Wittgenstein a Church­Turingova teze Jakub Güttner, guttner@fit.vutbr.cz, leden 2002 Abstrakt 7DWR HVHM VH ]DEYi ILORVRILFNPL QiPLWNDPL NWHUp Y]QHVO /XGZLJ :LWWJHQVWHLQ Y* L 7XULQJRY YHU]L &KXUFKRY\ WH]H 2EVDKXMH VWUX Q ~YRG GR &KXUFKRY\ L 7XULQJRY\ WH]H VSROX V LGHQWLILNDFt ILORVRILFNFK DVSHNW* 7XULQJRYD S"tVWXSX D MHMLFK VRXYLVORVWt V 0HFKDQLVWLFNRX WH]t 'iOH REVDKXMH REMDVQQt MiGUD :LWWJHQVWHLQRYFK QiPLWHN GLVNXVL R "t]HQt VH SUDYLGO\ D ]DP\OHQt QDG VDPRWQP NRQFHSWHP YSR WX 7XULQJ WYUGLO çH VWURM P*çH P\VOHW ]DWtPFR :LWWJHQVWHLQ VH VQDçt XNi]DW çH WDNRYi S"HGVWDYD je absurdní. .Ot RYiVORYD :LWWJHQVWHLQ 7XULQJRYD WH]H &KXUFKRYD WH]H 0HFKDQLVWLFNi WH]H XPOi LQWHOLJHQFH filosofie matematLN\ "t]HQt VH SUDYLGO\ V\QWD[H D VpPDQWLND Abstract This essay looks at Ludwig Wittgenstein's objections to Turing's version of the Church Thesis. It contains a brief introduction to Church and Turing Theses together with an identification of the philosophical aspects of Turing's approach and their connection with the Mechanist Thesis. It also contains an explanation of the crux of Wittgenstein's objections, a discussion on rule­following and an analysis of the concept of computation. Turing claimed that a machine can think, while Wittgenstein tries to show that such claim is absurd. Keywords Wittgenstein, Turing Thesis, Church Thesis, Mechanist Thesis, Artificial Intelligence, Filosophy of Mathematics, Rule­following, Syntax and Semantics Úvod --P*çHVWURMP\VOHW" $ODQ 7XULQJ MH MHGQtP ] OLGt NWH"t EH]SRFK\E\ ]iVDGQtP ]S*VREHP RYOLYQLOL Qi GQHQt pohled na informatiku. Ve 40. letech 20. století se zabýval studiem rekurzivních IXQNFt SR]GOL VH YDN ]D DO YQRYDW WpPDWX XPOp LQWHOLJHQFH D X tFtFK VH V\VWpP* 6WDO VH ]DVWiQFHP 0HFKDQLVWLFNp WH]H NWHUi Y SRGVWDW "tNi çH OLGVN PR]HN MH PRçQR PRGHORYDW SR tWD HP çH O]H Y\WYR"LW XPORX LQWHOLJHQFL Y SUDYpP VORYD VP\VOX Ludwig Wittgenstein se ve svém díle mimo jiné zabýval filosofií matHPDWLN\ D RGYiçLO VH QDSDGQRXW ]iYU\ QD NWHUFK 7XULQJ ]DORçLO VYRX FHVWX N XPOp LQWHOLJHQFL 1HVRXKODVLO V WtP çH VWURM VH P*çH X LW PtW MLVWp NRJQLWLYQt YODVWQRVWL D Y SUDYpP VORYD VP\VOX SR tWDW 9 WpWR HVHML VL V REPD VRN\ WURFKX SRSRYtGiPH D QHcháme si MHMLFK Qi]RU\ EOtçH REMDVQLW Churchova teze 9HFKQ\ HIHNWLYQ Y\ tVOLWHOQp IXQNFH MVRX SDUFLiOQ UHNXU]LYQt Wittgenstein: $KRM $ORQ]R -VHP WH ]URYQD YH S"L V $ODQHP 7XULQJHP D SRW"HERYDOL E\FKRP DE\V QiP S"LSRPHQXO WR FR WYUGt YH VYp WH]L ] OiQNX 7KH &RQVWUXFWLYH Second Number Class". Church: We define the notion ... of an effectively calculable function of positive integers by identifying it with the notion of a recursive function of positive integers (or of a lambda-definable function of SRVLWLYH LQWHJHUV $ HVN\ 'HILQXMPH SRMHP HIHNWLYQ Y\ tVOLWHOQp IXQNFH QDG S"LUR]HQPL tVO\ WDN çH ML ]WRWRçQtPH V SRMPHP rekursivní funkce QDG S"LUR]HQPL tVOL QHER SRMPHP IXQNFH Y ODPEGD-kalkulu nad S"LUR]HQPL tVO\ -LQDN "H HQR VQDçtP VH QMDNP IRUPiOQtP ]S*VREHP GHILQRYDW FR MH WR HIHNWLYQ Y\ tVOLWHOQi IXQNFH $ MDNR NULWpULXP WRKR ]GD MH IXQNFH HIHNWLYQ Y\ tVOLWHOQi VWDQRYXML WR çH MH SDUFLiOQ UHNXU]LYQt Wittgenstein: 7DNçH WD WH]H YODVWQ QHQt QMDNp WYU]HQt NWHUp E\ E\OR W"HED dokázat QHER Y\YUiWLW DOH GHILQLFH .G\E\FKRP REMHYLOL IXQNFL NWHUi QHQt SDUFLiOQ UHNXU]LYQt ] Wp WYp GHILQLFH E\ Y\SO\QXOR çH QHP*çH EW SRYDçRYiQD ]D HIHNWLYQ Y\ tVOLWHOQRX -DN MVHP Xç "HNO YH 9tGHVNpP NUXKX WR VORYR QHP*çH R]QD XMH logickou QHPRçQRVW D MGH R SUDYLGOR NWHUp XGiYi IRUPX SRSLVX QHç R WYU]HQt Church: -LVW YçG\( SRMHP HIHNWLYQ Y\ tVOLWHOQi IXQNFH QHE\O S"HGWtP QLMDN GHILQRYiQ VQDG MHQ LQWXLWLYQ MDNR SRVWXS NWHU QHS"HVDKXMH QDH OLGVNp YSR HWQt schopnosti. Však také koOHJD *|GHO SURWHVWRYDO çH MH YHOPL QHXVSRNRMLYp definovat HIHNWLYQ Y\ tVOLWHOQp IXQNFH MDNR QMDNRX W"tGX DQLç E\FK QHMG"tY XNi]DO çH YHREHFQ S"LMtPDQp YODVWQRVWL NRQFHSWX HIHNWLYQt Y\ tVOLWHOQRVWL PXVHMt QXWQ YpVW SUiY N WpWR W"tG Wittgenstein: 6YP ]S*VREHP Y\FKi]t ] +LOEHUWRYD S"HGSRNODGX çH YHFKQ\ IXQNFH NWHUp P*çH ORYN VSR tWDW MVRX HIHNWLYQ Y\ tVOLWHOQp Y WRP WYpP VORYD VP\VOX $ MHVWOL VH QHSOHWX SUiY WHQWR QHGRORçHQ S"HGSRNODG REMDVQLO $ODQ 7XULQJ YH VYp práci "On Computable Numbers With an Application To the (QWVFKHLGXQJVSUREOHP 3RNXVLO VH GRNi]DW çH 7XULQJ*Y VWURM RGSRYtGi ]PLRYDQP OLGVNP YSR HWQtP VFKRSQRVWHP 3URWR DVL E\OD MHKR YHU]H WYp WH]H WDN ~VSQi 9 NDçGpP S"tSDG GtN\ ]D Y\VYWOHQt D Mi OHWtP ]D $ODQHP Turingova teze 9HFKQ\ HIHNWLYQ Y\ tVOLWHOQp IXQNFH MVRX Y\ tVOLWHOQp 7XULQJRYP VWURMHP Turing: We may compare a man in the process of computing a real number to a machine which is only capable of a finite number of conditions which will be called m-configurations. The machine is supplied with a "tape"... running through it and divided into sections... each capable of bearing a "symbol"... All effective numbertheoretic functions (viz. algorithms) can be encoded in binary terms, and these binary-encoded functions are Turing machine computable. 3"HORçHQR GR HWLQ\ ORYND NWHU SURYiGt YSR HW UHiOQpKR tVOD P*çHPH S"LURYQDW NH VWURML NWHU MH VFKRSHQ QDFKi]HW VH Y Y MHGQRP ] NRQH QpKR SR WX VWDY* NWHUp EXGHPH QD]YDW m-konfigurace. Stroj má k dispozici "pásku"... která jím prochází a je ro]GOHQi QD iVWL ] QLFKç NDçGi REVDKXMH QMDN V\PERO 9HFKQ\ HIHNWLYQ Y\ tVOLWHOQp tVHOQp IXQNFH QHEROL DOJRULWP\ PRKRX EW ELQiUQ ]DNyGRYiQ\ D W\WR ELQiUQ ]DNyGRYDQp IXQNFH MVRX Y\ tVOLWHOQp 7XULQJRYP VWURMHP Wittgenstein: Nebudu s tebou polemizovat o tom, jak zakódovat funkce a tuto NyGRYDQRX LQIRUPDFL PDQLSXORYDW SRPRFt 7XULQJRYD VWURMH 1HQt WR RVWDWQ MHGLQi YF NWHURX YH VYpP OiQNX WYUGt =DMtPDOR E\ P VSt FR StH Y WRP SDUDJUDIX Trocha epistemologie nikoho nezabije Turing: 9 WRP SDUDJUDIX Y\VYWOXMX D GRNOiGiP WYU]HQt çH P*çHPH ORYND NWHU SR tWi S"LURYQDW NH VWURML &LWXML &KRYiQt SR Wi"H MH YH NWHUpPNROL RNDPçLNX GiQR V\PERO\ QD NWHUp VH GtYi D MHKR VWDYHP P\VOL 3"HGVWDYPH VL çH RSHUDFH NWHUp SR Wi" SURYiGt E\FKRP UR]ORçLOL QD MHGQRGXFKp ~NRQ\ NDçG WDNRY ~NRQ VH VNOiGi ] QMDNp ]PQ\ I\]LFNpKR V\VWpPX VHVWiYDMtFtKR ] SR Wi"H D MHKR SiVN\ 7\WR MHGQRGXFKp ~NRQ\ PXVt WHG\ EW D ]PQ\ V\PEROX E ]PQD SR]RUQRVWL SR Wi"H ] MHGQRKR PtVWD QD SiVFH QD jiné místo v jeho omezeném sousedství... ÔNRQ NWHU EXGH SURYHGHQ MH XU HQ VWDYHP P\VOL SR Wi"H D VOHGRYDQPL V\PERO\ 1\Qt P*çHPH VHVWURMLW VWURM NWHU EXGH SURYiGW SUiFL WRKRWR SR Wi"H .DçGpPX VWDYX P\VOL RGSRYtGi m-konfigurace stroje... a tak dál. Mám-OL WR ]NUiWLW REMDVQLO MVHP WHQ QHXU LW SRMHP SR tWDW MDNR ]SUDFRYiYDW Turingovým strojem". Wittgenstein: 7DNçH WX Xç QHMGH R PDWHPDWLNX DOH R ILORVRILL .RQNUpWQ E\FK "HNO HSLVWHPRORJLL QDXNX R KUDQLFtFK D PRçQRVWHFK SR]QiQt 7HQ WY*M OiQek byl tedy WDNRYP VDWNHP PDWHPDWLN\ S"HFKRGRYp WDEXON\ QHUR]KRGQXWHOQp SUREOpP\ U*]Qp ]EVLOp IXQNFH D ILORVRILH &R VH PDWHPDWLN\ W H VPHNiP S"HG WYP SR]RURYiQtP çH SDUFLiOQ UHNXU]LYQt IXQNFH MH PRçQp LPSOHPHQWRYDW SRPRFt mechanického stroje. 2YHP VRX DVQ WYUGtP çH PiP SUiYR SROHPL]RYDW R Wp ILORVRILFNp iVWL Mechanistická teze Proces lidského myšlení lze simulovat strojem. Turing: -LVW Mi RVREQ PiP ]D WR çH WD Pi SUiFH E\OD GR ]QD Qp PtU\ S"HORPRYi D WR L SR ILORVRILFNp VWUiQFH 1MDNRX GREX SR MHMtP QDSViQt MVHP VH S"HVWDO ]DEYDW UHNXU]LYQtPL IXQNFHPL D YUKO MVHP VH QD XPORX LQWHOLJHQFL &HVWX PL RWHY"HOD SUiY Pi YHU]H &KXUFKRY\ WH]H Wittgenstein: 1D SUYQt SRKOHG VH DOH ]Gi çH VH VQDçt XNi]DW MDN MH WHQ VWURM ]FHOD QHYGRP D PHFKDQLFN SRX]H VH WXS "tGt SUDYLGO\ D LQWHOLJHQFH E\ VHV Y QP QHGR"H]DO Turing: 6DPR]"HMP çH LQWHOLJHQFL QHY\WYR"t KUXERX VLORX -H W"HED S"HMtW N X tFtP VH SURJUDP*P '*OHçLWp YDN MH çH L X WFKWR VWURM* MH W"HED MHGQRWOLYp LQVWUXNFH SURYiGW PHFKDQLFN\ DQLç E\ MLP VWURM MDNPNROL ]S*VREHP UR]XPO ,QWHOLJHQFL VSt S*VREt FHONRYi VORçLWRVW WDNRYFK SURJUDP* Y\VWDYQFK QD HOHPHQWiUQtFK SUDYLGOHFK 3DN MH W"HED S"L]QDW çH SRVWXS "HHQt SUREOpPX MVPH QHPRKOL S"HGYtGDW Y RNDPçLNX NG\ MVPH GR VWURMH YNOiGDOL LQVWUXNFH D VWURM VH FKRYDO MDNR çiN NWHU VH RG VYpKR X LWHOH PQRKp QDX LO DOH YODVWQt StOt N WRPX MHW GDOt YGRPRVWL S"LSRMLO 3DN MVPH SRYLQQL X]QDW çH VWURM MHYt ]QiPN\ LQWHOLJHQFH 3RNXG MH VWURM VFKRSHQ PQLW VY*M YODVWQt SURJUDP QDS"tNODG QD ]iNODG KHXULVWLFNFK PHWRG NWHUp UR]L"XMt Ei]L ]QDORVWt QHER PQRçLQX SRXçtYDQFK SUDYLGHO P*çH VH UR]L"RYDW SR HW L VORçLWRVW SUREOpP* NWHUp MH VFKRSHQ "HLW Wittgenstein: 'RE"H D NWHUp iVWL VYp WH]H FKiSH MDNR ]iNODG\ SUR WHRULL XPOp inteligence? Problém zastavení -- Entscheidungsproblem Turing: 8ç MVHP ]PLRYDO ~VHN VYp SUiFH YH NWHUpP MH GHILQRYiQ 7XULQJ*Y VWURM 3UYQtP G*YRGHP WHG\ MH çH GHILQLFH PpKR VWURMH POD REViKQRXW YHFKQR HKR MH VFKRSHQ OLGVN SR Wi" -H WX YDN MHW G*OHçLWMt WpPD D WR SUREOpP ]DVWDYHQt Wittgenstein: &R Pi SUREOpP ]DVWDYHQt VSROH QpKR V XPORX LQWHOLJHQFt" Turing: %H] QM E\FKRP VWiOL WYi"t Y WYi" ]RXIDOp GHWHUPLQLVWL QRVWL SURJUDP* SUR 7XULQJ*Y VWURM -DN E\ VH PRKO VWURM FKRYDW LQWHOLJHQWQ NG\E\ SRVWXSRYDO NURN ]D NURNHP SR Y\W\ HQp FHVW Dç QD MHMt NRQHF" = SUREOpPX ]DVWDYHQt QDRSDN SO\QH çH D NROL MH 7XULQJ*Y VWURM "t]HQ SUDYLGO\ ]GDOHND WR QH]QDPHQi çH YtPH MDNP ]S*VREHP XNRQ t VYRX LQQRVW 9çG\( FHO SULQFLS X tFtFK VH SURJUDP* VSR tYi Y WRP çH QHP*çHPH S"HGSRYGW MDNP ]S*VREHP VH EXGH MHMLFK LQQRVW Y\YtMHW 3UREOpP ]DVWDYHQt XND]XMH çH XPOi LQWHOLJHQFH QHH[LVWXMH MHQ Y REODVWL QHUHiOQFK S"HGVWDY Wittgenstein: 7H PL SURVtP GRYRO VH SRSUYp SR"iGQ R]YDW 0iP ]D WR çH takováto LQWHUSUHWDFH 7XULQJRY\ WH]H ]NUHVOXMH MHMt VNXWH Q PDWHPDWLFN Y]QDP 3UREOpP VSR tYi Y UR]GtOX PH]L 574;E/QtP YSR WX a mechanickým postupem. Tento rozdíl MVL YH VYpP OiQNX PtUQ ]DWHPQLO D SR]GML Y SRGVWDW RGVXQXO VWUDQRX FRç YHGOR Dç N 0HFKDQLVWLFNp WH]L 3RVORXFKHM GiO D SRVX ViP Wittgensteinova kritika Normativnost matematiky Wittgenstein: =RSDNXMX WR FR MVHP Xç XYHGO YH VYFK Remarks of the Foundations of Mathematics: 'i VH Y*EHF "tFL çH SR tWDFt VWURM SR tWi" 3"HGVWDY VL çH SR ítací stroj Y]QLNO QiKRGRX SDN MHM QNGR REMHYLO D QiKRGQ QD QP VWLVNO QNROLN WOD tWHN QHER MHW OpSH çH S"HV QM S"HEKOR ]Yt"H D R WOD tWND ]DYDGLOR 6WURM GtN\ WRPX VSR tWDO NROLN MH [ Pro matematiku je nezbytné, aby se její symboly pouçtYDO\ Y SU*EKX FHOpKR YSR WX 7HSUYH SRXçLWt PLPR PDWHPDWLNX význam V\PERO* PQt KUX VH V\PERO\ v PDWHPDWLNX .G\ç ]PQtP Y PtVWQRVWL SRVWDYHQt çLGOt ] jednoho na druhé, QHPRKX WXWR ]PQX QD]YDW ORJLFNRX LQIHUHQFt SRNXG RE SRVWDYHQt çLGOt QHPDMt çiGQRX OLQJYLVWLFNRX IXQNFL NURP VDPRWQp ]PQ\ SRVWDYHQt Turing: 1HQDSDGi GRXIiP PRMH ]iYU\ R WRP çH UHNXU]LYQt IXQNFH MVRX PHFKDQLFN\ Y\ tVOLWHOQp" 7R E\ VH WL YLFKQL Y\VPiOL Wittgenstein: 1H MGH PL R WR çH PDWHPDWLFN SRMHP SURYiGQt YSR WX QD URzdíl od HPSLULFNpKR SRMPX SR tWiQt QHP*çH RGGOLW RG QRUPDWLYQRVWL PDWHPDWLN\ 3"HGVWDY VL çH SR tWDFt VWURMH VH QRUPiOQ Y\VN\WXMt Y S"tURG DOH OLGp MH QHMVRX VFKRSQL UR]EtW DE\ QDKOpGOL GRYQLW" !HNQPH çH MH WLWR OLGp SRXçtYDMt SRGREQP ]S*VREHP MDNP P\ SR tWiPH D NROL QHWXt QLF R SULQFLSX MHMLFK IXQJRYiQt 'tN\ WRPX QDS"tNODG V SRPRFt SR tWDFtFK VWURM* S"HGYtGDMt U*]Qp GMH DOH PDQLSXODFH VH VWURML MH SUR Q H[SHULPHQWRYiQtP 7PWR OLGHP FK\Et PDWHPDWLFNp NRQFHSW\ NWHUp PiPH P\ DOH tP MH nahrazují? 3"HGVWDY VL PHFKDQLVPXV MHKRç SRK\E E\FKRP FKiSDOL MDNR JHRPHWULFN L SRK\ERY G*ND] .G\ç QNGR RWi t YRODQWHP MLVW E\ R QP QLNGR QRUPiOQ QH"HNO çH QFR GRND]XMH 1HQt WR VQDG VWHMQ S"tSDG MDNR NG\ç QNGR H[SHULPHQWiOQtP ]S*VREHP Y\WYi"t D PQt XVSR"iGiQt V\PERO* L NG\ç E\ VH YVOHGN\ MHKR LQQRVWL GDO\ FKiSDW MDNR G*ND]" 0DWHPDWLND MH QDRSDN QRUPDWLYQt '*ND] P YHGH N WYU]HQt ´7RKOH musí platit." 0DWHPDWLFN G*ND] RGKDOXMH pravidla matematické gramatiky 3URPL çH SR"iG cituji z WFK Foundations DOH 1H]DSRPHPH çH Y PDWHPDWLFH MVPH S"HVYG HQL R gramatických WYU]HQtFK WDNçH YUD]HP WRKR çH MVPH G*ND] S"LMDOL MH RFKRWD S"LMPRXW SUDYLGOR 9çG\( G*ND] MH VRX iVWt JUDPDWLN\ NWHUi GHILQXMH Xç VDPRWQRX K\SRWp]X '*ND] PQt JUDPDWLNX QDHKR MD]\ND L QDH NRQFHSW\ 9\WYi"t QRYi VSRMHQt D GRGiYi MLP SRW"HEQp NRQFHSW\ Pravidla a opice Turing: /XGZLJX QHY]GDOXMH VH QiKRGRX QMDN PRF RG 7XULQJRYFK VWURM*" Wittgenstein: 3UiY VH FK\VWiP FHO WHQ DUJXPHQW REUiWLW SURWL 7XULQJRYP VWURM*P tak poslouchej dál. Dostal jsem se k SULQFLSX "t]HQt VH SUDYLGO\ 6QDG VH PQRX souhlasíš v WRP çH PDWHPDWLND MH SRVWDYHQi QD "t]HQt VH SUDYLGO\ VWHMQ WDN MDNR NRQFHSW SR tWiQt QHER SURYiGQt YSR WX 0RMH ]iVDGQt RWi]ND ]Qt ]D MDNFK okolností mohX R VRE QHER R QMDNp RSLFL "tFL çH SR tWiP QHER Y S"tSDG Wp RSLFH çH VH "tGt QMDNP SUDYLGOHP " Turing: 1R NG\E\ W"HED WD RSLFH NUHVOLOD QD ]H WDNRYpKOH SUDYLGHOQp ]QDN\ #­@­@@­ "HNO E\FK çH VH DVL "tGt QMDNP SUDYLGOHP Wittgenstein: 7H s WHERX PXVtP QHVRXKODVLW 9]SRPH VL FR MVHP "tNDO R WRP RWi HQt YRODQWHP D PDQLSXODFt VH V\PERO\ -- QHVWD t MHQ Y\P\VOHW SUDYLGOR SRGOH NWHUpKR MH RWi HQt YRODQWHP PDWHPDWLFN G*ND] , NG\ç E\FK QDHO QMDNp SUDYLGOR NWHUpPX GDQi LQQRVW Y\KRYXMH QHPXVt WR ]QDPHQDW çH VH GDQ REMHNW WtP SUDYLGOHP "tGt 2Wi]ND ]Qt ]D MDNFK RNROQRVWt P*çHPH "tFL çH ta opice se sama od VHEH "tGLOD QMDNP SUDYLGOHP" Turing: $VL Pi SUDYGX çH MGH R QFR YtF QHç MHQ RSDNRYDQp FKRYiQt 1HPRKX RSLFL DXWRPDWLFN\ S"LVRXGLW QMDNRX PRWLYDFL NWHURX VL ViP Y\P\VOtP 0i QMDN nápad? Wittgenstein: 9\S*M tP VL S"tNODG RG NROHJ\ :DQJD 3"HGVWDY VL çH LPSDQ] MHGQRX QD UWQH QD ]HP REUD]HF ´#­" a druhý pak vedle do písku vyryje "@­@­@­@­@­". 1HGi VH "tFL DQL WR çH WHQ SUYQt VWDQRYLO SUDYLGOR DQL çH MHM WHQ GUXK DSOLNRYDO D( Xç VH Y MHMLFK P\VOL RGHKUiYDOR FRNROLY .G\E\FKRP YDN QD QLFK SR]RURYDOL QDS"tNODG WR çH MHGHQ GUXKpPX FRVL Y\VYWOXMH QFR PX S"HGYiGt D GUXK KR QDSRGREXMH SURYiGt ~VSQp D QH~VSQp SRNXV\ D GR Ni VH RGPQ\ QHER WUHVWX NG\E\ WHQ GUXK NWHU N WRPX E\O Y\FYL HQ Y\WUYDOH NUHVOLO VpULL Y]RU* NWHUp QLNG\ S"HGWtP QHYLGO MDNR YH YH XYHGHQpP S"tNODGX SDN E\FKRP ]"HMP POL "tFL çH SUYQt LPSDQ] ]DSLVRYDO SUDYLGOD D GUXK VH MLPL "tGLO Turing: TDNçH E\ VH YODVWQ GDOR "tFW çH D NROL MH NRQFHSW DSOLNDFH SUDYLGHO QHRGP\VOLWHOQ VSRMHQ V SUDYLGHOQRVWt QHQt WR pouze SUDYLGHOQRVW 0\VOtP çH YtP R FR WL MGH 7DNçH SRNXG "HNQX çH VH QNGR "tGt SUDYLGOHP PXVt WD RVRED EW VFKRSQD GDQp SUDYLGOR W"HED Y\X RYDW Y\VYWOLW QHER XYpVW MDNR G*YRG VYpKR chování? Wittgenstein: 3"HVQ WDN .G\ç VH çiN YH NROH X t 3\WKDJRURYX YWX P*çH D QHPXVt SRFKRSLW R FR MGH 8U LW L W\ VL GRYHGH S"HGVWDYLW çH VH QD StVHPNX QDX t QD]SDP( SRW"HEQ Y]RUH HN D Y\SURGXNXMH VSUiYQp YVOHGN\ DQLç E\ WXLO R FR YODVWQ Y 3\WKDJRURY YW MGH Pokud chceme mluvit o aplikaci pravidel, chování sledovaného objektu musí být FKiSiQR MDNR QRUPDWLYQt $ WtP Pt"tP N VDPpPX MiGUX VYp QiPLWN\ 3R tWiQt MH WRWLç VRX iVWt PQRçLQ\ QRUPDWLYQtFK NRQFHSW* ]DWtPFR 7XULQJRY\ VWURMH QLNROL 3RXKp SURGXNRYiQt VSUiYQFK YVOHGN* QHVWD t N WRPX DE\FKRP PRKOL "tFL çH QNGR QHER QFR SR tWi Turing: $ SUR QH" 9çG\( SUiY Y 7XULQJRY WHVWX MGH R WR çH Pi VWURM ]D ~NRO produkovat stejné výstuS\ MDNp E\FKRP R HNiYDOL RG ORYND 8GiORVWL NWHUp VH RGHKUiYDMt QNGH ´]D SOHQWRX QHMVRX SRGVWDWQp Wittgenstein: -i WYUGtP çH Y S"tSDG SURYiGQt YSR WX SRGVWDWQp MVRX .G\ç VH W ]HSWiP MDN VH YSR WHP GRVSOR NH VSUiYQpPX YVOHGNX MDNRX PL QDEídneš RGSRY " Turing: 2GSRY Pi SRGOH P GY iVWL SUYQt ] QLFK MH SRVORXSQRVW GXHYQtFK VWDY* SR Wi"H L I\]LFNFK VWDY* VWURMH YL] SDUDJUDI\ D D GUXKi ]DKUQXMH SRSLV DOJRULWPX L SURJUDPX NWHU E\O N YSR WX SRXçLW SDUDJUDI D GiO Wittgenstein: -HQçH P\ S"HFH GLVNXWXMHPH R YSR WX D Mi PiP ]D WR çH ]G*YRGQQt MHKR VSUiYQRVWL E\ VH POR VNOiGDW ] SRVORXSQRVWL SRXçLWFK SUDYLGHO -- matematika MH S"HFH ]DORçHQi SUiY QD MHMLFK SRXçtYiQt D SUiY WDWR SUDYLGOD ]DUX XMt çH výsledek bude správný! -DN P*çH EW VSUiYQRVW ]DUX HQD NG\ç YHGH N YVOHGNX MHQ VH]QDP MDNFKVL VWDY* P\VOL" Turing: 2 WR PL SUiY MGH 0*M VWURM WRWLç SURYiGt YSR HW PHFKDQLFNP ]S*VREHP 3URJUDP NWHU GR QM YORçtP REVDKXMH MHGQRWOLYi HOHPHQWiUQt SUDYLGOD SRGOH kterých sH YSR HW "tGt 9LPQL VL çH POXYtP R SUDYLGOHFK -- NDçGp ] QLFK MH VRX iVWt VWDQGDUGQtKR SRVWXSX YSR WX '*OHçLWp S"LWRP MH çH NDçGp ] WFKWR SUDYLGHO MH QDWROLN MHGQRGXFKp çH YODVWQ QHPi çiGQ NRJQLWLYQt Y]QDP QHER obsah. Aby ho stroj provedl, nemust VH VQDçLW KR QHMG"tY SRFKRSLW 7R SUDYLGOR MH SURVW WDN ]iNODGQt çH KR P*çH DSOLNRYDW LVW PHFKDQLFN\ Pravidla versus popisy, syntaxe versus sémantika Wittgenstein: %XGX SRNUD RYDW ]D WHEH 'RQDOG .QXWK Y\VYWOXMH çH DOJRULWPXV MH PQRçLQD SUDYLGHO QHER SRN\Q* SUR ]tVNiQt SRçDGRYDQpKR YVWXSX ] GDQpKR YVWXSX $OJRULWPXV VH Y\]QD XMH WtP çH YHFKQ\ QHMDVQRVWL PXVt EW Y\ORX HQ\ SUDYLGOD PXVt SRSLVRYDW RSHUDFH NWHUp MVRX WDN MHGQRGXFKp D GRE"H GHILQRYDQp çH MH P*çH vykonávat i stroj. Turing: Krásni GHILQLFH 1H]EYi QHç V Qt SOQ VRXKODVLW Wittgenstein: 1H]DUD]LOR W WYU]HQt çH ´SUDYLGOD SRSLVXMt RSHUDFH" 3UDYLGOR VH S"HFH Y\]QD XMH WtP çH QLF nepopisuje, DOH VWDQRYXMH ]S*VRE SRXçLWt QMDNFK NRQFHSW* 8]QiYiP çH MHGQRWOLYp NURN\ WYpKR VWURMH se chovají jako popisy operací, ale na UR]GtO RG WHEH P WR QHYHGH N 0HFKDQLVWLFNp WH]L DOH N ]DP\OHQt QDG WtP MHVWOL VH P*çHPH RGYiçLW MH QD]YDW jednoduchá pravidla. Turing: -i E\FK "HNO MHQ WR çH .QXWK SRSLVXMH DOJRULWP\ MDNR ]YOiWQt W"tGX IXQNFt (SURWRçH ]REUD]XMt YVWXS QD YVWXS S"L HPç S"LGiYi GYD SRçDGDYN\ -- aby se DOJRULWPXV GDO VSHFLILNRYDW MDNR VRXERU SUDYLGHO D DE\ WDWR SUDYLGOD POD ]KUXED VWHMQRX WULYLiOQt VORçLWRVW $ Mi GRGiYiP çH 7XULQJ*Y VWURM VH S"L VYp LQQRVWL "tGt SUiY WDNRYmi pravidly. Wittgenstein: $ S"HGSRNOiGi çH NH Y]QLNX XPOp LQWHOLJHQFH MH W"HED SRVWDYLW VWURM NWHU VH X t WtP çH SRFKRSt QMDNi SUDYLGOD D SDN MH SRXçtYi 2Wi]ND ]Qt ]GD P*çH být chápání vybudováno na zvládnutí "syntaktických instrukcí", kterými se "tGt MDN ORYN WDN VWURM $XWRPDWLFN\ S"HGSRNOiGi çH WY*M VWURM GHPRQVWUXMH VYRX VFKRSQRVW "tGLW VH MHGQRWOLYPL ´EH]REVDçQPL SRGSUDYLGO\ VNU]H WHQt WLVN D Y\PD]iYiQt V\PERO* QD SiVFH -VRX EH]REVDçQi SURWRçH MH VWURM PXVt SURYiGW EH] jakékoli inWHOLJHQFH D VFKRSQRVWL ]SUDFRYiYDW LQIRUPDFH Y QP REVDçHQp DOH VRX DVQ MVRX WR SRGSUDYLGOD DE\ VH MLPL PRKO "tGLW -i PiP DOH QiPLWNX MDN P*çH POXYLW R ´EH]REVDçQpP SUDYLGOH" -H WR SUDYLGOR NWHUp QLF QH"tNi" Turing: 6QDçtP VH WtP QD]QD LW çH VWURM provádí dedukci, která je zcela mechanická. Wittgenstein: $OH YçG\( WR MH ~SOQ VFHVWQp 6OX XMH GY QHVOX LWHOQp YFL -- logickou LQIHUHQFL D PDQLSXODFL VH V\PERO\ 0*çX SRURYQiYDW WYDU QHER YHOLNRVW EH]REVDçQFK V\PERO* DOH QHPRKX SURKOiVLW çH QMaký takový symbol vyplývá z MLQpKR 3RFKRSLW çH p implikuje q ]QDPHQi YGW MDN MH NRQFHSWXiOQt Y]WDK PH]L obsahem p a q UR]XPW WRPX çH q vyplývá z p .G\ç QNGR QD SR tWDFtP VWURML QiKRGQ ]Pi NQH WOD tWND [ D QNGH VH REMHYt QHGi VH "tFL çH E\ WHQ VWURM QFR VSR tWDO 6WURM SRX]H PDQLSXOXMH VH ]QDN\ D SRNXG ]QDN*P QHS"L"DGtPH QMDN VpPDQWLFN Y]QDP S*MGH MHQ R V\QWDNWLFNRX KUX Turing: 'RE"H DOH WD EH]REVDçQi SUDYLGOD Wittgenstein: 3URVtP W MHGQRGXFKRVW SUDYLGOD VH QHP*çH SOpVW V otázkou jeho VpPDQWLFNpKR REVDKX 3RNXG UR]ORçtP SRFKRSHQt VORçLWpKR SUREOpPX GR SRFKRSHQt MHKR MHGQRGXFKFK iVWt MH W"HED Y\"HLW RWi]NX WRKR MDNi MH MHMLFK VNXWH Qi VpPDQWLND 5R]GOHQtP QD PHQt SUDYLGOD ]QDPHQi MHQ WR çH VWRMtP S"HG problémem pochopit SUiY WDWR SUDYLGOD -HGLQ ]S*VRE MDN RGVWUDQLW QRUPDWLYLWX NWHURX E\ PO VWURM SRFKRSLW MH GHILQRYDW pravidla jako popis DNFH NWHUi VH Pi RGHKUiW Y P\VOL SR Wi"H 7tP VH DOH ]WUiFt PDWHPDWLND NWHUi MH S"tVQ QHNDX]iOQt 0DWHPDWLND VSRMXMH WYU]HQt QD ]iNODG DVRFLDFt D SHYQ GDQFK SUDYLGHO QH DNFt Turing: 3DN WHG\ P*çHPH DOJRULWP\ FKiSDW MDNR QMDNp DNFH NWHUp PDQLSXOXMt VH V\PERO\ D SUREOpP MH Y\"HHQ Wittgenstein: $ VSROX V WtP MH Y\"HHQD L RWi]ND MHVWOL P*çH VWURM WDWR SUDYLGOD pochopiW 3URWRçH SDN QHPDMt QLF VSROH QpKR V PDWHPDWLNRX QHO]H MH DQL FKiSDW MDNR QFR FR E\ VH GDOR SRXçtW S"L YSR WX 9H]PL VL W"HED SUDYLGOR ´*272 67(3 , IF INPUT=0" .G\E\FK S"LVWRXSLO QD WY*M QiYUK WR SUDYLGOR E\ Y SRGVWDW ]QOR ´ $.7,98-( 3(6289$& 0(&+$1,6086 D PXVt X]QDW çH L NG\E\V GRNRQDOH SRFKRSLO MDN WDNRY PHFKDQLVPXV IXQJXMH PDWHPDWLNX E\V ] QM QHY\VWDYO Turing: $OH W\ I\]LFNp DNFH S"HFH S"HVQ RGSRYtGDMt MHGQRWOLYP SUDYLGO*P QRUPDWLYQt matematiky, ne? Wittgenstein: Ne tak zhurta. OdSRYtGDMt WR DQR $OH UR]KRGQ QH ]WOHVXMt. Pokud jsi VFKRSHQ QMDNRX VRXVWDYX ]DNyGRYDW GR MLQp VRXVWDY\ MGH R QMDNRX VXEVWLWXFL DOH Y]QDP Wp SUYQt VRXVWDY\ VH ]WUiFt .G\ç VL MDEOND KUXN\ D EDQiQ\ R]QD tP tVO\ P*çH EW ]DNyGRYiQt SURYHGHQR ]FHOD S"HVQ DOH Y RNDPçLNX NG\ WDNRYRX VpULL tVHO S"HGORçtP QMDNpPX ORYNX Xç Y Qt QHQt DQL EDUYD DQL FKX( $QR PRKX QMDNi PDWHPDWLFNi SUDYLGOD ]DNyGRYDW GR RSHUDFt D PRKX ]NRQVWUXRYDW VWURM NWHU EXGH W\WR RSHUDFH WXS SURYiGW 1HP*çH VH DOH X LW nic o PDWHPDWLFH SURWRçH SUDFXMH SRX]H VH V\PERO\ NWHUp ]WUDWLO\ VYRX S*YRGQt VpPDQWLNX 9VOHGHN P*çH EW VSUiYQ DOH QHMVHP VFKRSHQ GRNi]DW çH MH VSUiYQ SURWRçH SRVWXS NWHU N QPX YHGO E\O PHFKDQLFN D QH PDWHPDWLFN Pokud by si naopak pravidla VYRX VpPDQWLNX XFKRYDOD MH W"HED DE\ VH MLPL "tGLO QNGR NGR MH VFKRSHQ MHMLFK VNXWH Q REVDK SRFKRSLW $OH 7XULQJ*Y VWURM SR tWi V WtP çH RQ\ ]iNODGQt LQVWUXNFH QHY\çDGXMt çiGQp NRJQLWLYQt VFKRSQRVWL DQL LQWHOLJHQFL 7R E\ PXVHO VWURM EW Xç ViP R VRE LQWHOLJHQWQt D Y SUDYpP VORYD VP\VOX SUDYLGO*P UR]XPW. Turing: 7DNçH ]PHFKDQL]RYDW YSR HW "t]HQ SUDYLGO\ ]QDPHQi KR QDKUDGLW MLQP PHFKDQLVPHP D QH KR QMDN ´]WOHVQLW 'REUi 7UYiP DOH QD Wp iVWL Pp WH]H NWHUi XND]XMH çH UHNXU]LYQt IXQNFH VH YHOPL GRE"H KRGt N PHFKDQLFNp LPSOHPHQWDFL Wittgenstein: 9 WRPWR ERG V WHERX VRXKODVtP D Y\VORYXML WL KOXERN REGLY Turing: $ Mi VL MHW SURP\VOtP MHVWOL EXGX WUYDW L QD WRP DE\ RVWDWQt S"LMDOL WX ILORVRILFNRX iVW Pp WH]H =iYU :LWWJHQVWHLQ XSR]RUXMH QD WR çH 7XULQJRYD SUiFH ´2Q &RPSXWDEOH 1XPEHUV Pi GY iVWL -- PDWHPDWLFNRX D ILORVRILFNRX 9 SUYQt iVWL XNi]DO QHRW"HO SRKOHG QD Y\PH]HQt W"tG\ HIHNWLYQ Y\ tVOLWHOQFK IXQNFt D Y\W\ LO VPU YHGRXFt N PHFKDQLFNp LPSOHPHQWDFL SDUFLiOQ UHNXU]LYQtFK IXQNFt 9 GUXKp iVWL VH S"HVXQXO N GLVNXVL R SRYD]H SR tWiQt D "t]HQt VH SUDYLGO\ S"L HPç SURVW"HGN\ MHKR DUJXPHQWDFH E\O\ YH VYp SRGVWDW HSLVWHPRORJLFNp QH PDWHPDWLFNp = WpWR GUXKp iVWL 7XULQJ RGYRGLO VYRX S"HGVWDYX X tFtFK VH VWURM* NWHUp ]YOiGDMt nová SUDYLGOD D SDN MH SRXçtYDMt WDNçH MVRX VDP\ VFKRSQ\ "HLW VWiOH YtFH REHFQMtFK SUREOpP* :LWWJHQVWHLQ WHQWR VPU XYDçRYiQt QDSDGi 7YUGt çH DUJXPHQWHP NWHU Pi GY VWUiQN\ =DSUYp SRNXG Pi ]iNODGQt SRGSUDYLGOR QMDN Y]QDP QHP*çH VH MtP "tGLW stroj bez kognitivních schopností. Zadruhé, pokud je podpravidlo zcela bez Y]QDPX QHP*çH EW VWURMHP Y SUDYpP VORYD VP\VOX SRFKRSHQR D SDN SRXçtYiQR N "HHQt SUREOpP* 9 WpWR SUiFL E\O\ REMDVQQ\ ]iNODG\ ]H NWHUFK 7XULQJRYD WH]H Y\FKi]t D MHKR SR]GMí LQWHUSUHWDFH ILOR]RILFNFK Qi]RU* NWHUp Y WpWR WH]L XYHGO 6RX DVQ VH ]GH ]NRXPi :LWWJHQVWHLQ*Y SRKOHG QD ILORVRILFNRX iVW WH]H KODYQt REODVW MHKR QiPLWHN D GLVNXVH QDG SRYDKRX SUDYLGHO D MHMLFK PHFKDQLFNpKR SURYiGQt 6DPRWQp ]KRGQRFHQt YVOHGNX tétR GLVNXVH SRQHFKiYiPH QD ODVNDYpP WHQi"L Literatura Shanker, S. G.: Wittgenstein versus Turing on the Nature of Church's Thesis, Notre Dame Journal of Formal Logic vol. 28/4, 1987 Church, A.: The Constructive Second Number Class, Bulletin of the American Mathematical Society, vol. 44, 1938 Davis, M.: Why Gödel Didn't Have Church's Thesis, Information and Control, vol. 54, 1982 Knuth, D.: Algorithms, Scientific American, vol. 234, 1977 Turing, A.: On Computable Numbers, with an application to the Entscheidungsproblem, Proceedings of the London Mathematical Society, vol. 42, 1939 Turing, A.: Intelligent Machinery (1948), Machine Intelligence 5, Edinburgh, 1969 Wang, H.: From Mathematics to Philosophy, Routledge & Kegan Paul, Londýn, 1974 Wittgenstein, L.: Philosophical Investigations, Bassil Blackwell, Oxford, 1973 Wittgenstein, L.: Philosophical Grammar, ed. Rush Rhees, Basil Blackwell, Oxford, 1974 Wittgenstein, L.: Lectures on the Foundations of Mathematics, Basil Blackwell, Oxford 1978 Wittgenstein, L.: Ludwig Wittgenstein and the Vienna Circle, rozhovory zaznamenané Friedrichem Waismannem, Basil Blackwell, Oxford, 1979