Techniques in Cognitive Neuroscience Daniel Shaw, M.Sc. Shaw et al. (2011a) Development of the Action-Observation Network During Early Adolescence: A Longitudinal Study. Social, Cognitive, and Affective Neuroscience [SCAN]... Shaw et al. (2011b). Development of Functional Connectivity During Adolescence: A Longitudinal Study Using an Action-Observation Paradigm. Journal of Cognitive Neuroscience.... Shaw et al. (submitted). Development of Functional Connectivity in the Face-Processing Network During Adolescence: A Longitudinal Study. Journal of Neuroscience.... Introduction nLecture Series: n 1.(a) Introduction; (b) Neuropsychology 2.Magnetic Resonance Imaging (MRI) 3.Functional MRI (fMRI) 4.Transcranial Magnetic Stimulation (TMS) 5.Electroencephalography (EEG/ERP) Introduction n...lectures n 6.Combining Techniques (e.g. TMS-fMRI) 7.Revision/Discussion 8.Exam nEssay (50%) n n1500 word research proposal, applying a technique of choice to a research area of choice n a)Show understanding of the neurophysiologic underpinnings of the chosen technique(s) b)Show awareness of the applications of the chosen technique in a particular domain of neuroscience research c)Shown an appreciation for the inferences that can be drawn through applications of the chosen technique(s) d)Shown understanding of the advantages and limitations of the chosen technique(s) n Introduction nExam (50%) n n1hr written exam answering 2 questions (related to techniques covered in the lectures) n a)Show understanding of the neurophysiologic underpinnings of the chosen technique(s) b)Show a critical awareness of the applications of the chosen technique in neuroscience research c)Shown understanding of the advantages and limitations of the chosen technique(s) Introduction Neuropsychology The “Lesion Method” Basic Anatomy Arteries 4.jpg Arteries 5.jpg Arteries 3.jpg Stroke: Ischemic (clot) vs. Hemorrhage (rupture) Basic Anatomy 3 - ACA.GIF Arteries 5.jpg Infarct (oxygen) Basic Anatomy 1 - MCA.GIF 2 - pMCA.GIF Arteries 3.jpg Basic Anatomy Arteries 4.jpg 4 - PCA.GIF 5 - PCA.GIF Memory Amnesic Patient H.M. (Scoville & Milner, 1957; Corkin et al., 1997) 11.GIF 12.GIF PHG – parahippocampal gyrus; LGN – lateral geniculate nucleus; MMN - Mamillary nuclei; EC – entorhinal cortex; CS – Collateral sulcus; Posterior/caudal section atrophic Memory Amnesic Patient H.M. 1.GIF (Corkin, 1984) Dissociation between memory and other cognitive faculties Memory Amnesic Patient H.M. 11.GIF (Wickelgren, 1968) Delays: 0.25-8s. Primacy and recency effect Memory Amnesic Patient H.M. (Marlsen-Wilson & Teuber, 1975) 2.GIF Not a storage problem Memory Amnesic Patient H.M. 4.GIF (Milner, 1965) 6.GIF Degree/severity of damage determines severity of behavioural deficit. Memory Amnesic Patient H.M. 1.GIF (Milner, 1962; [Corkin, 1968]) Motor learning (Declarative vs. Non-declarative) Language Expressive (Broca’s) Aphasia n nImpairment of verbal expression (spoken and written), with (relatively) unimpaired comprehension n nSpeech limited to agrammatical sentences with omissions of modifiers or propositions n ne.g. “Me go” vs “I am going” (Broca, 1861; Geschwind, 1970; 1965) Broca's Brain.GIF Language Receptive (Wernicke’s) Aphasia n nImpairment of verbal comprehension (spoken and written), with (relatively) unimpaired fluent expression n nSpoken and written language is fluent and grammatically correct, but nonsensical n nParaphasias and neologisms (Geschwind, 1970; Ogden, 2005) 2 - pMCA.GIF Double Dissociations nSingle Dissociation nDamage to brain structure A causes a deficit in behaviour A but not in behaviour B nSuggest that behaviours A and B are independent of one another and associated with the brain structure(s) nBut resource artefact nDouble Dissociation nDamage to brain structure A causes a deficit in behaviour A but not in behaviour B, and damage to brain structure B causes a deficit in behaviour B but not in behaviour A nBehaviours A and B are independent of one another and associated with independent brain structures n n (Chater & Ganis, 1991) (Geschwind, 1965; 1970) Language Wernicke’s Theory Wernicke's aphasia.GIF Language Wernicke’s Theory (Geschwind, 1965; 1970) Wernicke's aphasia.GIF nExpressive (Broca’s) aphasia (Geschwind, 1965; 1970) Language Wernicke’s Theory Wernicke's aphasia.GIF nReceptive (Wernicke’s) aphasia (Geschwind, 1965; 1970) Language Wernicke’s Theory Wernicke's aphasia.GIF nGlobal aphasia Wernicke's aphasia.GIF (Geschwind, 1965; 1970) Language Wernicke’s Theory nDisconnection Syndrome (“Aphasia of the insula region”; Wernicke, 1874) n Language Conduction Aphasia nImpairment of repetition, with (relatively) unimpaired fluent expression and verbal comprehension n nRepetition severely impaired n n n 1.GIF (Fridriksson et al., 2010) Language Arcuate Fasciculus Superior Longitudinal Fasciculus (III; money).GIF (Petrides & Pandya, 1984; see Mariën & Abutalebi, 2008) 1.GIF Visual Perception Two Visual Systems Image 3a.gif (Milner & Goodale, 1995; 2008; Ungerleider & Mishkin, 1982) Cortico-cortical model: “What” – inferior longitudinal fasciculus; occipito-temporal. “Where” – superior longitudinal fasciculus Visual Perception Two Visual Systems Image 3a.gif Visual Perception Visual Form Agnosia (D.F.) (Goodale et al., 1994; James et al., 2003) 1.GIF Image 5.GIF (Goodale, Milner, Jakobson & Carey, 1991) Visual Perception Visual Form Agnosia (D.F.) Visual Perception Visual Form Agnosia (D.F.) Image 7c 1.GIF Image 7c 2.GIF Image 7b 2.GIF (Goodale et al., 1994) Visual Perception Visual Form Agnosia (D.F.) (Goodale, Jakobson & Keillor, 1994) Image 1b.GIF Vision for action – online, realtime. A = object present; B = pantomimed actions to removed objects (requires visual memory representation) Visual Perception Vision for Action Image 3a.gif D.F. alone is single dissociation. Dorsal stream: Optic ataxia Visual Perception Optic Ataxia (R.V.) (Goodale et al., 1994) Image 7c.GIF Image 7c 1.GIF Image 7c 2.GIF (Goodale et al., 1994) Visual Perception Optic Ataxia (R.V.) Image 7c 3.GIF Image 1.GIF (Milner et al., 2003) Vision for Action Optic Ataxia (I.G.) §A = object present; B = pantomimed actions to removed objects §Requires visual memory representation § § § Discussion nAdvantages 1.Early neuropsychological investigations led to animals models that advanced dramatically our understanding of brain-behaviour relationships 2.Animals models can’t be used to investigate language 3.Neuropsychological investigations inform cognitive models (e.g. identify cognitive sub-systems) 4.Neuropsychological investigations permit formal testing of cognitive models 5.Case studies can lead to tailored rehabilitation programs 6. nHigh variability in brain morphology (i.e. sulci/gyri; regions/BAs) n Limitations 1. Morphological Variability (Amunts et al., 2004) 5.GIF 6.GIF 7.GIF 8.GIF nHigh variability in location and extent of lesion nOverlay method permits group studies n Limitations 2a. Lesion Variability (Rorden & Karnath, 2004; Frederickson et al., 2010) n 3.GIF 4.GIF nHigh variability in time lapsed since lesion nPost-stroke anatomical/functional re-organisation occurs rapidly and in a time-dependent manner n (Crammer, 2004) n 1.GIF Limitations 2b. Lesion Variability Limitations 4. Neural Plasticity... nRe-organisation of neural systems following perturbation nSynaptic plasticity nLTP/LTD nAnatomic plasticity nCortico-cortical nRe-myelination n 9.GIF (Raineteau et al., 2001) nRe-organisation of neural systems following perturbation ne.g. Contralateral compensation (Crammer, 2001) 2.GIF Limitations 4. Neural Plasticity... The End