Techniques in Cognitive Neuroscience Daniel Shaw, M.Sc.

Shaw et al. (2011a) Development of the Action-Observation Network During Early Adolescence: A Longitudinal Study. Social, Cognitive, and Affective Neuroscience [SCAN]...

Shaw et al. (2011b). Development of Functional Connectivity During Adolescence: A Longitudinal Study Using an Action-Observation Paradigm. *Journal of Cognitive Neuroscience....*

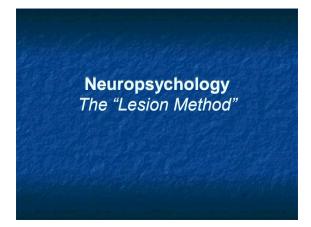
Shaw et al. (submitted). Development of Functional Connectivity in the Face-Processing Network During Adolescence: A Longitudinal Study. Journal of Neuroscience....

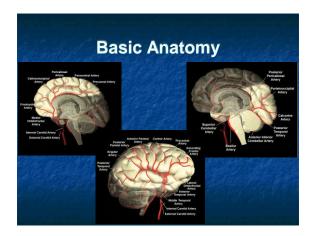
Introduction

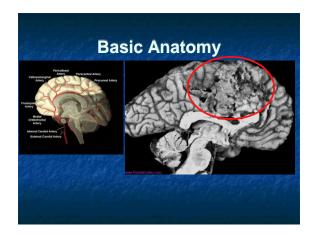
Lecture Series:

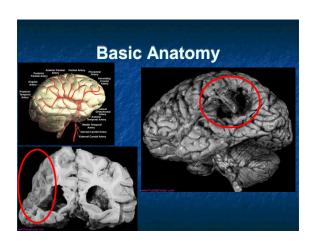
- 1. (a) Introduction; (b) Neuropsychology
- 2. Magnetic Resonance Imaging (MRI)
- 3. Functional MRI (fMRI)
- 4. Transcranial Magnetic Stimulation (TMS)
- 5. Electroencephalography (EEG/ERP)

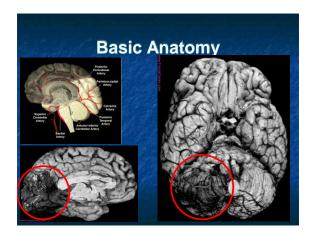
Introduction

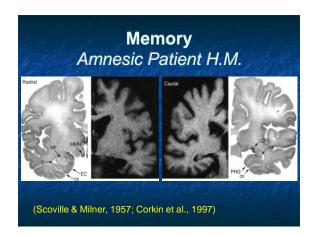

...lectures

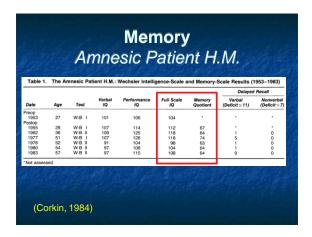

- 6. Combining Techniques (e.g. TMS-fMRI)
- 7. Revision/Discussion
- 8. Exam

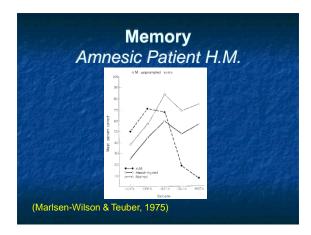

-	

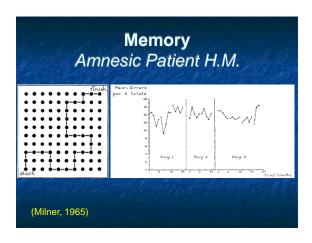

Introduction					
Essay (50%)					
 1500 word research proposal, applying a technique of choice to a research area of choice 					
 Show understanding of the neurophysiologic underpinnings of the chosen technique(s) 					
b) Show awareness of the applications of the chosen technique in a particular domain of neuroscience research					
 shown an appreciation for the inferences that can be drawn through applications of the chosen technique(s) 					
 d) Shown understanding of the advantages and limitations of the chosen technique(s) 					

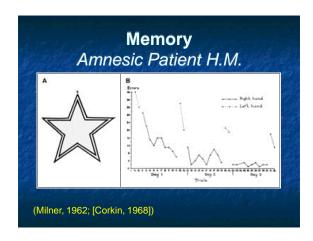

Introduction Exam (50%) • 1hr written exam answering 2 questions (related to techniques covered in the lectures) • Show understanding of the neurophysiologic underpinnings of the chosen technique(s) • Show a critical awareness of the applications of the chosen technique in neuroscience research • Shown understanding of the advantages and limitations of the chosen technique(s)

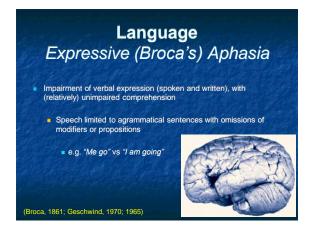




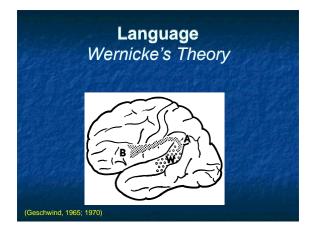


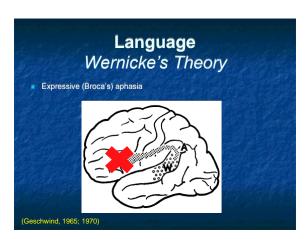


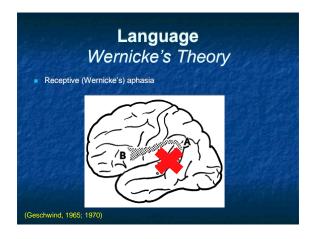


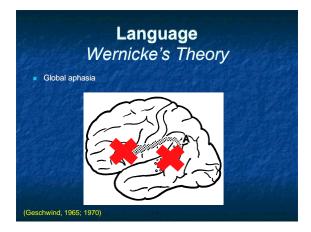


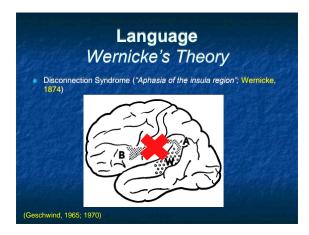
			or		
mr	esid	P	atie	ent	H.
Exp. 1 (S	ingle digits)	Exp. 2 (Digit triples)			
k	P(yes)	k	L5 P(yes)	k	L7 P(yes)
•	0.14		0.04		0.12
1	0.91	1	0.44	1	0.29
2	0.87	2	0,63	2	0.21
3	0.85	3	0.84	3	0.31
4	0.85	4	0.88	4	0.50
5	0.92	5	1.00	5	0.64
6	0.94			6	0.83
7	1.00			7	1.00
8	1.00				
*2+5	0.09				
2+5	1.00				

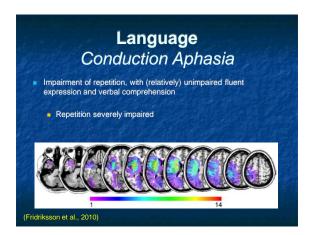


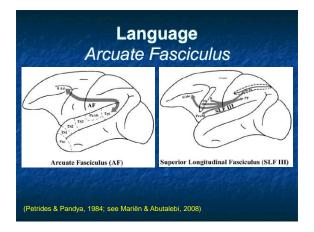


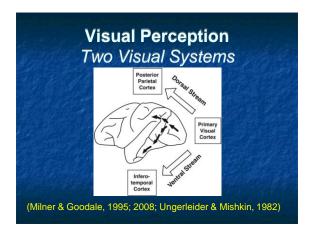


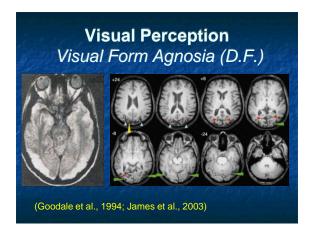

Langua Receptive (Wernic	
 Impairment of verbal comprehension ((relatively) unimpaired fluent expression 	
 Spoken and written language is flu but nonsensical 	ent and grammatically correct,
■ Paraphasias and <i>neologisms</i>	
(Geschwind, 1970; Ogden, 2005)	

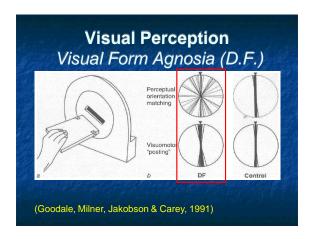

Double Dissociations
■ Single Dissociation
 Damage to brain structure A causes a deficit in behaviour A but not in behaviour B
 Suggest that behaviours A and B are independent of one another and associated with the brain structure(s) But resource artefact
Double Dissociation
 Damage to brain structure A causes a deficit in behaviour A but not in behaviour B, and damage to brain structure B causes a deficit in behaviour B but not in behaviour A
 Behaviours A and B are independent of one another and associated with independent brain structures
(Chater & Ganis, 1991)

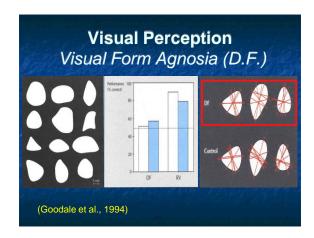


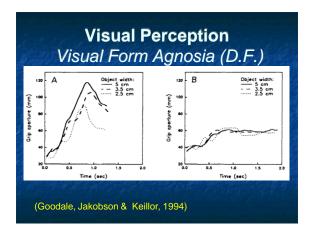


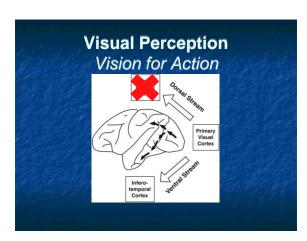


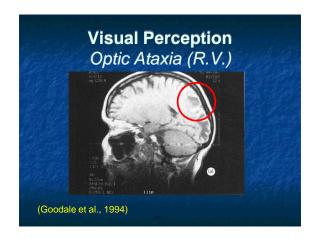


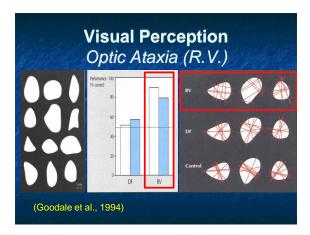


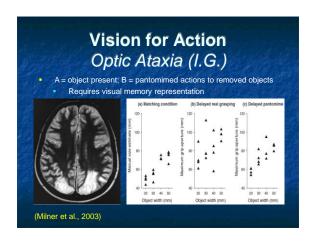


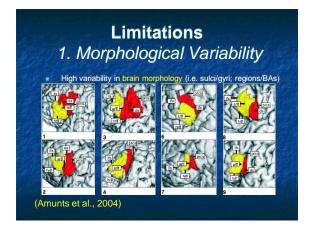


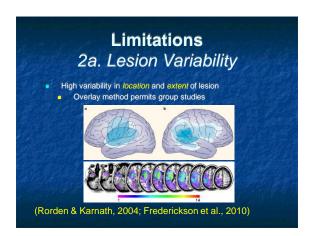


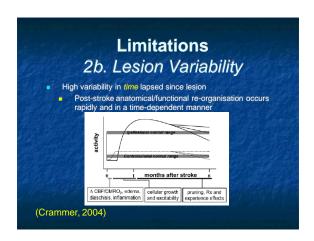


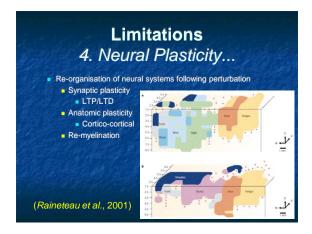


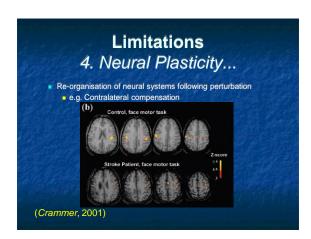











Discussion					
	Advantages				
	Early neuropsychological investigations led to animals models that advanced dramatically our understanding of brain- behaviour relationships				
	Animals models can't be used to investigate language				
	Neuropsychological investigations inform cognitive models (e.g. identify cognitive sub-systems)				
	Neuropsychological investigations permit formal testing of cognitive models				
	Case studies can lead to tailored rehabilitation programs				

The End	