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ABSTRACT

A central debate in community ecology concerns the relationship between the complexity of
communities and their stability. How does the richness of food web structures affect their
resistance and resilience to perturbation? Most mathematical models of communities have
shown that stability declines as complexity increases but so far, modcllers have not included
the material environment in their calculations. Here an otherwise conventional community
ecology model is described, which includes feedback between the biota and their climate. This
“geophysiological” model is stable in the sense that it resists perturbation. The more complex
the community included in the model, the greater its stability in terms of both resistance to
perturbation and rate of response to perturbation. This is a realistic way to model the natural
world because organisms cannot avoid feedback to and from their material environment.

1. Introduction

Alired Lotka (1925), one of the founders of
population biology, suggested that the dynamics
of populations cannot be considered in isolation
from the material environment in which they are
e¢mbedded and with which they interact. He saw
organisms and environment as a single evolving
system in which each influences the other in a
relationship of mutual feedback. He suggested that
the mathematics of the evolution of this whole
system would be more tractable than that of either
population or environment taken separately.

Thus, so far most theoretical ecologists have
not heeded Lotka’s advice. Instead, they have
modelled communities without considering the
feedbacks between organisms and their chemical
an(_i physical ervironment. Such work has given
.frmt!'ul insights into the dynamics of populations
in which coupling with the material environment
can be considered so weak as to be effectively
non-existent (May, 1981; Pimm, 1979a; Pimm,
1979b). Complexity is often defined in terms of
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the presence of more species, stronger inter-species
interactions and grealer connectance between
species (Begon et al., 1996). Using these definitions
of complexity, modellers have generally found that
simple model communities are more likely to be
stable than complex ones, apart from the excep-
tions by (De Angelis, 1975). Pimm’s (1984) meas-
ures of stability, resilience and resistance are used
in the model described here. Resilience is taken to
mean the speed with which a community returns
to a former state having been displaced from it by
perturbation, whilst resistance is thought of as the
ability to avoid such displacement. Stable commu-
nities are those with high resilience and resistance.
Resilience and resistance are not necessarily posi-
tively correlated. For exampie, a highly resistant
system, when eventually displaced, may not be
resilient because it requires a long time to return
to steady state. In this paper resilience is measured
by the rate of return of a community to steady
state after a perturbation.

The familiar result, of complexity leading to
instability in ecosystem models, is not inevitable
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(Johnson etal, 1996). For example, complexity
can lead to stability in food webs where the food
supply is not affected by consumers (De Angelis,
[975), or in food webs perturbed by the removal
of species in lower trophic levels {Pimm, 1979a),
or where non-linear per capita growth ra'tes, non-
equilibium dynamics and realistic feeding inter-
actions are incorporated {Polis, 1998; McCann
et al, 1998). A qualitatively different class of
strongly stabilised models are those that include
environmental feedback (Watson and Lovelock,
1983). In these, instability is the rare condition.
In this paper, experiments with a community
ecology model are described which incorporate
explicit mathematical feedbacks between biota and
environment. In this class of model greater com-
plexity gives tise to greater stability.

2. Daisyworld

The numerical model, daisyworld {Lovelock,
1983; Watson and Lovelock, 1983; Lovelock,
1992) was used as the basis of the experiments
(Fig. 1}. The original daisyworld is a mean field
model of an abstract flat surface “sown” with

75—

50

Temperature (°C)
%]
o

S. P. HARDING

seeds of 2 daisy types, one dark and the other
light. A model sun warms the planet. Daisies
germinate and grow between 5°C-40°C with
peak rates at 22.5°C, following a Gaussian curve.
Once daisics begin to grow, they compete for
space and as the available space decreases, so
does their growth rate. The interaction between
solar luminosity and the planetary albedo sets
the temperature of the planet. Plants with low
albedos (darker types) absorb more solar radi-
ation than would the bare surface and thus
warm both themseclves and the planet. Those
with high albedos (i.e., whiter types) reflect solar
radiation back to space and therefore cool both
themselves and their environment.

This simple model system responds to changes
in solar luminosity and keeps planetary temper-
ature well within the limits tolerable by life even
when solar luminosity varies over a wide range.
The model is unusually stable to changes in initial
conditions and to perturbation. Temperature regu-
lation via the biota’s albedo in daisyworld is a
particular ¢xample of the general biota-environ-
ment feedbacks of the real world. The mathemat-
icdl foundations of daisyworld are increasingly
being used in other Earth-system models, such as
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Fig. 1. The original daisyworld model with only 2 daisy types, one dark and one light. Despite the low diversity,
the system is effective at regulating surface temperature close to the optimum for daisy growth over a wide range

of the steadily increasing solar fwminosity.
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those of Lovelock and Kump (1994) and Lenton
(1998). A frequent criticism of daisyworld is that
it ts a toy model and does not apply to the real
world. However, a similar vegetation albedo feed-
back on climate in the boreal forests has been
moedelled in a manner inspited by daisyworld
(Betts and Cox, 1997). Daisyworld is useful and
practical because its stability and self-regulating
properties do not depend on a particular mathem-
atical formulation. Daisyworld’s growth equation
was taken from a deterministic plant population
dynamics model (Carter and Prince, 19%1).
Furthermore, Maddock (1991) has shown that
self-regulation around a steady state arises in a
variety of well known population ecology models
where there is tight coupling between biota and
their environment.
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3. Methods

23 different daisy types were added to the
original daisyworld model, each with a unique
albedo ranging between 0.2 (dark} and 0.775
(light). Daisy-eating herbivores were also included,
each type preying on daisies according to one of
three classic functional responses, depicted in
Fig. 2. (Holling, 1959). Previous studies have
looked at the impact of these three herbivore
feeding styles acting separately (Harding and
Lovelock, 1996), but in this model they were
introduced together and competed for food and
space. A carnivore, which consumed the herbivores
according to a type 3 functional response could
also be introduced. Neither herbivores nor carni-
vores could change their colours, 1.e., their albedos,
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Fig. 2 The functional response types which could be zllocated to the three herbivores. The four figures show how
functional response configuration was systematically varied in order to explore the model’s response to this manipula-
tion. The following F values were substituted into the type 1, type 2 and type 3 functional response eqgs. {11}, (12),

v

(13): {2a) type 1: F = 1; type 2: F=3; type 3: F — —20, (2b) type 1: F=1; type 2 F =3 Type 37 F="3Y2c) type L:

F=051ype 2: F=15type 3: F= —3, (2d) type 1: F=0.5; type 2: F= L.5; type % F= =I5,
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and so they had no direct feedback effects on
climate. However, like the daisies, their growth
rate was temperature dependent.

The equations used in this model were based
on those of the original model (Lovelock, 1992):

T, = (SJ(1 — A)jo)*-* — 273, (1)

A=xA4,+ (@A, +a, A, + ... +a,4), (2)
T=g9(A-A)+ T, (3)
fi=(1-0.00326(22.5 — T;)*), (4)
da;/dt = a{xp, — ), (5)
x=1—{a,+a,+..+a), (6)

where T, = the effective temperature of the planet
and A is its average albedo, and J represents the
solar luminosity relative to the actual Tuminosity,
taken as 1.0. The stellar constant is S, and o is the
Stefan-Boltzmann constant. The total area of the
planet is taken as unity, the fraction of the planet
which bare ground ts x, and the albedo. of this
bare ground area is Ag.’\fBl_c_l_'Eamctioniof the plangt’
covered by each of the k daisy type is a;, and the
constant albedo of each daisy type is A,. The
temperature of each daisy type is T;, and g is a
constant, 20, representing the re-distribution of
solar energy. Finally, each daisy type has a con-
stant death rate, y, {set at 0.15) and a temperature
dependent, helmet shaped growth rate, g,
optimum at 22.5°C.

The quadratic growth equation {4) was replaced
with a more biologically realistic Gaussian temper-
ature dependent growth curve according to the
following equation:

B =exp(—(22.5 — T;?0.01). NG

The equations for including higher trophic levels
followed egs. (8) to (10) in Lovelock (1992), but
with two modifications. Firstly, herbivore and
carnivore growth rates (f, and B., respectively)
depended only on, the T, overall temperature of
the system, according to the following equations:

B = exp(—(22.5 — T.)%0.01), 7 (8)
B. = exp(—(22.5 - T,0.01). 39

The second modification was to introduce the
three classical functional responses {Holling, 1959}
to model density-dependent impacts of herbivores
on daisy populations and of the carnivore on
herbivare populations, where A (plants), B (herbi-

+
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vores) and C (carnivores) fefer to populations of
each trophic level, and (x, y, z) to the space unoccu-
pied by these populations. The modified growth
equation for daisy types was:

da;/dt = a;[f;x —y; — (By(p1:ds) + Bal paidi)
+ Ba(paidi)], (10)
where 4; is determined by one of the eqs. (11), (12)
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or {13), and p is a couling matrix defined as: 5
Pia P1,23

P=§ Pz P2.23
Py D323

where p; e (0, 1).

If p;;=0, daisy j was not eaten by herbivore i,
whereas if p;; = 1, the daisy was eaten.

Here 2; represents the functional response for a
given herbivore, where 4; modified the impact of
B;, the herbivore population, according to the

} following equations, in which F determined the
slope of the functional response, up to a plateau
of 0.5

For a type | response:

A =a,F, up to a plateau of 4, =0.5, (11) 4

For a type 2 response:

Ai=(1 —exp{—a; F)/2, (12) 7

For a type 3 response:

A =(1 —explai — F))2. 13y
The values of £ used in the experiments are given
in the legend of Fig. 2.

The equation used to model the growth of the
three herbivores was a version of Lovelock’s (1992)
equation (9), modified to incorperate A;, the den-
sity dependent predation from the carnivore, when
present, and G;, a growth increment, itself a func-
tion of F;, the total amount of daisy biomass
consumed by the herbivore. The new equation
was as follows, where i varies from I to 3, corre-
sponding to the three herbivores, and where
the herbivores’ death rate was held constant at
=03
db/dt =bi(Af:y + G, —v; — CAy), (14)
where:

G, =1 —exp{—1.02E,}, (15) an’
and:
A= 1 — exp{—20BY). (16) /I
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The total amount of daisy biomass for each herbi-
vore was calculated as follows:

23
dE;/dt =B, ( Z pin’ln) d,
i=1

where i refers to herbivores and r refers to daisy
types, and:

E=k+B; f(ZPiM»)dI,

where k was a constant set at k = 0.0001, used to
initialise the herbivore population.

Similarly, Lovelock’s (1992) eq. (10} for describ-
ing the growth of the carnivore population was
modified to incorporate G, the carnivore's growth
increment, a function of E, the total herbivore
bicmass eaten by the carnivore, with its death rate
held constant at y = 0.05:

de/dt = e(Bfiz + G — ),
where:
G=1—exp(—1.02E),

where E is the total amount of herbivore biomass
eaten by the carnivore, caleulated as follows:

3
dE/dt = C ( 3 1,.) dt,
i=1

where:

A={1—exp(—3B,))2. (22)

Finally:

E:k+cf(21f)dt,

where k was a constant, set at k - 0.001, used to
Initialise the carnivore population.

A critical parameter in the experiments reported
here was food web connectance, ¢, which was
varied from the maximum of e == 3, where each
daisy was eaten by each of the three herbivores,
1o the minimum of ¢ =i, where each daisy was
eaten by only one randomly selected herbivore.
The connectance paramecter, ¢, specified the values
(0 or 1) in the coupling matrix, p. Intermediate
values of ¢, that is, “c = 1 or 2" and % = 27 denoted
that each daisy was eaten by one or two randomly
selected herbivores, or by two randomly selected
herbivores respectively. These low (c <3) food
web connectances can be thought as having arisen
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due to natural sclection amongst daisies for anti-
herbivore responses such as distasteful secondary
compounds which are known to influence plant-

(17) 3 herbivore dynamics in the field (Huntly, 1991).

The stabilising effect of environmental feedback
makes possible large models involving many evol-
ving non-linear differential cquations. The price
for this advantage is the nced to explore the
extended space occupied by the model variables,
and it was decided to explore the effects of varying
connectance patterns. There were 300 possible
ways to link the 23 daisy types with the three
herbivores, depending on the number of daisy
types eaten by cach herbivore. This was in the
abscnce of carnivores and for all food webs where
each herbivore was allocated the same type 2
functional response, with slope F=22, and a
plateau of 0.5. The connectance ¢ was set as either
¢=1 or ¢=2 Each of these 300 “food web

(19) | ,configurations™ specified the numbers of daisy

types eaten by each hérbivore in a given food web.
The tnangular diagram (Fig. 3) illustrates the part

(20}, _of the model space occupied by each food web

configuration. This space was explored systemati-
cally By a computer program that stepped through
a self-simifar portion of the total space shown in
Fig 3. Linking the three herbivores with randomly
chosen daisy types made connectance patterns.
The program produced three of these patterns for
cach food web configuration. For all 3 patterns
all variables were held constant whilst solar lumnin-
osity, J, was increased in 20 equal increments,
from J =061 to J =093, The time taken for the
diversity index to return to its steady state was

(23) lJ’uscd to measure the food web’s resilience. This

was observed for each luminosity step after the
introduction of the three herbivores, and where
appropriate, after the subsequent introduction of

-the carnivore. Resistance, the ability of the system

to resist change, was measured by the amplitude
of the temperature deviation from the optimum
growth temperature of 22.5°C after the experi-
mental perturbations. To calculate the stability of
the model the means of the 20 resilience and
resistance measurements of cach pattern were
taken and then the grand means of the three
replicates were calculated as the final measures of
resilience and resistance.

The effects of variations in herbivore functional
response type and slope on the behaviour of the
model were explored by assigning the three herbi-
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Fig. 3. (a) The parameter space of all possible food web configurations for ¢ = | and ¢ = 2 food webs, in the absence
of carnivores, and with each herbivore allocated the same functional response, To obtain data for the entire parameter
space it was sufficient to sample the top left sub-triangle (in heavy line), and then to extrapolate the results to the
remaining space. This is because the food web configurations within each sub-tnangle are self-sirmilar in terms of
herbivore impacts on daisy types,

vores in a given food web either identical or
different functional responses, of high or low slope,
and then measuring resilience. As before, three
replicate connectance patterns were generated for
¢=1and ¢ =1 or 2 webs, with food web config-
uration held constant (see legend of Fig. 7 for
details).

In addition, the effects of perturbing the model
with a 5% step increase in solar luminosity were
explored. As before, the functional response curves
of Fig. 2b were used to generate these experiments.

Five ¢ =1 webs and five ¢ =2 webs, each with a
different randomised connectance paltern, were
constructed, each with constant food web config-
uration (sec legend to Fig. 9 for details). Each web
was allowed to reach steady state under a low
initial solar luminosity and was then perturbed,
The time taken to return to a steady state daisy
diversity index was then measured; a rapid return
meant high resilience. These resilience measure-
ments were repeated for each of 20 equal incre-
ments in solar luminosity. For each web, the mean

Fig. 4. Population dynamics and temperature regulation in food webs with different values of ¢, the cornectance
parameter, amongst 23 daisy types, 3 herbivores and one carnivore. Herbivores were introduced after 40 time steps
and a carnivore after 120 time steps. The herbivores’ functional response configuration was that of Fig. 2b, in which
herbivore | was allocated the type 1 response, herbivore 2 the type 2 response and herbivore 3 the type 3 response.
{a} Dynamics of a fully connected food web (¢ =3). Solar luminosity was held constant at J = 0.744. (b} Dynamics
of a morc loosely connected food web (¢ =1 or 2), with the food web configuration: herbivores t, 2 and 3 ate n=
14, n =12 and n = 14 randomly assigned daisy types respectively. Solar luminosity was held constant at J = 0.744,
() Dynamics of a food web with the lowest connectance {c=1), herbivores }, 2 and 3 ate n=8, n=8 and n=7
randomly assigned daisy types respectively. Solar luminosity was held constant at J=0.826.

Tellus 51B (1999), 4
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of these 20 measurements was taken as an index
of its resilience.

4. Results

Fig. 4a shows a typical example of the popula-
tion dynamics and temperature regulation for a
fully connected (¢ = 3) food web, with solar lumin-
osity held constant at a level comfortable for the
biota. The figure illustrates the stability of models
incorporating environmental feedback. Less stable
behaviour was found with models where the food
webs were more loosely connected over a range
of solar luminosities, from 0.7 to 1.2 times the
present solar output. Model stability was not
much altered by changes in herbivore functional
responses bul was sensitive to different food web
configurations and connectance patterns, although
temperature regulation was still well within the
bounds tolerable by life. At the extremes of solar
luminosity just before the system failed it became
unstable. There were rapid oscillations in daisy
and herbivore populations and in temperature.
This was particularly noticeable with steep type 1
and 2 functional responses, but no attempt was
made to analyse these odd effects.

As the system in Fig. 4a evolved, it was domin-
ated by 2 daisy types whose albedos best matched
the given solar luminosity. The population
dynamics were stable and temperature regulation
was at the optimum. Upcen adding the three
herbivores their grazing reduced the abundance
of the few dominant daisies, and allowed the less
well matched rarer types to flourish. Daisy divers-
ity increased with a smooth gradation of daisy
type abundances, with no single type overly dom-
inant. Competition between the herbivores led to
the dominance of a single type. Upon introducing
the carnivore the dominant herbivore became its
prey and so the other two herbivores increased
until all three reached equal abundance. These
changes in herbivore abundance had only a small
effect on the daisies although a few types became
exiinct. The model system kept its temperature
close to optimal for the biota throughout these
perturbations. Herbivores and the carnivore had
little effect on daisyworld’s capacity to regulate
climate.

When the food web connectance was decreased
frome=3toc=1or2, the system was less stable

5. P. HARDING

(Fig. 4b). Although the herbivore dynamics were
similar to those in the fully connected web, the
daisy dynamics were markedly different. After the
introduction of the herbivores, 4 daisy types
reached high abundance, with a roughly even
gradation in the abundance of less common types.
The appearance of the herbivores led to a temper-
ature increase to a steady state about 1.0°C higher
than the model optimum for plant growth of
22.5°C.

In this experiment, one of the herbivores again
became dominant. This in turn decreased the
grazing of daisy types eaten by its competitors
and these increased. Among the now more abund-
ant daisy types were those less well matched to
the solar luminosity and therefore, temperature
regulation was impaired. Adding the carnivore
improved the model performance. It reduced the
abundance of the dominant herbivore, allowing
the others to increase until the 3 types were equally
abundant. The abundant daisy types that had
previously flourished due to competitive suppres-
sion of their herbivores now declined. There was
again an cven gradation of daisy type abundances,
amd those with best matched albedos predomin-
ated, thereby improving temperature regulation.

Models with the most loosely connected (¢ = 1}
webs were markedly less stable, At certain solar
luminosities and in the absence of the carnivore
they sustained high amplitude periodic dynamics.
When this happened (Fig. 4c), the populations of
two herbivores regularly oscillated out of phase
with each other, while the third herbivore’s num-
bers gently oscillated in step with one of the other
herbivores. The oscillations of the model system
also affected the temperature, which was lightly
modulated at the same frequency and over a range
of 0.8°C. The mean temperature remaincd con-
stant. These periodic fluctuations emerged unex-
pectedly in ¢ =1 webs. There appeared to be no
relationship between the emergence of periodicity
and solar luminosity (Fig. 5). This form of instabil-
ity seemed to reflect the randomness in the under-
lying connectance patterns. Sustained periodic
dynamics were not seen in the more fully con-
nected food webs, where ¢ > 1. Adding the carni-
vore to ¢=1 food webs obliterated periodic
dynamics where they had been present {Fig. 4c),
The presence of the carnivore brought the system
to a steady state. The three herbivore types then
became equally abundant, there was an even

Tellus 51B (1999), 4
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Fig. 5. The frequency of occurrence of high amplitude cycles {as in Fig. 3¢), low amplitode cycles and no cycles in
five randomly assembled ¢ = 1 food webs. There was no relationship between solar luminosity and the presence high
amplitude cycles, which appear in roughiy 25% of solar luminosity steps.

gradation in the abundances of daisy types and
smooth temperature regulation. The model dis-
played stability once more, as it did with the more
connected food webs. Even with the least stable,
foosely connected daisyworlds the departure of
the temperature from optimum was seldom more
than 2.0°C over a wide range of solar luminosities.

Fig. 6 shows that despite some scatter in ¢ = |
webs, resilience and resistance showed a statistic-
ally significant, positive correlation throughout
the parameter space of ¢ = 1 and ¢ = 2 food webs,
Thus, in what follows, changes in resilience can
be understood to imply similar changes in resist-
ance, and hence in the overall stability of the
modei.

Despite wide variations in eritical initial condi-
tions of the model (i.c., in food web configuration,
connectance pattern and slope and type of the
herbivore functional responses), low connectance
generally gave rise to low resilience (Figs.pﬁ, 8).

Tellus 51B (1999), 4

However there were minor exceptions. Firstly, in
food webs where the three herbivores followed
type 3 functional responses (Fig. 7b), ¢ =1 webs
were approximately equally resilient to c=1 or 2
webs, irrespective of the slope of the functional
response. This was due to the fact that type 3
functional responses had very little impact on rare
daisy types, amongst which were types whose
albedos matched a given luminosity well encugh
to engender good temperature regulation, thereby
improving resilience.

Secondly, food webs varied in their resilience
depending on their “herbivore connectance diver-
sity”. This quantity was highest in food webs in
which each herbivore was linked to the same
number of daisy types. For example, high her-
bivore connectance diversity would occur in a
¢ =1 food web il two of the herbivores ate § daisy
types each and the third herbivore ate the
remaining 7 daisy types. Low herbivore con-
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c=1 food webs, r2=0..’303, p<0.05 a’
O c=2 food webs, r’=0.581, p<0.001

120

Grand mean of retum time to steady state

0.75

1.00

1.25

Grand mean of deviation from optirmum temperature

Fig. 6. The relationship between the grand means of the maximum deviation from ‘op'limum temperature {the inverse
of resistance) and the retarn time to steady state (the inverse of resilience) in (a) the set of sampled ¢ = 1 food webs,
and (b} the set of sampled ¢ =2 food webs. The two variables show a significant positive correlation in both cases,
although the relationship for the ¢ = | foed webs shows a relatively high degree of scatter,

nectance diversity would occur in ¢=1 webs if
herbivore 1 ate all 23 daisy types, with the other
two herbivores eating no daisies. Fig. 8 reveals
that ¢ = 1 webs were markedly less resilient than
¢ =2 webs over a wide range of herbivore con-
nectance diversities, Furthermore, in ¢ = 1 webs,
despite some scatter in the data, it was clear that
resilience continually increased as herbivore con-
nectance diversity declined. Thus, for e=1 food
webs, return time to steady state decreased as
herbivore 1 became more prominent in a food
web. By contrast, c =2 wehs displayed an exten-
sive region of roughly constant high resilience,
covering almost all of the parameter space, with
far less variability in the data.

In the real world climate, change is a frequent
perturbation. Increasing the solar luminosity by
5% simulated a change of roughly equivalent
magnitude to that between glacial and interglacial
climates. Fully connected food webs showed high
resilicnce, reaching steady state aimost instantly
after the perturbation (Fig. 9a—c). The presence of
carnivores made no difference to resilience, but at
some solar luminosities did slightly improve tem-
perature regulation (Fig. 9d-f).

In the absence of the carnivore and in food

webs with the lowest connectance (¢ = 1}, resilience
fell to low fevels. In these webs, at some luminosit-
ies, the climate perturbation set off a long term
periodic oscillation in population and in temper-
ature. The oscillations did decay but only after
many time steps {Fig. 9g-1). Adding a carnivore
improved resilience, although the return time to
equilibrium was longer than in more highly con-
nected food webs with a carnivore present
{Fig. 9j-1). At other luminosities, the perturbation
did not give rise to periodic behaviour in c =1
webs, although both population and temperature
changed and then took a relatively long time to
return to steady state. Adding the carnivore again
improved resilience. Resilience was least for ¢ = |
food webs with carnivores absent, and increased
when the carnivore was present, or when con-
nectance was increased (Fig. 10).

5. Discussion
So far, almost all model experiments in com-
munity ecology have been made with communities

where the only selection pressures were internal,
that is where the environment was defined by the

Tellus 51B (1999), 4
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Fig. 7. Return time to steady state of the daisy diversity index after the introduction of three herbivores allocated
with varying steepness and type of functional responses. The food web configurations were those detailed in Fig. 4a—c
respectively. Values of the x axis designate the following connectances: I: c=1; 2 ¢=1 or 2; 3: ¢=3. The figures
display the effect of increasing connectance when: (a) each herbivore was allocated the same type 1 functional
response, from shallow to steep; (b) when each herbivore was allocated the same type 2 functional response, from
shallow to stcep; (c) when each herbivore was allocated the same type 3 functional response, from shallow to steep;
{d} when each herbivore was allocated a different functional response, both in type and slope, as shown in Fig, 2a—d,

ranked as “steep” to “shallow” respectively.

organisms themselves. In those experiments, com-
plexity and instability appeared to go hand in
hand. In the model presented here the environment
includes the physical world. In addition, the organ-
isms have the capacity to change their material
environment, as well as adapt to it. The primary
producers experience selection pressure mainly
from environmental feedback, which acts “extern-
ally” as a strong stabilising force (Lenton, 1998).
Internal selection was present at two levels, from
herbivores grazing daisy types and from competi-
tion for space amongst the daisy types themselves.

In the first level of internal selection, herbivores
selected daisies according to their abundance and

Tellus 511 (1999), 4

as a consequence daisies “evolved” immunity to
certain herbivores as a result of “past” grazing
pressure. This internal selection pressure was
independent of the material environment.
Consequently some effects on system stability and
the quality of temperature regulation were
expected and noticed. For example, the presence
of daisies equipped with anti-herbivore defences
did sometimes lead to instabilities in both popula-
tion dynamics and climate due to the loosening
of food web connectance. Sometimes internal
selection pressure from herbivores improved
system stability. It did so by opening niche space
for daisy types otherwise denicd an influence on
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triangle in Fig. 3. Each herbivore was given the same type 2 functional response, i which the slope factor, F, was
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resilience} was markedly higher in c= 1 webs than in ¢ = 2 webs, particularly when the herbivore connectance

diversity was high, towards the left of the graph.

the system’s temperature by previously abundant,
well-matched types. Low internal selection pres-
sure amongst daisy types was also potentially
destabilising since some daisy types which had
less than optimal albedos could flourish and hence
upset temperature regulation. In most of the model
experiments, environmental feedback was strong
enough to drive the selection of daisy types best
able to regulate climate and this led to reasonably
good climatic regulation and population stability.

Furthermore, in all the above experiments,
increasing complexity by adding a third trophic
level, the carnivore, improved stability. Pimm and
Lawton (1980) described models that differed from
those just described only by the absence of biota-
climate feedback. Adding trophic levels to their
models made them unstable.

In rare cases freedom from low internal selection
pressures amongst the daisy types can overturn
the stabilising influence of external selection,
thereby plunging daisyworlds into severe instabil-
ity. Von Bloh et al. (1997) modelled daisyworlds
using a 2-dimensional cellular automaton in which
they were able to create varying degrees of habitat
fragmentation. As the habitat fragmented, there

was a reduction in competition between the daisies
of the separated fragments. Increasingly, ecological
niches arose in which daisy types with destabilising
climatic effects could flourish. As fragmentation
proceeded, a sharply defined threshold appeared
which marked a destabilised climate. Thus, the
most diverse systems were the least stable cli-
matically. As Von Bloh et. al. point out, the price
to be paid for very high biodiversity in their
2-dimensional daisyworld was a loss of self-regu-
latory capacity.

Unlike the traditional community ecology models
with no environmental feedback, where instability is
almost always a consequence of diversity, daisy-
worlds are only rarely unstable. The presence of a
diversity of daisy albedos is beneficial for effective
regulation, as long as there is some internal selection
pressure amongst the daisy types. On subjecting the
model to a gradually increasing solar luminosity,
the high diversity of daisy types ensured that there
were always a few types whose albedos matched the
current solar luminosity well enough to provide
effective temperature regulation. This is akin to the
observation that plant species diversity can stabilise
ecosystems in the field because previously rare

Tellus 518 { 1999}, 4
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species can replace dominants which have declined
due to disturbances such as drought (Tilman, 1996).
Thus, in daisyworld as in the field, species are indi-
vidually vulnerable, but high diversity ensures that
the community as a whole is more likely to persist.
Furthermore, the model's stability does not depend
on a finicky choice of initial conditions.

Community ecologists have debated the impor-
tance of the coupling between biota and the
material environment. Although biota-environ-
ment feedbacks at individual and even ecosystem
levels are recognised (Jones ¢t al, 1994}, large
scale physical aspects of the environment, such as
temperature and atmospheric composition con-
tinue to be viewed as “givens™ to which organisms
must adapt, but which they cannot influence to
any significant extent. Geophysiologists recognise
that fcedback between the biota and their material
environment is not always obvious but assert that
it can in certain cases be significant.

Could it be that systems with loose biota-
environment coupling persist only because tightly
coupled, fully geophysiological systems are act-
ively regulating the material ¢environment in the
“background”? There are several good candidates
for such “keystone geophysiological feedbacks”,
such as the sceding of cooling clouds by DMS
emitting marine algae (Charlson et al,, 1987), the

8. P. HARDING

reguiation of atmospheric oxygen levels by the
bacterial community in the sea bed sediments
{Van Cappellen et al, 1996), the regulation of
planetary temperature through the biotic enhance-
ment of rock weathering (Lovelock and Whitfield,
1982; Schwartzman and Volk, 198%), and the more
speculative linkage between marine and peatland
ecosystemns (Kiinger and Erickson, 1997). Other
possibilities for tight Coup{ing exist at local levels
amongst soil micro-organisms. Here the impacts
of the biota on the material environment remain
localised enough to exert selection pressures,
which in turn might lead to the regulation of soil
conditions at a state conducive to plant growth.
Since plant growth is essential for ecosystem func-
tioning, such local feedback processes may be
fundamental to the health of all terrestrial eco-
systems. A prediction stemming from this work is
that a positive relationship should exist between
complexity and stability in real ecosystems when
there is feedback to and from the growth of the
biota and the state of the material environment.
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