici. Abstraktní myšlenky neexistují ani v našem vnitřním intersubjektivním světě ani ve vnějším reálném světě. Je třeba postulovat třetí říši - platonismus - intersubjektivní, která nemá charakter vnějšího světa. Shrnutí Gottlob Frege: • Systematické užití symbolických prostředků • Základní zákony logických operátorů a kvantifikátorů • Uchopení pojmů třída funkce, pojem • Základy predikátového počtu • Základy formální logiky • Oddělení logiky od psychologie • Sémantika bez psychologie • Sémantická analýza Bertrand Russell Poukázal na rozdíl mezi povrchovou a hloubkovou strukturou jazyka, tak jak později pracoval v lingvistice Chomsky. Ztotožnil hloubkovou strukturu s logickou strukturou. Např. podle Quinea je logická forma revizí gramatické struktury. Pro Russella je důležité zachytit podstatné znaky vyplývání. Oproti Fregemu vidí Russell převod do logické formy úlohu netriviální. Princip bludného kruhu Russelův paradox Aplikujeme-li princip bludného kruhu na funkce, pak dostáváme princip, že žádná funkce nemůže být prvkem svého vlastního definičního oboru, tedy že nemůže být aplikována sama na sebe. Tím už je blokován i paradox, který je fatální pro systém Fregův. Podobně jako jsme dostali hierarchii výroků, dostáváme hierarchii funkcí: funkce prvního řádu jsou ty, jejichž definiční obor je tvořen výhradně ne-funkcemi, funkce druhého řádu mají v definičním oboru funkce prvního řádu atd. Pro množiny pak dává princip bludného kruhu pravidlo , že žádná množina nemůže být prvkem sebe sama. Obecněji může množina obsahovat jen množiny řádu nižšího, než je sama. Rozvoj formální logiky Výrokový počet (kalkul) - zachycuje vyplývání v rámci množiny prvků, které vzniknou z nějaké dále neanalyzované množiny výroků elementárních , spojováním pomocí logický operátorů AND, OR, NOT, IF THEN, IFF. Pravdivostní hodnota je jednoznačně dána. Hilbert - úplná formalizace logiky, matematiky, opak Fregeho, důsledek a existence je pravdivostní hodnotou. Brouwer - intunicionistická logika - odmítnutí zákona vyloučení třetího . Pravdivost=konstruktivní dokazatelnost . Nepřijímá důkaz sporem, některé výroky nejdou dokázat ani vyvrátit (kontextualismus) Alfred Tarski Tarski - logika nedokáže vysvětlit svůj základní mechanismus vyplývání. Také nedokáže pracovat s nekonečnem, jelikož výraz "všechny" a "každý" musí rozložit na výčet všech instancí. Následně se v Tarského pracích (1944) objevuje kritika koncepce pravdivostní hodnoty přímo v jazyce. Postuluje metajazyk, ve kterém je možno pravdivost vyjádřit. Tarského metajazyk je založen na T-schématech, tvořících spojení mezi jazykem a jeho sémantickou metavrstvou . Metajazyk je nazírán jako aktuální stav věcí ve světě. Metalogiky – Skolem, Gödel Gödelův paradox Pokusíme se roztřídit všechny pravdivé sentence do dvou skupin: •pravdivé, nedokazatelné 2. pravdivé, dokazatelné. Gödel sestrojil sentenci , která tvrdí, že patří do skupiny 2 a zní „nejsem v systému dokazatelná". Pokud je sentence nepravdivá, je v systému dokazatelná. Pak ale nemůže být dokazatelná, protože není pravdivá. Musí tedy být pravdivá, ale je nedokazatelná. Rudolf Carnap Logická stavba světa (1928) Hierarchická konstrukce entit světa za pomocí entit primitivních. Kořeny v empirismu. Základem všeho jsou jevy,a vše je na jevy redukovatelné. Pozitivismus (logická analýza jazyka,logický pozitivismus, logický empirismus) Vídeňský kruh - Neurath, Schlick, Carnap, ale i Godel, Tarski, Wittgenstein, Einstein. Pokud chceme otázku řešit, musíme vědět, zda má smysl (kořeny Wittgensteinova prvního období) Logická analýza metafyzických výroků ukázala, že to nejsou žádné výroky, jsou pouze gramaticky správné, ale jsou pouze zdáním výroků. Otázka smyslu je řešena pomocí verifikace (empirismus) Např. Heiddegerův výrok "nicota nicuje" - není výrok - už Russell upozornil že výroky obsahující slovo nic mají smysl ukrytý v hloubkové struktuře a ne v povrchové. Protokoly Sémantické přesahy Carnap dělí jazyk na: Syntaxe, sémantiky a pragmatiky. Sémantiku de facto ztotožňuje s Tarskeho množinovou interpretací. Meaning and Necessity - 1947 Navrhuje nahradit Fregeho význam a smysl pojmy extenze a intenze. Extenze - je to, co mají společného výrazy, které jsou ekvivalentní (oboustranná implikace pro výroky, rovnost pro termy, ekvivalence pro všechny argumenty u predikátů). Intenze - dovádí až k pojmu možného světa. Obrat k jazyku Rozšíření logiky Saul Kripke Doplnil Lewisovu modální logiku o teorii modelů - ne přímo pravdivostní hodnoty ale funkce z množiny do množiny pravdivostních hodnot. Relativizace pravdivostních hodnot = možné světy. Intenze je extenze relativizovaná k možným světům. Extenze je pravdivostní hodnota a intenze funkce z možných světů do pravdivostních hodnot. Chomsky přistoupil k jazyku jako k matematické struktuře. Rozvoj v oblasti syntaxe, problémy v oblasti sémantiky. Montague - první ucelená intenzionální logika Tichý - transparentní intenzionální logika - rozšířená Churchovy teorie typů o abstraktní kategorii možných světů. V posledních letech kritika intenzionální logiky - nedokáže uchopit sémantiku přirozeného jazyka dokonale. Problémy s matematikou (stejná ve všech možných světech). Neschopnost zachytit dynamický aspekt. Možné světy Nemožné možné světy Willard Van Orman Quine Willard Van Orman Quine Gavagai Donald Davidson Quineovy myšlenky rozpracoval Davidson v zkoumání korespondence pravdy se skutečností. Problémem je, že pojem odpovídá celku zkušeností a zároveň celku faktů. To nepřidává pojmu "být pravdivý" nic jednoduchého a srozumitelného. Což souvisí s relativismem. Nejsme-li schopni vysvětlit korespondenci struktury výroku se strukturou světa, můžeme to zkusit naopak. Pravda se stává z předmětu metafyziky jejím nástrojem. Typy logik Formální aspekt • Matematická logika nám dává precizní nástroj pro formulace argumentů. • V matematické logice jsou sémantika a syntax úzce svázány. Dochází v podstatě k redukci sémantiky na funkci syntaxe. Přehled logických systémů Obecně: Extenzionální logiky Intenzionální logiky Hyperintenzionální logiky Jiné typy logik Konkrétně: Propoziční logika Predikátová logika 1. řádu Modální logika Další variace a kombinace Každý systém se soustřeďuje na určitý segment přirozeného jazyka- Jeden systém může obsahovat jiný jako svoji podmnožinu. Přehled logických systémů 'klasické' vs. 'neklasické' logiky ‚Klasická' logika (klasický výrokový počet a klasický predikátový počet 1. řádu) není historicky žádným 'přirozeným druhem', jako taková se konstituovala se vlastně až v druhé čtvrtině dvacátého století; má však specifické 'příjemné‚ vlastnosti. 'matematická' vs. 'filosofická' logika (1) matematická se zabývá matematickými aspekty, filosofická nematematickými (2) matematická se zabývá klasickou logikou, filosofická vším ostatním Přehled logických systémů Klasická výroková logika Výrokové symboly – V1,V2… Operátory – NOT,AND,OR,IF Axiomy – triviálně dokazatelné Odvozovací pravidla Přiřazujeme pravdivostní hodnotu P/N Přehled logických systémů Klasická predikátová logika Je tvořena: Individuálními konstantami T1,T2… Proměnnými x1,x2…. N-árními predikátovými konstantami P1,P2… N-árními funkčními konstantami F1,F2… Logickými operátory NOT,AND,OR,IF) Kvantifikátorem VŠECHNO Přehled logických systémů Modální výroková logika Rozšíření klasické výrokové logiky o symbol NUTNĚ Operuje s pojmem možného světa Je úplný a rozhodnutelný Příště V následující hodině se budeme zabývat Umělou inteligencí a chatterboty Článek k prostudování: A. Turing Computing Machinery and Intelligence (1950) V informačním systému jej naleznete v sekci studijních materiálů. Můžete jej nalézt také na webu www.loebner.net/prizef/turingarticle.html Konec Děkuju za pozornost