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,t if you could change some to be more like me
d love you today unconditionally.

you see that there are clouds, what is the probability that soon there will be
: If you know that it is raining, by hearing it patter on the roof, what is
€ probability that there are clouds? Notice that p(clouds | rain) is not equal
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l‘m CHAPTER4: Bayes' Rule

to p(rain | clouds). If someone smiles at you, what is the probability that they
love you? If someone loves you, what is the probability that they will smile at
you? Notice that p(smile|love) is not equal to p(love| smile).

Let's consider an example for which we can determine specific numbers. Sup-
pose I have a standard deck of playing cards, which has 52 cards altogether.
There are four suits: hearts, diamonds, clubs, and spades. Within each suit,
there are 13 values: ace, tWo, three,. . ., ten, jack, queen, and king. I shuffle the
cards and draw one at random without showing it to you. I look at the card,
and tell you (truthfully) that it is a queen. Given that you know it is a queen,
what is the probability that it is a heart? Think about it a moment: There are
four queens in the deck, and only one of them is a heart. So the probability
that the card is a heart is 1 /4. We can write this as a conditional probability:

01Q) = -
pEIQ =7

Now I put the card back into the deck and reshuffle. I draw another card from
the deck, and this time I tell you that it is a heart. Given that you know itisa
heart, what is the probability that itis a queen? Think about it a moment: There
are 13 hearts in the deck, and only one of them is a queen. So the probability
that the card is a queen is 1 /13. We can write this as a conditional probability:

1
PRIV = 13-

Notice that p(@|Q) does not equal p(QI9). Despite the inequality, the
reversed conditional probabilities must be related somehow, right? Answer:
Yes! What Bayes' rule tells us is the relationship between the two conditional

probabilities.

4.1 BAYES' RULE

Thomas Bayes (1702-1761) was a reputable mathematician and Presbyterian
minister in England. His famous theorem was published posthumously in
1764. The simple rule that relates conditional probabilities has vast ramifi-
cations for statistical inference, and therefore as long as his name is attached
to the rule, we'll continue to see his name in textbooks.

A crucial application of Bayes' rule is to determine the probability of a model
when given a set of data. What the model itself provides is the probability of
the data, given specific parameter values and the model structure. We use Bayes
rule to get from the probability of the data, given the model, to the probability
of the model, given the data. This process will be explained during the coursé
of this chapter and, indeed, during the rest of this book.

There is another branch of statistics, called null hypothesis significance testing
(NHST), that relies on the probability of data given the model and does 10t
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use B;?yes’ rule. Chapter 11 describes NHST and its perils. This approach i

often identified with another towering figure from England who livid ab i
200 years later than Bayes, named Ronald Fisher (1890-1962). His nam "o

at least the first letter of his last name, is immortalized in the r‘nost comri;: X
statistic used in NHST, the F-ratio.! It is curious and reassuring that the ovi "
whelmingly dominant approach of the 20th century (i.e., NHST) is givin wear -
in the 21st century to a Bayesian approach that had its genesis in thegl 8tl);

century.

4.1.1 Derived from Definitions of Conditional
Probability

Recall from the definition of conditional probability, back in Equations 3.11
and 3.12 on p. 45, that'p(y|x) = p(y, x)/p(x). In words, the definition sim-
ply says that t'he probability of y given x is the probability that they happen
tc?g.ether r‘elatlve to the probability that x happens at all. We used this defi-
nition quite naturally when computing the conditional probabilities for the
example, presented earlier, regarding hearts and queens in a deck of cards

Now we just do some very simple algebraic manipulations. First, multi

both sides of p(y | %) = p(y, x)/p(x) by p(x) to get p(y [)p(x) = p(y, x’)- Ssclggcliy
notice that we can do the analogous manipulation starting with p(x|y) =’
p(y,%)/p(y) to get p(x| y)p(y) = p(y, x). Now we have two different expressions
equal to p(y, x), so we know those expressions equal each other: p(y [ x)p(x) =
p(x| y)p(y). Divide both sides of that last expression by p(x) to airrive at -

_ pxly)p(y)
p(ylx) = T (4.1)

B;lt we are not done yet, because we can rewrite the denominator in terms

goﬁ(;c |9y) also. quard’that go.al, recall that p(x) = ) y P ). That was Equa-

Clomb.h,lionn pt.ht4, ifyou rg keep.mgscore. Wealso know thatp(x, y) = p(x| y)p(»).

o ingto ths:a;quatlgns yields p(x) = Zy p(x, y) = Zy p(x| y)p(y). Substi-
enominator of Equation 4.1 to get

px| y)p(y)

5, P PG) (4

p(y|x) =

n i i

’ eE;llilsti(})lrel :lle.fl, th‘e y 1n.the nu.merator is a specific fixed value, whereas

e Summat?mmator 1§ a variable that takes on all possible values of y

e on. Equations 4.1 .and 4.2 are called Bayes’ rule. This simple
1p lies at the core of Bayesian inference.

ut Fisher did not adv I conte:
advocate the type of NH i i i
e Y = % ( tyf ST ritual that contemporary social science performs; see

4.1 Bayes' Rule
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4.1.2 Intuited from a Two-Way Discrete Table
It's easy to derive Bayes' rule (we just did!), but let’s now get an intuition for
what it means and how it works. First, let’s confirm that it works for the sim-

ple case of the queen of hearts. Earlier we figured out that p(Q| Q) = 1 and

1
_ Do those conditional probabilities satisfy Bayes' rule? Let's find

p(@1Q) = i
14 13 _ —1— =p(Ql®).Itworks!

out: p(@ | QP(Q)/P() = 152/ 52" 13

The suit and value on playing cards are independent. (The idea of independent
attributes was discussed in Section 3.4.3.) Let's now confirm Bayes' rule for
two attributes that are not independent. Recall the case of tossing a coin three
times and counting the number of heads and the number of switches between
heads and tails, as tabulated back in Table 3.3 (p. 43), and repeated here for

convenience:

Number of Heads Marginal
1 2 3 (Number of Switches)

Number of Switches 0
0 18 0 0 1/8] 2/8
1 0o 28 28 0 | 4/8
2 o 1/8 1/8 0 | 28

/8 a/8 8/8 1/8]

Consider the probability of getting one switch given that there is
one head—that is, p(1S| 1H)—versus the probability of getting one
head given that there is one switch, that is, p(1H|1S). From the
table, we can determine that p(1S|1H) = p(1S, 1H)/p(1H) = (2/8)/(33/8) =
2/3, and p(lHllS):p(lH, 1S)/p(1S)=(2/8)/(4/8)=1/2. Notice that

p(1S|1H) does not equal p(1H|1S). Then we can verify Bayes' rule:
). It works! In

p(1H| 18)p(18)/p(1H) = (1/2)(4/8)/(3/8) = 2/3 = p(1S| 1H
going through that arithmetic, essentially what we did was go through the

motions of deriving Bayes’ rule, using specific values instead of variables.

for understanding conditional probabilities and Bayes'
rule, comes from restricting our spatial attention to a single row oI column
of the conjoint probability table. Suppose someone tosses a coin three times
and tells us that the sequence contains one switch. Given that knowledge, we
can Testrict our attention to the row of the table corresponding to one switch.
We know that one of the conjoint events within that row must have happened,
but we don’t know which one. The relative probabilities of events within that

row have not changed, but we know that the total probability within that 1oW

must now sum to 1.0. To achieve that transformation mathematically, we sim-
ply divide the cell probabilities in the one-switch row by its original row total.

This preserves the relative pro
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probability equal to 1.0. Dividing a set of values by their sum is called normal-
izing the values. When we normalize the cell probabilities in the ith row, we get
the conditional probabilities of the columns, given the row value. In particular,
when we normalize the one-switch row, we get the conditional probabilities
for number of heads: p(0H|1S) = 0/(4/8) =0, p(1H|1S) = (2/8)/(4/8) =
0.5, p(2H|1S) = (2/8)/(4/8) = 0.5, and p(3H| 1S) = 0/(4/8) = 0.

The idea of restricting attention to a single column or row of the conjoint prob-
ability table yields a way of intuiting Bayes’ rule in general. The key to Bayes’
rule is to notice, from the definition of conditional probability (Equations 3.11
and 3.12 on p. 45), that the conjoint probability of the i row (R;) and the
jt* column (C;) can be reexpressed either as p(R; | C)p(C;) or as p(C;j | R)p(R;).
These alternative expressions of the conjoint probability p(R;, C;) have been
entered into the i,/ cell of Table 4.1.

Suppose we know that event R; has happened, but we don't know the col-
umn value. In this case, the remaining possibilities are the cells in row R;,
and therefore we can restrict our attention to only the i row of Table 4.1.
Because we know that R; is true, our universe of remaining possibilities has
collapsed to that row, and therefore we know that the sum of the probabili-
ties in the row must be 1, instead of p(R;). This promotion of p(R;) to 1.0 is
mathematically like dividing everything in the i row by p(R;). As mentioned
before, this operation is called normalizing the probabilities in the i row so
they sum to 1.0. When we normalize, the equation in the i, j”’ cell becomes
P(Ri, G)/pRi) = p(Ri | G)P(C})/p(Ri) = p(C; | Ry). This is Bayes’ rule.

In summary, the key idea is that conditionalizing on a known row value is
like restricting attention to only the row for which that known value is true
and then normalizing the probabilities in that row by dividing by the row’s
total probability. This act of spatial attention, when expressed in algebra, yields
Bayes' rule.

Table 4.1 Making Bayes’ Rule Not Merely Special
but Spatial

Column
Row e J Vols Marginal

p(Ri, Cj)
= p(Ri | C)p(C))
= p(Gj | R)Pp(R)

Margin;I p(Cp)

4.1 Bayes' Rule 415
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4.1.3 The Denominator as an Integral over

Continuous Values
Up to this point, Bayes' rule has been presente
valued variables. It also applies to continuous variables,
become probability densities and sums become integrals.
variables, Bayes' rule (Equation 4.2) becomes

_plyp0)
PO = Ty plxl 1P

the numerator is a specific fixed value, whereas the y
1 possible values of y over the

ariable that takes on al
_variable version of Bayes' rule that we will deal

d only in the context of discrete-
but probability masses
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(4.3)

In Equation 4.3, the y in
in the denominator isav
integral. It is this continuous
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4.2 APPLIED TO MODELS AND DATA
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4.2 Applied to Models and Data #¥}

is Table 4.2 Applying Bayes’ Rule to Data and
e Model Parameter
:t Model Parameter
Data e 0 value e Marginal
p(D, 0)
D value e =p(D|0)p®) . p(D)
te- = p(© | D)p(D)
ses : : ‘
us Marginal p©) :
{
L3 That is, p(D, ) is the probability of getting that particular combination of data )
value and parameter value, across all possible combinations of data values and l
ey parameter values. 1
dt hel The prior probability of the parameter values is the marginal distribution, p(9), '
4 which appears in the lower margin of Table 4.2. This is simply the probability
of each possible value of 9, collapsed across all possible values of data. 4
When we observe a particular data value, D, so we know it is true, we are | |’
restricting our attention to one specific row of Table 4.2, namely, the row corre- I
. TOW sponding to the observed value, D. The posterior distribution on 6 is obtained '
ively. by dividing the conjoint probabilities in that row by the row marginal, p(D). il
ydel's Thus, the posterior probability of § is just the conjoint probabilities in that il
lel of row, normalized by p(D) to sum to 1. f il
More We need to define some notation and terms at this point. The factors of Bayes’
rule have names as indicated here:
. p@|D) = pD|6) p@O) / pD) (4.4) “ ‘
llCh 18 —— —_—— —— N e’ !
posterior likelihood prior evidence ||
vhere the evidence is (from the denominator of Equation 4.3)
beliefs } |
beliefs p(D) = / do p(D | 6)p(6) (4.5)
i
" = ”n . ' |
dels in *€ Prior,” p(0), is the strength of our belief in 6 without the data D. The [
) corre- Osterior,” p(6 | D), is the strength of our belief in § when the data D have been }‘ ‘
1.2 cOr- ken into account. The “likelihood,” p(D | 6), is the probability that the data Il
onjoint ,i Id be generated by the model with parameter values 8. The “evidence,” p(D), ‘
ralue D+ i€ probability of the data according to the model, determined by summing
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across all possible parameter values weighted by the strength of belief in those p(D|M
parameter values. the ent
We talk about parameter values 0 only in the context of a particular model; term °l
o . . Y . more ft
it's the model that gives meaning to the parameter. In some applications, 1t D" Th
can help to make the model explicit in Bayes' rule. Let's call the model M. 5 th &
Then, because all the probabilities are defined given that model, we can rewrite H(IM 161'
Equation 4.4 as / | .
data D
58D, M) = p(D16,M)p® | M) / pO I M) (4.6) Y
N, e’ — —_— can OIllj
posterior likelihood prior evidence
: : 4.2.1 !
where the evidence 1s
One m
tion 4.4
p(DIM) = [ do p(D 16, M)p(@ | M) (4.7) B ke
which w
It's especially handy to have the model explicitly annotated as in Equa- p@|D,
tion 4.6 when you have more than one model in mind and you're using update y
the data to help determine the strength of belief in each model. Sup- The ans
pose we have two models, creatively named M1 and M2. Then, by Bayes' that defi
rule, p(M1|D) =pD| M1)p(M1)/p(D) and p(M2 | D) = p(D | M2)p(M2)/p(D); in any v
where p(D) = Y_;p(D| M;)p(M;). Taking the ratio of those equations, we get p(D|6)p
of mode
pM1|D) _ p(D|M1) p(M1) (4.8) in time «
p(M2|D)  p(DIM2) p(M2) ' bility fu
—_—— ;
are indef
the orde
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o of the prior beliefs. The
e abstract

that the ratio of the posterior be

d in Equation 4.7) times the rati
s called the Bayes factor. Examples of all thes

Equation 4.8 says
dences (as define
ratio of the evidences i

terms will be provided soon.
Terminological aside: The quantity p(D | M), which is called the evidence in this
book, is sometimes instead called the marginal likelihood or prior predictive by
other authors. The term “ovidence” is common in the machine learning liter-

ature (e.g., Bishop, 2006, MacKay, 2003). Whenever 1 refer to the sevidence”
for a model, I am referring to p(D|M) as defined in Equation 4.7. This usage
might be a little confusing in the context of model comparison when consider=
ing the equation p(M1 | D) =p(D| MD)pM1)/p(D), where p(D | M1) plays e
role of the likelihood, not the evidence. This apparent confusion is cleared UP

when abbreviated terminology is expanded to its full specificity. The facto!
p(D|M) is not merely “the evidence, it is “the evidence for model M. On
the other hand, the factor p(D), in the context of the equation p(M1 | D) =
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4.2 Applied to Models and Data “

p(D|M1)p(M1)/p(D), is not the evidence for a model but is the evidence for
the entire set of models under consideration: p(D) = Y, p(D | M;)p(M;). The
term “likelihood” also deserves expansion. In Equation 4.6, the likelihood is
more fully stated as “the likelihood of parameter value 6 in model M for data
D! That is, the likelihood is referring to the parameter 6. On the other hand,
in the context of model comparison, the factor p(D|M1), in the equation
p(M1|D) = p(D|M1)p(M1)/p(D), is the “likelihood of the model M1 for the
data D." To reiterate, the term “evidence” is merely a word to refer to p(D | M).
As we will see, its value does not have much meaning by itself. Instead, p(D | M)
can only be interpreted in the context of other models.

4.2.1 Data Order Invariance

One more nuance about Bayesian updating of beliefs. Bayes' rule in Equa-
tion 4.4 gets us from a prior belief, p(9), to a posterior belief, p(6 | D), when
we take into account some data. Now suppose we observe some more data,
which we'll denote D’. We can then update our beliefs again, from p(6 | D) to
p(6 | D', D). Here's the question: Does our final belief depend on whether we
update with D first and D’ second, or update with D’ first and D second?

The answer is, it depends. In particular, it depends on the model function
that defines the likelihood, p(D | 6). In many models, p(D | §) does not depend
in any way on other data. That is, the conjoint probability p(D, D’ | §) equals
p(D|6)p(D’ | 0). The data probabilities are independent, according to this type
of model. Moreover, in many models the probability function does not change
in time or depend on how many data values have been generated. The proba-
bility function is stationary. Under these conditions, when p(D | 8) and p(IY | §)
are independent and identically distributed (commonly referred to as “i.i.d."), then
the order of updating has no effect on the final posterior.

This invariance to ordering of the data makes sense intuitively: If the likeli-
hood function has no dependence on time or data ordering, then the posterior
shouldn't have any dependence on time or data ordering either. But it's easy

10 prove mathematically too. First, we'll unpack p(6 | I/, D) by applying Bayes’

tule on D':

p(D'|6,D)p(6 | D)

6|D,D) =
PP [dép(D'|6,D)p@®|D)

'_W, notice that p(D’ |9, D) = p(D’|6), because the model asserts that the
) })bability of a data value depends only on the value of § and not on anything
€ such as other data. Therefore, the preceding equation can be rewritten as

pD’16)p® | D)

0|D,D) =
e : [ dop(D'16)p(@ | D)

|

L
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Now we use Bayes' rule again, this time for p(@ | D), which converts the
equation into
p(D'16) p(D19) p(©)/p(D)
01D,D)= o a1 00 /0(D)
p@1D'D) = 5 5D 16) p(D16) pO)/p(D)

Notice that p(D) in that equation is a constant and cancels out. This last equa-
tion, presented earlier, involves the product of p(D'|6) and p(D| ). Because
multiplication can be done in either order (i.e., it is “commutative” in techni-
cal terminology), we arrive at the same formula if we start with the data in the
opposite order: p(@ | D,D).

In all of the examples in this book, the likelihood functions generate i.i.d. data.
One way of thinking about this assumption is as follows: We assume that every
datum is equally representative of the underlying process, regardless of when
the datum was observed. Older observations are just as valid and representative
as more recent observations, and the underlying process that generates the data
has not changed during the course of making the observations.

p(6)

0.0

0.0

p(D|6)

4.2.2 An Example with Coin Flipping 0.0

With all the emphasis on coin flipping, by now you must be imagining flip-
ping coins over pasture fences as you try to fall asleep. Nevertheless, imagine
flipping coins once again, and try not to fall asleep. We will start with some
prior beliefs about the possible bias of the coin, then flip the coin a few times,
and then update our beliefs based on the observed flips.

0.0(

First, we specify our prior beliefs. We denote the bias as 6 = p(H), the probabil-
ity of the coin coming up heads. To keep the example straightforward, suppose
that we believe there are only three possible values for the coin’s bias. Either the
coin is fair, with 6 = 0.50, or the coin is biased, with 6 = 0.25 or6 = 0.75. We
believe that the coin is probably fair, but there's some smaller chance it could
be biased high or low. This prior probability is graphed in the top panel of
Figure 4.1. It shows three “spikes,” one over each value of 6 that we think could
be possible. The spike over 6 = 0.5 is tallest, indicating that we believe it t0
be most likely. Note that the heights of the spikes are probability masses, not
densities, because each spike indicates the probability of its specific, discreté

value of 6.

~ peID)

Next, we flip the coin to get some data, D, and determine the likelihood;
p(D|6). Suppose we flip the coin 12 times and it comes up heads 3 times:
According to our model of the coin, the probability of coming up heads is
9, and the probability of coming up tails is 1 —6. Moreover, the flips @€
independent of each other, and therefore we can multiply the probabiliti
of the individual flips to get the probability of the combination of flips. Corl
sequently, the probability of a specific sequence of three heads and nine ai
is p(D]6) =6°(1 — 9)°. The resulting likelihood for each value of 6 is plo!
ted in the middle panel of Figure 4.1. Notice that the likelihood is highest 1€
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4.2 Applied to Models and Data
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FIGURE 4.1

thood estimate of 0.

Q) gsian updating of beliefs about the bias of a coin. The prior and posterior ‘
Stributions indicate probability masses at discrete candidate values of 6. (The R code ’
atgenerated this graph is in Section 4.4.1 (BayesUpdate.R).) f

|

7-25 and lowest for § = 0.75. This peak at 6 = 0.25 makes sense, because
data have 25% heads, so they are more likely if 6 = 0.25 than if = 0.50 or
975. The value of 9 that maximizes the likelihood is called the maximum
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The lower panel of Figure 4.1 includes the value of p(D| M), the evidence for -
the model. Recall from Equation 4.7 that the evidence is the overall probability o( DII 0
of the data, averaging across the available parameter values weighted by the S lentii
degree to which we believe in them: p(D|M) = S pD10, M)p6, M). This is B nctic
the normalizer for the posterior distribution, hence itis displayed in the plot of
the posterior distribution. The value is displayed as p(D) instead of as p(D | M) The p
because there is only one model in this context, and therefore the M notation that h:
is suppressed. When you see the value of p(D) in Figure 4.1, you might think the otl
that p(D) is terribly small, until you remember that we are talking about the p(D|6
conjoint probability of several things happening together (i.e. exactly the 12 coin fl
flips we observed). The probability of 1 head is 6. The probability of 2 heads is
62, which is smaller than 6. The probability of 3 heads is 6°, which is smaller
yet. As the set of data D gets bigger, in terms of containing more observations, 43
p(D) gets smaller, regardless of how closely the model 6 matches the true bias Back i
in the coin. Revar
The bottom panel of Figure 4.1 displays the posterior beliefs for each value these g
of 6. According to Bayes' rule, the posterior is proportional to the product of
the prior and the likelihood. So the shape of the posterior is influenced by 43.1
both the prior and the likelihood. You can see this dual influence in Figure 4.1 i
by inspecting the relative heights of the left and middle spikes. In the prior, the EStl.ma
middle spike is much taller than the left spike. In the likelihood, the middle believe
spike is much shorter than the left spike. In the posterior, there is a compromise gells us
between the prior and the likelihood: The middle spike is shorter than the left of thos
spike, but not so short as in the likelihood because it (the middle spike) is The pc
buoyed up by the prior. Notice how our beliefs have changed from prior t0 heavily
believed most strongly in 2 fair coin. After accounting for possib]

posterior. Initially we
the data, we believed most stronglyina biased coin. The Bayesian mathematics
let us compute exactly how much our beliefs changed.

4.2.2.1 p(D10) Is Not 0
it is easy to lose sight of the important

In the examples involving coin flips,
fact that p(D | 6) is different from 6, even though they both are values between
0 and 1 for our current examples. The likelihood p(D6) is a mathematical

function of 6. The value of the likelihood function is always a probability
(a probability mass if 6 has a finite number of values, and a probability den
sity otherwise). The value of the parameter, however, could be on any scale;
depending on the meaning of the parameter. In our examples so far, the mean=
ing of the parameter is itself a probability, sO it is easy to confuse the parameté!
value with the likelihood value. Adding to the confusability is the fact that
in our examples so far, the function that maps 6 10 p(D=H10) has been
identity function:
p(D=H|0) =10 (49
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for and, of course, p(D=T|6) = 1.0 — p(D=H|0) = 1.0 — 6. It is easy to confuse |
lity p(D|0) with 6 in our examples because the function that relates them is the

the identity. Later in the book, we will see many examples for which the likelihood

s is function is not the identity function.

tj\j;- The point of this subsection has been to remind you that  is a parameter

. that has a scale and meaning in the context of a model. The value p(D | 6), on [
'1.0111 the other hand, is a probability, and is a function of the parameter 6. Thus,
in

p(D|6) and 0 are distinct entities, despite the fact that in simple models of !
e coin flipping, p(D=H | 0) = 4. !

> 12 : ;
Isis 3 _
e 4.3 THE THREE GOALS OF INFERENCE |
bias Back in Section 2.2 (p. 12), I introduced three goals of inference: estimation ' |
of parameter values, prediction of data values, and model comparison. Each of ;
il ' these goals are now given precise mathematical expressions. | I
ct of ‘
d by 4.3.1 Estimation of Parameter Values ‘
ed.l Estimation of parameter values means determining the extent to which we Il
1, the believe in each possible parameter value. This is precisely what Equation 4.6 il
iddle tells us. The posterior distribution over the parameter values 6 is our estimate
ymise of those values.
e left
ke) is The posterior distribution can be narrow, with most of the probability piled L
ior to heavily over a small range of 6. In this case, we are fairly certain about the 5 ;
ng for possible values of §. On the other hand, the posterior probability distribu- i
natics tion could be wide, spread over a large range of 6. In this case, we have high ”‘
uncertainty about the possible values of 6. I
I
) 4.3.2 Prediction of Data Values ’
:;t:ln Using our current beliefs, we may want to predict the probability of future data '
hatical ues. To avoid notational conflicts later, I'll denote a data value as y. The ’

aability
iy den-
7 scale,
mean-
ameter
ct that,
een the

edicted Probability of data value y is determined by averaging the predicted

(|
dta probabilities across all possible parameter values, weighted by the belief J‘
L the parameter valyes:

1l
p(y) = / d8p(y |0)p(6) |

thaF this is exactly the evidence, discussed after Equation 4.4, except
}he. evidence refers to specific observed value of y, whereas here we are
‘Puting the Probability of any possible value of y.

(49
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As an example, consider the prior beliefs in the top panel of Figure 4.1. For
those beliefs, the predicted probability of getting a head is il
0.6
p(y=H) =Y p(y=H|0)p(®) T !
2 ;
0.0
— p(y=H|6=0.25)p(0 =0.25)
+p(y=H|6=0.50)p(® =0.50)
+p(y=H| 6 =0.75)p(6 =0.75)
0.0012 -
= 0.25 x 0.25 + 0.50 x 0.50 + 0.75 x 0.25 Ea, -
< 0.0008-
=0.5 T 0.0004 -
and the probability of getting a tail is computed analogously to be p(y=T) = 900
0.5. Notice that the predictions are probabilities of each possible data value, ‘
given the current model beliefs.
If we want to predict a particular point value for the next datum, instead of a 3:2
distribution across all possible data values, it is typical to use the mean (i-e., ) By
expected value) of the predicted data distribution. Thus, the predicted value = 0'2
isy=[dyyp(. This integral only makes sense if y is on a continuum. Ify 0.0
is nominal, like the result of a coin flip, then the most probable value can be i
used as “the” predicted value. The decision to use the mean of the predicted .
values as our single best prediction, instead of, say, the mode or median, relies
implicitly on the costs of being wrong and the benefits of being correct. These FIGURE 4.2
costs and benefits, called the utilities, are considered in more advanced treat- ASimple mo
ments of Bayesian decision theory. For our purposes, we will default to the :@StributiOns
mean, purely for convenience. Ir essed by
ower-left
lower-rigt
4.3.3 Model Comparison at generate
You may recall from earlier discussion (p. 58) that Bayes' rule is also useful
for comparing models. Equation 4.8 indicated that the posterior beliefs in the
models involve the evidences of the models. Notice that in this third goal (i€ :
3. The

model comparison), the evidence term appears again, just as it appeared for

the goals of parameter estimation and data prediction.
comparison is that there is an auto
en assessing the degree to which we
explained with an example:
illustrated in Figure 4.1 an€

we supposed tha
ction made th
Jex model tha
s illustrated

One of the nice features of Bayesian model
matic accounting for model complexity wh
should believe in the model. This might be best
Recall the coin-flipping example discussed eatlier,
reproduced in the left side of Figure 4.2. In that example,
the bias 6 could take on only three possible values. This restri
model rather simple. We could instead entertain a more comp

allows for many more possible values of 6. One such model i
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- FIGURE 4.2
3 A simple model in the left column and a complex model in the right column. The prior and posterior
! distributions indicate probability masses at discrete candidate values of . The same data are
ae addressed by both models. The evidence p(D | Msimple) for the simple model is displayed as p(D) in
the lower-left panel, and the evidence p(D | Mcomplex) for the complex model is displayed as p(D) in
 the lower-right panel. In this case, the data are such that the simple model is favored. The R code
that generated these graphs is in Section 4.4.1 (BayesUpdate.R).
ful
the
el the right side of Figure 4.2. This model has 63 possible values of 6 instead of
for nly 3. The shape of the prior beliefs in the complex model follows the same

hgular shape as in the simple model; there is highest belief in 6 = 0.50,
ith lesser belief in more extreme values.

€ complex model has many more available values for 6, and so it has much
DI€ opportunity to fit arbitrary data sets. For example, if a sequence of coin
8 has 37% heads, the simple model does not have a 6 value very close to
: QutFome, but the complex model does. On the other hand, for 6 values
Ie in both the simple and complex models, the prior probability on those
1 the simple model is much higher than in the complex model. Because
- 4I€ S0 many possibilities in the complex model, the prior beliefs have to
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get spread out, very shallowly, over a larger range of possibilities. This can be
seen in Figure 4.2 by inspecting the numerical scales on the vertical axes of the 1.0

prior beliefs. The scale on the simple model is much larger than the scale on 0.8
the complex model. s 06

Q04
Therefore, if the actual data we observe happens to be well accommodated by 0.2
a 0 value in the simple model, we will believe in the simple model more than 0.0

the complex model, because the prior on that 6 value in the simple model is so
high. Figure 4.2 shows a case in which this happens. The data have 25% heads,

so the evidence in the simple model is larger than the evidence in the complex
model. The complex model has its prior spread too thin for us to believe in it 0.012
as much as we believe in the simple model. 0.00 .
< 0.008
The complex model can be the winner if the data are not adequately fit by =4
: . 2 . q 0.004
the simple model. For example, consider a case 10 which the observed data
0.000

have just 1 head and 11 tails. None of the 6 values in the simple model is close
to this outcome. But the complex model does have some o values near the 0.

observed proportion, even though there is not a strong belief in those values.

Figure 4.3 shows that the simple model has less evidence in this situation, and
1.0

we have stronger belief in the complex model.

The evidence for a model, p(D | M), is not particularly meaningful as an abso- 8 06
Jute magnitude for a single model. The evidence is most meaningful only in 3 04
the context of the Bayes factor, p(D|M1) Jp(D|M2), which is the relative evi- 0.2
dence for two models, when considering an observed data set D.2 Regardless 0.0

0.

of which model wins, the winning model does not need to be a good model
of the data. The model comparison process merely tells us about the relative

evidence for each model. The winning model is better than the other models

he winning model might merely be less bad than the

in the competition, but t
horrible competitors. In later chapters we will explore ways to assess whether

the winning model is actually a viable model of the data.

We will see in Chapter 10 that Bayesian model comparison is “really” just @
case of Bayesian parameter estimation, in which a parameter that indexes the
models is estimated. The individual model parameters depend on the index
jcal parameter, and thus the scheme involves a hierarchy of dependencies
Hierarchial models are introduced in Chapter 9. The fact that model €0 n-
parison is a case of parameter estimation is mentioned here only to fend Of
any mistaken impression that parameter estimation and model comparisor

are fundamentally different.

g evidences of a single mO¢

2The Bayes factor, p(D | M1)/p(D|M2), is quite different than considerin:
r and is not

for different candidate data sets. Specifically, p(D1|M) /p(D2| M) is not a Bayes facto

discussed.
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FIGURE 4.3

A simple model in the left column and a complex model in the right column. The prior and posterior

distributions indicate probability masses at discrete candidate values of 6. The same data are

addressed by both models. The evidence p(D | Mgimple) for the simple model is displayed as p(D) in
lower-left panel, and the evidence P(D [ Mcomplex) for the complex model is displayed as p(D) in
lower-right panel. In this case, the data are such that the complex model is favored. The R code

tat generated these graphs is in Section 4.4.1 (BayesUpdate.R).

3.4 Why Bayesian Inference Can Be Difficult
] Vthree goals involve the denominator of Bayes’ formula (i.e., the evidence),
usually means computing a difficult integral. There are a few ways out
this difficulty. The traditional way is to use likelihood functions with “con-
5 ." Prior functions. A prior function that is conjugate to the likelihood
€Hon simply makes the posterior function come out with the same func-
_,fOTm as the prior. That is, the math works out nicely. If this method
Mt work, an alternative is to approximate the actual functions with other
n$ that are easier to work with, and then show that the approximation
i0nably good under typical conditions. But this method is still pure,
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analytical mathematics. Yet another method is to numerically approximate i
the integral. When the parameter space is small, then it can be covered with n
a comb or grid of points and the integral can be computed by exhaustively "
summing across that grid. But when the parameter space gets evenl moderately th
large, there are too many grid points, and therefore other methods must be ot
used. A large class of random sampling methods have been developed, which al
can be referred to as Markov chain Monte Carlo (MCMC) methods, that can th
numerically approximate probability distributions even for large spaces. It is or
the development of these MCMC methods that has allowed Bayesian statisti-
cal methods to gain practical use. The next major part of this book explains 4
these various methods in some detail. For applications to complex situations, Th
we will ultimately focus on MCMC methods. ob
Another potential difficulty of Bayesian inference is determining a reasonable g4l
prior. What distribution of beliefs should we start with, over all possible param- 4
eter values or over competing models? This question may seem daunting, but i aw
in practice it is typically addressed in a straightforward manner. As we will dis- fol
cuss more in Chapter 11, it is actually advantageous and rational to start with p (€
an explicit prior. Prior beliefs should influence rational inference from data, is |
because the role of new data is to modify our beliefs from whatever they were gus
without the new data. Prior beliefs are not capricious and idiosyncratic and Ho

d on publicly agreed facts and theories.

esst
be admissible by a skeptical scien- s

unknowable, but instead they are base

Prior beliefs used in data analysis must
tific audience. When scientists disagree about prior beliefs, the analysis can be

conducted with various priors to assess the robustness of the posterior against

changes in the prior. Or the priors can be mixed together into a joint prior, with

the posterior thereby incorporating the uncertainty in the prior. In summary,

for most applications, specification of the prior turns out to be technically
unproblematic, although it is conceptually very important to understand the
consequences of one’s assumptions about the prior. Thus, the main reason that
Bayesian analysis can be difficult is the computation of the evidence, and that
computation is tractable in many situations via MCMC methods. '

4.3.5 Bayesian Reasoning in Everyday Life
4.3.5.1 Holmesian Deduction
Despite the difficulty of exact Bayesian inference in complex mathematica
models, the essence of Bayesian reasoning is frequently used in everyday lif
One example has been immortalized in the words of Sherlock Holmes
his friend Dr. Watson: “How often have I said to you that when you &
eliminated the impossible, whatever remains, however improbable, must ‘
the truth?” (Arthur Conan Doyle, The Sign of Four, 1890, Chapter 6). 1E
reasoning is actually a consequence of Bayesian belief updating, as express
in Equation 4.4. Let me restate it this way: “How often have I said to ¥
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that when p(D|6;) = 0 for all i #j, then, no matter how small the prior

p(6) > 0 is, the posterior P(6; | D) must equal one” Somehow it sounds bet-
ter the way Holmes said it. The intuition behind Holmes’s deduction is clear,
though: When we reduce belief in some possibilities, we necessarily increase
our belief in the remaining possibilities (if our set of possibilities exhausts
all conceivable options). Thus, according to Holmesian deduction, when

the data make some options less believable, we increase belief in the other
options.

4.3.5.2 Judicial Exoneration

The reverse of Holmes's logic is also commonplace. For example, when an
object d'art is found fallen from its shelf, our prior beliefs may indict the house
cat, but when the visiting toddler is seen dancing next to the shelf, then the cat
is exonerated. This downgrading of a hypothesis is sometimes called explaining
away of a possibility by verifying a different one. This sort of exoneration also
follows from Bayesian belief updating: When p(D | ¢j) is higher, then, even if
p(D6:) is unchanged for all i + j, p(4; | D) is lower. This logic of exoneration

is based on competition of mutually exclusive possibilities: If the culprit is
suspect A, then suspect B is exonerated.

Holmesian deduction and judicial exoneration are both expressions of the
essence of Bayesian reasoning: We have a space of beliefs that are mutually
exclusive and exhaust all possibilities. Therefore, if the data cause us to decrease
belief in some possibilities, we must increase belief in other possibilities (as
said Holmes), or, if the data cause us to increase belief in some possibili-
ties, we must decrease belief in other possibilities (as in exoneration). What

Bayes’ rule tells us is exactly how much to shift our beliefs across the available
possibilities.

44 R CODE

4.4.1 R Code for Figure 4.1

Several new commands are used in this p

iz

rogram. When you encounter a puz-
y helps to try the he1p command. For
come across the command matrix.
of this command, do this: At the R
imand line, type he p("matrix") and you'll get some clues about how it
Orks. Then experiment with the command at the interactive command line

Stiyou're confident about what its various arguments do. For example, try
PINg at the command line:

Matrix( 1.6

fatrix( 1.4

ing command in an R program, it usuall
ple, when perusing this code, you'll
10 find out about the syntax and usage

» Nrow=2 , ncol=3 , byrow=TRUE )

+ Nrow=2 , ncol=3 , byrow=FALSE )

4.4 R Code
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The listing that follows includes line numbers in the margins, to facilitate track-
ing the code across page splits and to facilitate referring to specific lines of the

code when you have enthusiastic conversations about it at parties.

under MacOS instead of in a Windows emu-
d to change all the windows () commands to
there is no Mac equivalent

Mac users: If you are running R
lator such as WINE, you will nee
quartz(). Later in the book, when we use BUGS,
and you must run the programs under WINE or windows.

(BayesUpdate.R)
4 Theta is the v
# nThetaVals is the number of candidate
# To produce the examples in the book,
nThetaVals = 3

# Now make the vector of theta values:
Theta = seq( from = 1/(nThetaVals+l) , to = nThetaVa]s/(nThetaVa]s+1) ;

by = 1/(nThetaVals+1l) )

ector of candidate values for the parameter theta.
theta values.
set nThetaVals to either 3 or 63.

}

# pTheta is the vector of prior probabilities on the theta values.

o pTheta = pmin( Theta , 1-Theta ) # Makes a triangular belief distribution.
pTheta = pTheta / sum( pTheta ) {ff Makes sure that beliefs sum to 1.

v B N e W R W N

s 4 Specify the data. To produce the examples in the book, use either

i Data = c(l,1,1,0,0,0,0,0,0,0,0,0) or Data = C(l,0,0,0,0,0,0,0,0,0,0,0).

Data = c(l,1,1,0,0,0,0,0,0,0,0,0)
6 nHeads = sum( Data == 1)
17 nTails = sum( Data == 0 )

od of the data for each value of theta:

4 Compute the likeliho
a“nHeads * (1-Theta)™nTails

o pDataGivenTheta = Thet

, 4 Compute the posterior:
pData = sum( pDataGivenTheta x pTheta )

pThetaGivenData = pDataGivenTheta * pTheta / pData # This is Bayes' rule!

5 iF Plot the results.
windows(7,10) # create window of spec

6 layout( matrix( c( 1,2,3 ) ,nrow=3 ,ncol=1
29 par(mar=c(3,3,1,0)) # number of margin lines: bottom,left,to

30 par(mgp=c(2,1,0)) # which margin Tines to use for labels
31 par(mai=c(0.5,0.5,0.3,0.1)) # margin size in inches: bottom,1eft,top,right

ified width,height inches.

,byrow=FALSE ) ) ## 3x1 panels
p,right

55§ Plot the prior:

3¢ plot( Theta , pTheta , type="h" , 1wd=3 .,
x1im=c(0,1) , x1ab=bquote(theta) .
36 y1im=c(0,1.1*max(pThetaG1venData)) , y1ab=bquote(p(theta)) 7

37 cex.axis=1l.2 , cex.lab=1.5 , cex.main=1.5 )

main="Prior" ,

» 4 Plot the 1likelihood:
w0 plot( Theta , pDataGivenTheta , type="h" ,
x1im=c(0,1) , x1ab=bquote(theta) ,

Twd=3 , main="Likelihood" .

42 \)
43 ¢
44 text(
45 K
46
7 Plot
s plot( T
49 X
50 y
51 c
2 text( .
53 b
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s ylim=c(0,1.1«max(pDataGivenTheta)) , ylab=bquote(paste("p(D|",theta,")")),
45 cex.axis=1.2 , cex.lab=1.5 , cex.main=1.5 )

a text( .55 , .8bxmax(pDataGivenTheta) , cex=2.0 ,

45 bquote( "D=" % .(nHeads) % "H," % .(nTails) = "T" ) , adj=c(0,.5) )

46

| o Plot the posterior:
s plot( Theta , pThetaGivenData , type="h" , 1wd=3 , main="Posterior"

’

‘ 2 x1im=c(0,1) , xlab=bquote(theta) ,

' & ylim=c(0,1.1+max(pThetaGivenData)) , ylab=bquote(paste("p(", theta,"|D)")),
o cex.axis=l1.2 , cex.lab=1.5 , cex.main=1.5 )
s2  text( .55 , .85xmax(pThetaGivenData) , cex=2.0 ,
= bquote( "p(D)=" % .(signif(pData,3)) ) , adj=c(0,.5) )

4.5 EXERCISES

Exercise 4.1. [Purpose: Application of Bayes’ rule to disease diagnosis, to see the
important role of prior probabilities.] Suppose that in the general population,
the probability of having a particular rare disease is 1 in a 1000. We denote the
true presence or absence of the disease as the value of a parameter, 6, that can
have the value # = ~ if the disease is present, or the value § = = if the disease
is absent. The base rate of the disease is therefore denoted p( =~) = 0.001.
This is our prior belief that a person selected at random has the disease.

Suppose that there is a test for the disease that has a 99% hit rate, which means

that if a person has the disease, then the test result is positive 99% of the time.

. We denote a positive test result as D = + and a negative test result as D = —.

' The observed test result is a bit of data that we will use to modify our belief

. about the value of the underlying disease parameter. The hit rate is expressed

as p(D= + |6 =~)=0.99. The test also has a false alarm rate of 5%. This

means that 5% of the time when the disease is not present, the test falsely

indicates that the disease is present. We denote the false alarm rate as p(D =
+16=2)=0.05.

Suppose we sample a person at random from the population, administer
the test, and it comes up positive. What is the posterior probability that the
person has the disease? Mathematically expressed, we are asking, what is
Pl=~ | D=+)? Before determining the answer from Bayes’ rule, generate an
Ituitive answer and see if your intuition matches the Bayesian answer. Most
people have an intuition that the probability of having the disease is near the
hit rate of the test (which in this case is 0.99).

Hint: The following table of conjoint probabilities might help you under-
tand the possible combinations of events. (The following table is a specific
45e of Table 4.2, p. 57.) The prior probabilities of the disease are on the
%0lom marginal. When we know that the test result is positive, we restrict
Al attention to the row marked D = +.
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0=~ =T
pD=+0=") p(D=+,60=") %p(D=+)
=pD=+16=~)pO=") —p(D=+10=3)p0 =) 1
pD=—6=") pD=—0=") | 0=
 =p0=-18=2p0=") = pO=—10=-pO0=") |
PO =) pO =) ?M (B)

ults: Remember that here we have assumed

Caveat regarding interpreting the res
dom from the population; there were no

that the person was selected at ran
other symptoms that motivated getting the test.

Exercise 4.2. [Purpose: Iterative application of Bayes' rule, to see how posterior probabil-
ities change with inclusion of more data.] Continuing from the previous exercise,
e same randomly selected person as in the previous exer-
back positive, and on the retest the
bability that the person has the dis-
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Exercise 4.3. [Purpose: To get an intuition for the previous results by using “natural

frequency” and “Markov” representations.]

sists of 100,000 people. Compute how
h cell of the table in the hint shown in
Exercise 4.1. To compute the expected frequency of people in a cell, just
multiply the cell probability by the size of the population. To get you
started, a few of the cells of the frequency table are filled in here:
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probability that p(¢ = ~) = 0.001. Notice also the cell frequencies in the
column 6 = ~, which indicate that of 100 people with the disease, 99
have a positive test result and 1 has a negative test result. These cell fre-
quencies instantiate the hit rate of 0.99. Your job for this part of the
exercise is to fill in the frequencies of the remaining cells of the table.
Take a good look at the frequencies in the table you just computed for the
previous part. These are the so-called natural frequencies of the events, as
opposed to the somewhat unintuitive expression in terms of conditional
probabilities (Gigerenzer & Hoffrage, 1995). From the cell frequencies
alone, determine the proportion of people who have the disease, given
that their test result is positive. Before computing the exact answer arith-
metically, first give a rough intuitive answer merely by looking at the
relative frequencies in the row D = +. Does your intuitive answer match
the intuitive answer you provided back in Exercise 4.1? Probably not.
Your intuitive answer here is probably much closer to the correct answer.
Now compute the exact answer arithmetically. It should match the result
from applying Bayes’ rule in Exercise 4.1.

Now we’ll consider a related representation of the probabilities in terms
of natural frequencies, which is especially useful when we accumulate

more data. Krauss, Martignon, & Hoffrage (1999) called this type of

representation a Markov representation. Suppose now we start with a
population of N = 10,000,000 people. We expect 99.9% of them (i.e.,
9,990,000) not to have the disease, and just 0.1% (i.e., 10,000) to have
the disease. Now consider how many people we expect to test positive.
Of the 10,000 people who have the disease, 99% (i.e., 9900), will be
expected to test positive. Of the 9,990,000 people who do not have the
disease, 5%, (i.e., 499,500) will be expected to test positive. Now con-
sider retesting everyone who has tested positive on the first test. How
many of them are expected to show a negative result on the retest? Use
this diagram to compute your answer:

N = 10,000,000
v xpl@==) N xpO =)
10,000 9,990,000
V xp(D=+0=~) I xpD=+|0=<)

I xp(D=—0=~) I xp(D=—6=2)

When computing the frequencies for the empty boxes, be careful to use
* the proper conditional probabilities.

4.5 Exercises
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ous part to answer this question: What pro-
at first and then negative on retest
ds, of the total number of people

(D) Usethe diagram in the previ
portion of people who test positive

actually have the disease? In other wor
at the bottom of the diagram in the previous part (those are the people

who tested positive then negative), what proportion of them are in the
left branch of the tree? How does the result compare with your answer to

Exercise 4.2¢

Exercise 4.4. [Purpose: To see a hands-on example of data-order invariance.] Consider
again the disease and diagnostic test of the previous two exercises. Suppose that
a person selected at random from the population gets the test and it comes
back negative. Compute the probability that the person has the disease. The
person then is retested, and on the second test the result is positive. Compute
the probability that the person has the disease. How does the result compare with
your answer 1o Exercise 4.27

ose: An application of Bayes' rule to neuroscience, to infer cogni-
Cognitive neuroscientists investigate which

rticular mental tasks. In many situations,
f the brain is active and infer that

Exercise 4.5. [Purp
tive function from brain activation.|
areas of the brain are active during pa

researchers observe that a certain region O
a particular cognitive function is therefore being carried out. Poldrack (2006)

cautioned that such inferences are not necessarily firm and need to be made
with Bayes' rule in mind. Poldrack (2006) reported the following frequency
table of previous studies that involved any language—related task (specifically
phonological and semantic processing) and whether or nota particular region

of interest (ROI) in the brain was activated:
Language Study Not Language Study

166 199
703 2154

Activated
Not activated

new study is conducted and finds that the ROl is activated. If

e task involves language processing is 0.5, what
d? (Hint: Poldrack

Suppose that a
the prior probability that th
is the posterior probability, given that the ROI is activate
(2006) reports that it is 0.69. Your job is to derive this number.)

Exercise 4.6. [Purpose: To make sure you really understand what is being shown 1

Figure 4.1.] Derive the posterior distribution in Figure 4.1 by hand. The prio
has p(6=0.25) = 0.25, p(6=0.50) = 0.50, and p(6=0.75) = 0.25. The dati
consist of a specific sequence of flips with three heads and nine tails, S
p(D16) = 93 (1 — ). Hint: Check that your posterior probabilities sum o *

enominator €

Exercise 4.7. [Purpose: For you to see, hands on, that p(D) lives in the d i
Bayes' rule.] Compute p(D) in Figure 4.1 by hand. Hint: Did you notice that yO

already computed p(D) in the previous exercise?
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Should have done Bayesian oneway ANOVA.

In this chapter we consider situations with a metric predicted variable and a

nominally scaled predictor variable. These cases occur frequently in real-world ‘ '
Tesearch. For example, we may want to predict weight loss (a metric variable) ‘
as a function of which diet the person follows (e.g., low-carb, vegetarian, or
low-fat). As another example, we may want to predict severity of psychosis
(measured on a metric scale) as a function of which antipsychotic drug the
person takes. Or we may want to predict income as a function of political party
affiliation. This combination of predicted and predictor scale types occurs in i
the first row, fourth cell, of Table 14.1 (p- 385). il

Doing Bayesian Data Analysis: A Tutorial with R and BUGS. DOI: 10.1016/B978-0-12-381485-2.00018-3 fil
©2011, Elsevier Inc. All rights reserved. 491
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In traditional NHST analyses, these situations are addressed by “oneway ang].
ysis of variance” (ANOVA). The term oneway refers to the fact that a single
nominal variable is being used as the predictor. The phrase analysis of variance
refers to the fact that the overall variance across all the data is decomposed (j.e,
analyzed) into two parts: variance within the levels of the nominal predictorg
and variance between the levels of the nominal predictors. The variance within

levels of the nominal predictor is called noise or error (i.e., variability that can- i
not be predicted by the predictor). The complementary variance between the H
levels of the nominal predictor is called the effect of the predictor. Usually we i
do the research with the goal of detecting an effect, which means that we would T
like the magnitude of the variance between levels to be large compared to the T
noise within levels. The ratio of variance between to variance within is called te
the F-ratio. In the Bayesian approach, we rarely if ever refer to the F-ratio. B t T

because the model we use is based on the model of traditional ANOVA, we will if
refer to our analysis as Bayesian ANOVA or sometimes BANOVA.

18.1 BAYESIAN ONEWAY ANOVA

The basic idea of oneway ANOVA was introduced in Section 14.1.6.1, p. 368
The predictor is a variable measured on a nominal scale. For example, if incom
is predicted as a function of political party affiliation, notice that the pre
dictor has nominal levels such as libertarian, green, democratic, republicar
and so on. We denote the predictor variable as X, which is a vector wit
one component per nominal level. For example, suppose that the predict
is political party affiliation, with Green as level 1, Democrat as level 2, Rep
lican as level 3, Libertarian as level 4, and Other as level 5. Then Demo¢
is represented as X =1(0,1,0,0,0), and Libertarian is represented as X
(0,0,0, 1, 0). Political party affiliation is being treated here as a categorical la
only, with no ordering along a liberal-conservative scale.

le
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The formal model indicates how to derive the predicted value from the
dictor. The idea is that there is a baseline quantity of the predicted varia
and each level of the predictor indicates a deflection above or below thatB
line. We will denote the baseline value of the prediction as f,. The defle€
for the j™ level of the predictor is denoted B;- When the predictor has "”'

Ti=(.., Xji, . . .), then the predicted value is
wi =Py + Z Bix;i
j
—Bo+ B -Fi
where the notation 73) - X denotes the dot product of the vectors. In

tion 18.1, the coefficient 8; indicates how much p changes when
from neutral to level j. In other words, B; indicates how much . change
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x changes from all % = 0 to xj = 1. The baseline is constrained such that the ‘
deflections sum to zero across the levels of % :

D_Bi=0 (18.2)
j=1

The predicted value, i, in Equation 18.1 is for the central tendency in the data. ’
The data themselves are assumed to be randomly generated around that central |

18.1.1 The Hierarchical Prior J

Our primary interest is in estimating the deflection parameters, g;, for each |

them separately from each other. It is typical, however, that the levels of ¥ |
are not utterly unrelated to each other, and therefore data from one level may ‘
inform estimates in another level. For example, the deflections for republicans, e ’
libertarians, and greens can inform an estimate of the deflection for democrats, |
Thus, if the deflection for libertarians is +1.0, for republicans is 40.5, and for
greens is —1.0, then the deflection for democrats should be somewhere in that l
general range, and not out at, say, —12.0. At the least, we might have prior

beliefs that the deflections for most levels of 3 may be small, with only a few f
deflections being large, and therefore we can let the various levels mutually ‘
inform each other's estimates based on thig structural assumption. | J

that the deflections are constrained to fall both above and below the baseline,
because they must sum to zero, Importantly, the precision of this normal dis- ‘
tribution, ¢ , 1s estimated, not preset at a constant. Thus, if many of the levels | e l
of ¥ have a small deflection in the data, then the precision Ty is estimated to ‘ !

be high, and this in turn shrinks the estimates of other B;. |

The prior for 7y derives from the recommendation of Gelman (2006). First, |
the precision is converted to standard deviation: g =1 /ag. Then a folded-t ‘ [ 1
distribution is used as a prior on og- The folded-t is just the positive side | ) |
of the usual ¢ distribution. Notice that it is defined only over nonzero “ |

Values, a5 jg required for 0g, and it extends to positive infinity. Unlike N
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0
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FIGURE 18.1
Hierarchical dependencies for model of oneway Bayesian ANOVA. The baseline is
Bo, and the deflection away from that baseline for the ™ level of x is B;. The standat
deviation of the B;'s has a folded-t prior. The variance within levels of x is estim [
\ the precision ty, which is here assumed to be homogeneous across groups, althou
‘ it need not be in general.

the gammal(e, €) distribution that is often used for precisions, however,
folded-t does not have infinite density near zero. Because noisy data
1 never rule out deflections of all zero, there can be unintended distortiol
the estimates if the prior places extreme densities at either end of the
(see Gelman, 2006, for details).

A folded-t prior could also be used for the noise o, but we will use a
again.as recommended by Gelman (2006). One motivation is that a uf
may have a more intuitive form than a folded-t when expressing a prior
A second reason is that the infelicities of estimation that affect o @
present so prominently at this level in the model, because the withi
noise is typically not near zero, and there are enough data points t0 0
any mildly informed prior. '

18.1.1.1 Homogeneity of Variance
‘ The model described here assumes equal variances across all level
As a concrete example, the model assumes that the variance of




the same for republicans as for democrats as for libertarians as for greens.
This assumption of homogeneous variances is vestigial from two precursors.
First, the analogous assumption is made in linear regression, and ANOVA may
be construed, mathematically, as a special case of linear regression. Second,
homogeneity of variance is assumed in NHST ANOVA to simplify derivation
of F distributions. Neither of these precursors actually demands that we make
the assumption of equal variances in BANOVA.

|

In principle, the BANOVA model can (and should) estimate difference vari-

ances for each level of ¥. The model in Figure 18.1 can be expanded

\ analogously to the model in Figure 16.11, p. 436. Instead of a single precision,

. 1y, used forall levels of ¥, a Separate precision 7 is estimated for each level of

¥, as in the lower right of Figure 16.11. A higher-level distribution describes

the spread of the 7j across levels of X . This structure provides shrinkage of the

estimates of the 7j, to the extent that the data suggest homogeneity of variance.
Exercise 18.3 has you give this scheme a test drive.

18.1.2 Doing It with R and BUGS

As usual, every arrow in the hierarchical diagram of Figure 18.1 has a corre-
sponding line in the BUGS mode] specification. The parameters that appear as
‘8" in Figure 18.1 are denoted by “a[j]1” in the model specification.

To understand the way that the model] is specified in the BUGS code, it is
important to understand how the data are formatted. The ¥ values in the
Program are coded as integer indices 1, 2, 3,..., and not as vectors (1,0,0,...),
0.1,0,...),(0,0,1,.. )s-... By coding ¥ as integers, then nested indexing can
be used instead of dot products of vectors, Thus, ? - X becomes coded as
a[x], not inprod(all,x[]). For the jth observation, the value of x is coded
a8 X[1]. Thus, x[ 1 Je {1,2,3,. -,NxLv1} forie{1,.. -,Ntotal}, where NxLv]
18 the number of levels of ¥ and Ntota] is the total number of observations.

Here is the BUGS model specification (ANOVAonewayBRugs .R):

it mode] {

2 for ( i in 1:Ntotal ) ¢

- Y1 ~ dnorm( muli] , tay )
muli] <- a0 + alx[i]]

}

it
tzjm <- pow( sigma ¢ <2 )
Sigma ~ dunif(0,10) # Yy values are assumed to be standardized

|
18.1 Bayesian Oneway ANOVA m”
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19 #

20 a0 ~ dnorm(0,0.001) # y values are assumed to be standardized
2 it
2 for ( j in 1:NxLvl ) { alj] ~ dnorm( 0.0 , atau ) }

2 atau <- 1 / pow( aSD , 2 )
2 aSD <- abs( aSDunabs ) + .1
25 aSDunabs ~ dt( 0 , 0.001 , 2 )

26 }

The constraint, that the deflections sum to zero, does not appear in the mode]
specification. The BUGS code estimates the baseline and deflections witho
the constraint, but the MCMC estimates are recentered at zero by subsequent
R code. The noncentered baseline is denoted in the BUGS model as a0, and
the noncentered deflections are denoted a[j]. Those noncentered estimateg
are transformed to respect the sum-to-zero constraint merely by subtracting
the mean of the a[ j1's from each a[ j], and adding the mean to the baseline
Thus, b[j] = alj] - mean(a) and b0 = a0 + mean(a).

The constants for the top-level priors are set with the assumption that th
data values, y, have been standardized according to Equation 16.1, p. 42!
(Of course, the x values cannot be standardized because they are nominal {
This standardization makes it easier to establish reasonable default priors foi
range of applications, without having to change the prior constants when
application changes, for example, from income, on the order of 10° dolla
to width of hairs, on the order of 10~! millimeters. Nevertheless, when th
is strong prior information, it should be incorporated. Exercise 18.2 hasy
explore robustness of the results when you use different priors.

—_ — - a

There is one other trick in the BUGS model specification that is not
the hierarchical diagram of Figure 18.1. One line of the BUGS me¢
specifies that the standard deviation of the group effects, denoted
abs, comes from a ¢t distribution: aSDunabs ~ dt(0,0.001,2). Anc
line takes the absolute value to “fold” the t distribution onto the
negative numbers: aSD <- abs(aSDunabs) + .1. But that line also
teriously adds a small constant, namely 0.1. This constant keeps
from venturing extremely close to zero. The reason for keeping aSOt
from zero is that shrinkage can become overwhelmingly strong whemn
are many groups with few data points per group. This becomes
cially problematic in the next chapter when we consider interactl
factors.

It turns out that MCMC sampling for this model can be extremely ineff
One important way to reduce burn-in time is to start the chain at 1€
positions. We start the overall baseline at the grand mean of the dataf
the deflections at the level means minus the grand mean. The variag
also initialized near the corresponding data variances. The full code,
initialization of chains, is presented in Section 18.4.1 (ANOVAoneway BR
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Because the chains can be highly autocorrelated, extensive thinning is needed,

zed keeping a step only once out of several hundred. Running such long chains can
take a long time and become boring for your computer, which would rather
be searching the web for exciting software updates. In the examples presented
here, we simply tolerate the modest waiting times. But there are various meth-
ods for Teparameterizing the models so that the chains are sampled with less
autocorrelation (e.g., Gelman, 2006; Gelman & Hill, 2007, Ch. 19).
One tempting but inappropriate approach is to impose the sum-to-zero con-

: mode] .. : . < .

: straint in the BUGS mode] specification like this:

vithout

sequent alll <- -sum( a[2:NxLv1] )

30, and for ( j in 2:NxLv1 ) {aljl ~ dnorm( 0.0 , atay )}

timates Notice that the first deflection is forced to equal the negative sum of the

tracting remaining deflections; therefore the first deflection is not an estimated param-

aseline, eter. Only deflections indexed 2 and higher have a prior specification. This
approach works fine when the prior on the deflections has no hyperprior, that
is, when atau is a constant (Ntzoufras, 2009). But when atau is itself being

hat the ; . . . .

425, estimated, it must be informed by all the deflections, not only by deflections 2 |
rI;ina] ) and higher. For example, it might be that group 1 is very different from groups }
- for‘a - 2 through NxLvl, whereas groups 2 through NxLvl are nearly equal. This sit- |
hen 180 uation would cause the estimate of the precision atau to be artificially high

dollars,

this approach to model specification reduces autoc

approach is not appropriate when we are using a

deflections.

|
I
orrelation dramatically, the J}
hyperprior to estimate the (}

l
18.1.3 A Worked Example |

|
J

With all the emphasis these days on physical fitness and muscle building, it’s
only appropriate to consider

an example about muscles. In particular, we’'d ;
like to know if geographical location influences muscle size, which might be !
affected by the weather or amount of daylight. Consider some data regarding
muscles from five geographic locations: (1) Tillamook, Ore
Port, Oregon; (3) Petersburg, Alaska; (4) Magadan, Russia (Pa [
(5) Tvarminne, Finland. The values in the data set are the length of the ante- il
tior adductor muscle scar divided by total muscle length, in the mussel species ) JI
Mytilus trossulus. These ratios of scar length to total length tend to be between ik
5% and 150, (McDonald, 2009; McDonald, Seed, & Koehn, 1991). I

cific coast); and |

|
Results of the BRugs program listed in Section 18.4.1 (ANOVAonewayBRugs . R)
e shown in Figure 18.2. The histograms in the upper row show the il
{(marginal) posterior distributions of the Bj values for the five geographical
IOCations. These Bj values are deflections awa

y from the baseline Bo, which
1ot shown. Some things to keep in mind when interpreting the results:
Fir,

St the estimates of deflection are subject to shrinkage, because the model
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incorporates the prior structural assumption that all the deflections come from
the same overarching distribution. The mean deflections shown in Figure 18.2
are, in fact, a little smaller than the deflections of the actual sample means.
Second, the model assumes that the precision is the same for all groups (i.e.,
there is homogeneity of variance). The posterior Bj values are the ones that
are believable when also assuming homogeneous variances, If the groups actu-
ally have wildly different variances, then the estimates for B; may be distorted.
Third, the marginal distributions on the B; cannot be used to directly infer dif-
ferences between groups, because the parameters might be correlated. Indeed,
the deflections tend to be negatively correlated, because increasing the esti-
mated deflection for one group suggests decreasing the estimated deflection
for another, if they are to remain symmetric around the baseline. To judge
differences between groups, the differences must be computed directly.

18.1.3.1 Contrasts and Complex Comparisons

The middle and bottom rows of Figure 18.2 shows several comparisons for
the mussel muscle results. A comparison amounts to a difference between an
average of some groups and an average of other groups. For example, to com-
pare the four Pacific Ocean mussels against the one non-Pacific (Baltic Sea)
mussel, we multiply the deflections (Bi's) of the first four groups by 1/4 to get
their average, and subtract it from the deflection (5) of the fifth group to get
the difference. The difference is called a contrast, and when the comparison
involves a contrast of averages, instead of a contrast of two specific groups, it

mussels against Baltic Sea mussels are —1/4, —1 /4, —1/4,—-1/4,+1. Notice
that the coefficients sum to zero. We compute the difference at every step in
the MCMC chain, and examine the resulting distribution of believable differ-
ences. The distribution for this particular example is shown in the bottom row,
second panel, of Figure 18.2, where it can be seen that just over 96% of the
believable differences lie on one side of zero, and the 95% HDI just spans
2e10. From these results we may not want to declare categorically that there is a
@edible difference between Finland and the other sites; the decision depends
On how you set your HDI and ROPE, Regardless of your decision rule, the pos-
:JtP:rior does tells us the most believable difference and the uncertainty in that

eaKing sites against the two non-English-speaking sites (where they might say “midiya

glish-

SS Ne tnree En

Figure 18 2 shows a variety of comparisons that might be of interest. For exam-
Pl€, the first panel of the middle row compares the two sites with the biggest
Muscles againgt the three other sites. This sort of comparison would be labeled
"POst hoc” by traditional analyses, because we might not have specified which
I.es would be biggest before collecting the data. The second panel in the
lddle TOW contrasts the two sites in Oregon. The third panel in the middle
OW compares the Alaska site against the average of the two Oregon sites.

18.1 Bayesian Oneway ANOVA mu
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We can make all the comparisons shown in Figure 18.2, and as many others a5

we like, without worrying about inflated false alarm rates, because the posterjor :p]
distribution does not change when we consider additional comparisons, The ini
posterior distribution is the best inference we can make based on the data we
have and the prior beliefs we started with. It is possible that the random data As
in our sample are spuriously unrepresentative of the underlying population, Takt
but we cannot know. Fortunately, because of the incorporation of our prigr The
knowledge about how estimates in the different locations can mutually inform BLO
each other, the estimates undergo shrinkage, which helps to mitigate the effect ne:
of rogue data. In many applications, the shrinkage yields decisions similar tg 8Io/
those that would result from NHST “corrections” for multiple compan’son two
But unlike NHST corrections, the shrinkage in the Bayesian approach is based The
on explicit structural prior knowledge, and is not affected by which or how oth
many comparisons are intended. (For previous discussion of these issues, s ' favc
Section 17.2, regarding decisions about multiple regression coefficients, and is w
Section 11.4, regarding multiple comparisons of groups.) with
thar
18.1.3.2 Is There a Difference? hyp:
The contrasts and complex comparisons in Figure 18.2 were judged to be thar
ibly nonzero if the 95% HDI excluded (a ROPE around) zero. A differen grot
would be deemed to be practically equivalent to zero if its HDI fell entire grou
within a ROPE. This decision procedure is attractive because all the group 8 not 1
are simultaneously estimated, with mutually informed shrinkage, and fro Whe
priors that are also appropriately informed (which entails also being agreeal R

to a skeptical audience).

Some researchers prefer to pose the question “Is there a difference?” a
model comparison on two priors. One prior expresses the null hypoth
that the contrast has zero magnitude; the other prior expresses a complem
tary hypothesis that any magnitude contrast is possible. This approach
discussed extensively in Section 12.2.

There are two attractions to the two-prior, model-comparison approach.
attraction is that the model comparison can yield posterior odds in fave
the null, unlike NHST, which can only reject a null hypothesis buts
accept it. Another attraction is that the complementary hypothesis is U
intended to be an “automatic” uninformed prior that is chosen for mati
ical felicity. The hope is that an automatic prior obviates debate aboul
prior information should be expressed.

As was argued in Section 12.2, the two-prior approach should be appt {
tiously. First, it is important to emphasize that the two-prior appr
indicates which prior is relatively less unbelievable. If either prior I
ically untenable in the first place, then the “automatic” model com
is automatically uninformative. Thus, the two-prior approach should ¢
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applied to situations in which (1) it is theoretically appropriate to posit that
a particular contrast really can be exactly zero, and (2) the alternative prior
incorporates prior knowledge about the plausible magnitude of the difference.

As an example, consider a situation presented by Solari, Liseo, & Sun (2008,
Table 3, p. 495). There were nine groups, with a metric dependent variable.
The dependent variable was the acetic acid content of tomatoes, and the nine
groups were different types of manuring during growth of the tomatoes. The
mean of group 3 appeared to be different than other groups. To test whether
group 3 was different, the authors conducted a Bayesian model comparison of
two priors: The null-hypothesis prior had all nine groups with identical means.
The alternative prior had group 3 with a separately estimated mean, while the
other eight groups had identical means. The resulting Bayes factor (BF) strongly
favored the alternative prior. Does this result suggest that the alternative prior
is what we should believe? Unfortunately, no. The BF tells us that the prior
with eight equal means and one different mean for group 3 is more believable
than the prior with nine equal means (assuming that the priors on the two
hypotheses were 50-50). But the prior with eight equal means, on groups other
than group 3, is already untenable because we do not believe that the eight
groups have identical means. Moreover, the estimate of difference, between
group 3 and the other groups, is not what we want, because the estimate does
not take into account variation among the eight other groups.

When instead we conduct a Bayesian analysis using the BANOVA model,
we obtain a posterior that simultaneously estimates all the separate group
deflections, with shrinkage, from a plausibly informed prior. The complex
comparison of group 3 against the other eight groups is shown in Figure 18.3,
where it can be seen that the magnitude of the contrast is credibly greater than
zero. In this application, there is no need to pursue a BF approach to group
comparisons.

It is also worth reiterating that the two-prior, model-comparison approach can
arrive at a conclusion opposite that of the one-prior, estimation approach.
Recall Figure 12.5, p. 308, which showed that a model comparison pre-
ferred the null hypothesis of identical groups to the alternative hypothesis of
all different groups, even though an estimation of effects in the alternative
hypothesis showed a credible difference among groups. The point in that case
Was that the null model, even though it was a poor model, was less bad than
the alternative model. Follow-up model comparisons would be required to
flarrow down which combination of group equivalences was least implausi-
ble. Even after that, we would not necessarily want to believe that any of the
8toups are truly equivalent, because we know in advance that they were treated

ifferenﬂy. Instead, we desire an estimate of the differences and the precision
of the estimate. That situation involved a dichotomous dependent variable, but
the analogous situation can arise for metric dependent variables,

|

!

\
|
/|
|
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FIGURE 18.3 really d
A comparison of group 3 versus the average of other groups, for the data in Solari you int
etal. (2008, Table 3, p. 495). The specification of contrast coefficients on the x axis differen
overflows the margins of the figure because there are so many groups. The contrast not sign

coefficients on the nine groups are — 1/8,-1/8,+1,—1/8,..., which, when rounded

to two decimal places, appear as —0.12, —0.12,+1,-0.12, ... (Reprinted with Section
permission from Figure 6 of Kruschke, 2010a,b). adichot
of a met

The two-prior, model-comparison approach can be appropriate in situation puppose

where actual equivalence is tenable and the goal is to identify which co e 2 se

tions are plausibly equivalent, or situations in which zero-magnitude e e 2 0

are tenable and the goal is to identify which conditions have zero effect. | ‘dlfferenc

those situations, it behooves the researcher to pursue the model-comparison: e

related approaches (see, e.g., Berry & Hochberg, 1999; Gopalan & Berry, 19§ : el

an exper;
groups. T
their me;
he group

[0 detern:
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Mueller, Parmigiani, & Rice, 2007; Scott & Berger, 2006). Moreover, Bayes
model comparison is highly advisable when the two models are genuir
viable competitors that express different explanations of the data. In tl
situations, it is important that the priors in the two models are equivale
informed so that neither model is at a disadvantage because of an infelicii
an arbitrary, automatic prior.

18.2 MULTIPLE COMPARISONS

In 20th-century null-hypothesis significance testing (NHST), there is im
literature regarding how to compute the “true” significance (i.e., prob:
of false alarm) of an apparent difference between groups, when the
conducting comparisons of multiple groups. The problem is that whei
comparisons are conducted, there are more opportunities for a spuriou

Cissa. F
difference to appear by accident. In other words, there are more Oppok 3 is p(E
for false alarms. Notice that this problem of inflated false alarm rat 0 reject
because NHST is based on the intentions of the analyst. If the anal cted to

to make lots of comparisons between various combinations of grou
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For example, consider again the sea mussel data. Group 4 (Pacific coast Rus- “
sia) and group 5 (Finland) seem to be different, and it is meaningful to plan |
a comparison between them because of their geographical difference. If we ‘ |
run a two-group ¢ test, we get t = 2.53, p = 0.028, which denotes a significant
difference. On the other hand, if we run a post hoc test of all pairwise compar-
isons, using Tukey’s “Honest Significant Difference” correction, then we find
that p = 0.093, and the difference is not significant. So do Russia and Finland
really differ? According to NHST, the answer depends on your intentions: If !
you intended to compare only those two locales, then they are significantly i
different, but if you intended to make all pairwise comparisons, then they are

not significantly different. |

there is greater opportunity for false alarms. If the analyst intends to make
only a few comparisons between groups, then there is less opportunity for
false alarms.

Section 11.4, p. 281, discussed multiple comparisons in NHST, in the context of
adichotomous dependent variable. Here we reiterate those ideas in the context \'
of a metric dependent variable.

Suppose that we have two groups: One group is patients treated with a placebo i
and a second group is patients treated with a totally ineffective drug. We mea- |
sure a metric variable (e.g., body temperature). Because there is no actual
difference between the treatments, the underlying distributions of body tem-
peratures are identical for the two groups; we will suppose that they are
normally distributed with equal means and equal variances. When we run |
an experiment, we are collecting a random sample of data from each of the
groups. The random samples might show a spuriously large difference between
their means, just by chance, despite the fact that on average, in the long run,
the groups are identical.

conducting the experiment over and over. For every simulated experiment, we
compute the difference of means between the samples from the groups. The
difference of sample means is in units of the original measurement scale (e.g.,
degrees Fahrenheit or degrees Celsius). To get rid of the arbitrary influence
of the measurement scale, we standardize the difference of means and call g L
the result the ¢ statistic. Because the true difference between groups is zero, {

I

|

\

|

l

To determine how often the spuriously large differences occur, we can simulate J
|

l

the ¢ value typically will be near zero. Occasionally, by chance, the ¢ value
Will be far above or far below zero. The lowest curve in Figure 18.4 shows
the Probability that the sampled ¢ value falls above the critical ¢ value on the
abscissa. For example, the probability that the sampled ¢ value falls above t.;; =
"23 is p(FA) = 0.05; this is marked by an arrow. In NHST, the decision rule
10 reject the null hypothesis if the sample ¢ exceeds a critical value that is
Selected to keep false alarms to only 5%. Thus, when comparing group 1 with
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The probability of false alarm as a function of critical t value, with separate curves for e ddthe

the data

different sets of comparisons. All groups have N = 6 fixed by intention. The curve
labeled “Grp 1 vs Grp 2” is for a single comparison of two groups, and corresponds Teatme
with the usual two-group t distribution. The curve labeled “Grp 1 vs Other” refers to lhe ans
four paired comparisons, of Group 1 versus each of the other four groups. The last ose, fo
curve is for the set of all 10 paired comparisons. (Reprinted with permission from fech
Figure 2 of Kruschke, 2010a.)

sistan(
*cause
group 2, we would reject the null hypothesis if ¢ > 2.23, because that W J
happen only 5% of the time by chance alone. : f
ch of t
ds t =

the1

Now consider an expanded experiment, in which there is a placebo
ment and four distinct drugs, for a total of five treatment groups. A€o
to the null hypothesis, the five treatment groups have identical distri
body temperatures (normally distributed with equal means and ¥
However, because of random sampling in any particular experim
treatment samples will have higher or lower mean temperatures
treatment samples. Suppose that before we collect any real data, we
compare the placebo group (group 1) with each of the four drug
we plan four pairwise comparisons). Each of these comparisons m
a fairly large difference merely by chance, even when there i
ference in the underlying distributions. We can determine how Of
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chance extremes happen by running a Monte Carlo simulation. For a simu-
lated experiment, we randomly sample six scores from each of the five groups,
and compute the ¢ values of each of the four comparisons. The simulated exper-
iment is repeated many times. For each candidate Lerit, we see what proportion
of simulated experiments had a comparison that exceeded that critical value.
The middle curve of Figure 18.4 shows the result. Notice that at any given value
of tcrir, there is now a much higher probability that the simulated experiment
will have at least one comparison with larger ¢. In particular, to keep the false
alarm rate down to 5%, Lerir must be about 2.95 instead of 2.33.

If we did not plan only four tests but instead decided to compare every group
with every other group, then we would have even more opportunity for false
alarms. With five groups, there are 10 pairwise comparisons. If we simulate
experiments from equal distributions as before, but this time consider all 10
t values, the probability of false alarm is higher yet, as shown in the right curve
of Figure 18.4. The critical value has risen even higher, to approximately 3.43.1

Now, suppose we actually run the experiment. We randomly assign 30 people
to the five groups, six people per group. The first group gets the placebo, and
the other four groups get the corresponding four drugs. We are careful to make
this a double-blind experiment: Neither the subjects nor experimenters know who is
getting which treatment. Moreover, no one knows whether any other person is even in
the experiment. We collect the data. Our first question is to compare the placebo
and the first drug (i.e., group 1 versus group 2). We compute the t statistic for
the data from the two groups and find that ¢ = 2.95. Do we decide that the two
treatments had significantly different effects?

The answer, bizarrely, depends on the intentions of the person we ask. Sup-
pose, for instance, that we handed the data from the first two groups to a
fesearch assistant, who is asked to test for a difference between groups. The
assistant runs a ¢ test and finds r — 2.95, declaring it to be highly significant
because it greatly exceeds the critical value of 2.23 for a two-group ¢ test. Sup-
POse, on the other hand, that we handed the data from all five groups to a

planned comparisons. Suppose, on

’ a from all five groups to a different

f€search assistant, who is told to conduct all pairwise comparisons post hoc
because we haye no strong hypotheses about which treatments will have ben-
eficial or detrimental or neutral effects, This assistant runs a t test of group 1

For a discussion of various correction procedures and when to use them, see Figure 5.1 of Maxwell &
Pelaney (2004). 1f you must learn NHST methods, this is an excellent resource,
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versus group 2 and finds ¢ = 2.95, declaring it to be not significant because it
fails to exceed the critical value of 3.43 that is used for post hoc pairwise com-
parisons. Notice that regardless of which assistant analyzed the data, the ¢ valye
for the two groups stayed the same because the data of the two groups stayed
the same. Indeed, the data were completely uninfluenced by the intentions of
the analyst. So why should the interpretation of the data be influenced by the
intentions of the analyst? It shouldn't.

If you believe that the interpretation should be influenced by the intentiong
of the analyst, how do you determine the intentions of the analyst? Did the
analyst truly plan only those particular comparisons, or did the analyst really
plan others but jettison them once the data were in? Or did the analyst actuall
plan fewer comparisons but realize later that additional comparisons should
be made to address other theoretical issues? Or did the analyst actually plan to
include two other treatment groups in the study but then not actually include
those groups in the analysis because of administrative errors committed during
the data collection? Or what if the experiment was planned by a team of .‘»
ple, some of whom planned some comparisons and others of whom planned
other comparisons? Conclusion: Establishing the true intentions of the anal ;
is not only pointless, it is also impossible.

Multiple comparisons are not a problem in a Bayesian analysis (e.g., Gelma
Hill, & Yajima, 2009). The posterior distribution is a fixed entity in

dimensional parameter space, and making comparisons between groups
simply examining that posterior distribution from different perspectives
margins. The posterior does not change when new comparisons come to mil

The posterior is not immune to spurious coincidences of rogue data, of cot i
False alarms are mitigated, however, by incorporating prior knowledge ]
the structure of the model. The estimates of the groups are mutually infor
tive via estimation of higher-level structure, and shrinkage of estimates a
groups attenuates false alarms. The attenuation of false alarms is governe
the data, not by unknowable intentions.

1v8.3 TWO-GROUP BAYESIAN ANOVA AND
THE NHST t TEST

The idea behind an NSHT ¢ test is simple: We have two groups, €aci
mean. We compute the difference of the means and standardize that d
relative to the standard deviation of the scores within the groups. 1€
ing standardized difference is called the t value. We want to know wi
observed t value is significantly different from zero, so we compare t
to a sampling distribution of t values (Gosset, 1908). The sampling ¢
tion assumes that the intention of the researcher was to stop when h




exactly N1 values observed for the first group, and exactly N2 values observed
for the second group.

The t test is a special case of NHST ANOVA when there are only two groups.
More specifically, when the two groups are assumed to have equal variances
in the underlying population, then the ¢ value squared equals the F value in
two-group ANOVA. (And what's an F value, you may ask? The F value is the
summary statistic used in NHST ANOVA to express how much the groups differ
from each other. It’s the ratio of the variance between group means, relative to
the variance within groups.)

In typical applications of BANOVA, the prior on the between-group variance
is only mildly informed. In this case, a BANOVA on two groups imposes lit-
tle shrinkage on the group estimates because there are so few groups. It is
only when several groups ‘gang up” that they strongly inform the estimate
of the variation between groups and therefore constrain the estimates of other
groups. When the prior on the variance within groups is also vague, the results
of a two-group BANOVA closely agree with the results of an NHST ¢ test.
Exercise 18.1 has you explore this correspondence.,

18.4 R CODE
18.4.1 Bayesian Oneway ANOVA

(ANOVAonewayBRugs. R)
graphics.off()
rm(1ist=1s(all1=TRUE))
fnroot = "ANOVAonewayBrugs"

@l N o w e W o o

modelstring = "
0 { BUGS model specification begins here. ..

u  model {

12 for (i in 1:Ntotal ) {

13 YLil ~ dnorm( muli] , tau )

14 mulil <- a0 + a[x[i]]

15 }

16 I

iy tau <- pow( sigma , -2 )

s sigma ~ dunif(0,10) # y values are assumed to be standardized

19 s
a0 ~ dnorm(0,0.001) # y values are assumed to be standardized
1

3 for ( j in 1:NxLvl ) { aljl ~ dnorm( 0.0 , atau ) }
s atau <- 1 / pow( asSD ,2)
aSh <- abs( aSDunabs ) + .1

18.4 R Code m

|

Tibrary(BRugs) # Kruschke, J. K. (2010). Doing Bayesian data analysis:
# A Tutorial with R and BUGS. Academic Press / Elsevier.

|

M(I

\
I
I
|

|
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25 aSDunabs ~ dt( 0 , 0.001 , 2 )

26 }

2 # ... end BUGS model specification

s " 4 close quote for modelstring

» 4 Write model to a file, and send to BUGS:

s writelines(modelstring,con="model.txt")

s modelCheck( "model.txt" )

32

B e et

4 {F THE DATA.

35

36 4F Specify data source:

357 dataSource = c( "McDonaldSK1991" , "SolarilS2008" , "Random" )[1]

;s # Load the data:

39

o if ( dataSource == "McDonaldSK1991" ) {

a fnroot = paste( fnroot , dataSource , sep="" )

datarecord = read.table( "McDonaldSK1991ldata.txt", header=T ,
colClasses=c("factor", "numeric") )

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
42 96

43 97

4 y = as.numeric(datarecord$Size) 98
45 Ntotal = length(datarecord$Size) 99
46 x = as.numeric(datarecord$Group) 100
47 xnames = levels(datarecord$Group) 101
a8 NxLvl = length(unique(datarecord$Group))

9 contrastlist = 1ist( BIGvSMALL = c(-1/3,-1/3,1/2,-1/3,1/2) ,

50 ORE1VORE2 = ¢(1,-1,0,0,0) ,

ALAVORE = c(-1/2,-1/2,1,0,0) ,

51

EE5E85585%5 5

73 Jfset.seed(47405)
74 ysdtrue = 4.0
75 a0true = 100
76 atrue = c( 2
77 npercell = 8
78 datarecord =

52 NPACVORE = c(-1/2,-1/2,1/2,1/2,0) ,
53 USAVRUS = ¢(1/3,1/3,1/3,-1,0) ,
54 FINVPAC = c(-1/4,-1/4,-1/4,-1/4,1) .,
| 55 ENGVOTH = ¢(1/3,1/3,1/3,-1/2,-1/2) ,
1 56 FINVRUS = ¢(0,0,0,-1,1) )
57 }
58
s if ( dataSource == "SolarilS2008" ) f{
60 fnroot = paste( fnroot , dataSource , sep="" )
b 61 datarecord = read.table("SolarilLS2008data.txt", header=T , |
62 colClasses=c("factor", "numeric") ) |
l 63 y = as.numeric(datarecord$Acid) Nl
Il o Ntotal = length(datarecord$Acid)
! 65 x = as.numeric(datarecord$Type) i
1 66 xnames = levels(datarecord$Type) il
t 67 NxLvl = Tength(unique(datarecord$Type)) )
: 68 contrastlist = 1ist( G3vOTHER = c(»1/8,71/8,1,-1/8,71/8,-1/8,-1/8,~1/8,*? z
, o !
70 #
‘ a if ( dataSource == "Random" ) { n
| 72 fnroot = paste( fnroot , dataSource , sep=""") 4
|

-2 ) §f sum to zero

’

matrix( 0, ncol=2 , nrow=1ength(atrue)*nperce11 )
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f 114
r 79 colnames(datarecord) = c("y","x") 1 il
80 rowidx = 0 QM
a1 for ( xidx in l:Tength(atrue) ) { [ |
& for ( subjidx in 1l:npercell ) | i
& rowidx = rowidx + 1 fﬂ‘
8 datarecord[rowidx, "x"] = xidx |
85 datarecord[rowidx,"y"] = ( al0true + atruelxidx] + rnorm(1,0,ysdtrue) ) i
86 } t
87 1
88 datarecord = data.frame( y=datarecord[,"y"] , x=as.factor(datarecord[,"x"]) ) ‘
89 y = as.numeric(datarecord$y)
90 Ntotal = Tength(y)
o X = as.numeric(datarecords$x)
92 xnames = levels(datarecord$x)
i 7 NXxLvl = Tength(unique(x))
94 #f Construct list of all pairwise comparisons, to compare with NHST TukeyHSD:

95 contrastlist = NULL
9% for ( glidx in T:(NxLv1-1) ) |

97 for ( g2idx in (glidx+1):NxLvl ) {
98 cmpVec = rep(0,NxLv1)
e cmpVec[glidx] = -1 |
. 100 cmpVec[g2idx] = 1
i 101 contrastlist = c( contrastlist . 1ist( cmpVec ) )
102 }

04 )

s # Specify the data in a form that is compatible with BRugs model, as a 1ist:

w  ySDorig = sd(y)
w8 yMorig = mean(y)
w z=(y - yMorig ) / ySDorig

w datalist = Tist( |
m y=1z, \
12 X =X, “
3 Ntotal = Ntotal , ‘

114 NxLvl = NxLv]1 i
us )

us  #f Get the data into BRugs:

w7 modelData( bugsData( datalist ) ) |

e U e o &
20 INTIALIZE THE CHAINS.

2 4 Autocorrelation within chains is large, so use several chains to reduce
13§ degree of thinning. But we $til] have to burn-in all the chains, which takes |
24 i more time with more chains (on serial CPUs).
25 nchajn = §

2 modelCompile( numChains = nchain )

B it (O F )

129 modelGenInits() # often won't work for diffuse prior
B} else | {1
13 # initialization based on data

\

132 theData = data.frame( y=datalists$y , x=factor(x, labels=xnames) ) j
|

|

|
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133 a0 = mean( theData$y ) ..
134 a = aggregate( theData$y , 1ist( theData$x ) , mean )[,2] - a0 5
135 ssw = aggregate( theData$y , list( theData$x ) , s
136 function(x){var(x)*(length(x)-1)} )[,2] L
137 sp = sqrt( sum( ssw ) / length( theDatas$y ) ) .
138 genlnitlList <- function() { B
139 return( o
140 Tist( 194
141 a0 = a0 , o
142 a =a , 196
143 sigma = Sp , 197
144 aSDunabs = sd(a) B
145 ) 199
146 ) 200
147 } 201
148 for ( chainldx in 1 : nchain ) { e
149 modelInits( bugsInits( genInitlList ) ) B3
150 } 204
151 } 205
152 206
153 # '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 207

15 {F RUN THE CHAINS

155

156 burn in

157 BurnInSteps = 10000

158 modelUpdate( BurnInSteps )

159 #F actual samples

o samplesSet( c( "aO" , "a" , "sigma" , "aSD" ) )
11 SstepsPerChain = ceiling(5000/nchain)

162 thinStep = 750

163 modelUpdate( stepsPerChain , thin=thinStep ) d
164

165 Jp-mm i mim s i i nm i e s i e i R R RS B e R e e e S ok 1
166 #F EXAMINE THE RESULTS 20 N

167

18 source("plotChains.R")

169 source("plotPost.R")

170

in checkConvergence = T

12 if ( checkConvergence ) {

| 173 sumInfo = plotChains( "a0" , saveplots=T , filenameroot=fnroot )

! 174 sumInfo = plotChains( "a" , saveplots=T , filenameroot=fnroot )

| 175 sumInfo = plotChains( "sigma" , saveplots=T , filenameroot=fnroot )
176 sumInfo = plotChains( "aSD" , saveplots=T , filenameroot=fnroot )
177 }

J 178
179 #F Extract and plot the SDs:
180 SsigmaSample = samplesSample("sigma")
11 aSDSample = samplesSample("aSD")
' 182 windows()
1 183 layout( matrix(l:2,nrow=2) )
18a par( mar=c(3,1,2.5,0) , mgp=c(2,0.7,0) )
15 plotPost( sigmaSample , xlab="sigma" , main="Cell SD" , breaks=30 )
plotPost( aSDSample , xlab="aSD" , main="a SD" , breaks=30 )




187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
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212
213
214
215
216
27
218
219
220
22
222
223
224

240
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18.4 R Code a,‘

dev.copyZeps(fi1e=paste(fnroot,"SD.eps",sep="")) /1

# Extract a values:
a0Sample = samplesSample( "aQ" )
chainlength = ]ength(aOSampTe)
aSample = array( 0 , dim=c( datalist$NxLv] . Chainlength ) )
for ( xidx in l:datalist$nNxLy] )

aSamplel[xidx,] = samplesSampTe( paste("a[",xidx,"]",sep="") )
}

# Convert to Zero-centered b values:
mSample = array( 0, dim=c( datalist$NxLv] . ChainLength ) )
for ( stepldx in L:chainlength ) {

mSamp]e[,stepIdx ] = aOSampTe[stepIdx] + aSamp]e[,stepIdx] )
}
b0Sample = apply( mSample , 2 , Mmean )
bSample = mSample - matrix(rep( b0SampTe ,NvaT),nrow=Nva1,byrow:T)
# Convert from standardized b values to original scale b values:
b0Sample = b0Sample * ySDorig + yMorig
bSample = bSample ySDorig

# Plot b values:

windows(dataTist$Nva1*2.75,2.5)

Tayout( matrix( I:datalist$NxLv] , nrow=l ) )

par( mar=c(3,1,2.5,0) + Mgp=c(2,0.7,0) )

for ( xidx in l:datalist$NxLy] ) |

pTotPost( bSamplelxidx, ] . breaks=30 ,

x]ab=bquote(beta*1[.(xidx)]) , ;
ma1n=paste("x:",xnames[xidx]) )

} |

dev.copy2eps(f11e=paste(fnroot,"b.eps",sep=""))

# Display contrast analyses
nContrasts = Tength( contrastlist )
if ( nContrasts > 0) {
nPlotPerRow = 5 |
nPlotRow = cei]ing(nContrasts/nP]otPerRow) il
nPlotCol = cei]1ng(nContrasts/nP1otRow) il
windows(3.75*nP1otCo1,2.5*nP1otRow)
Tayout ( matrix(l:(nPTotRow*nP]otCo1),nrow=nPTotRow,nco1=nP]otCo],byrow=T) )
par( mar=c(4,0.5,2.5,0.5) ¢+ Mgp=c(2,0.7,0) ) 3 !
for ( cIdx in I:nContrasts ) {
contrast = matrix( contrastList[[cIdx]],nrow=1) # make it a row matrix ‘(
incldx = contrast!=0 i
histInfo = plotPost( contrast %x% bSample , compVal=0 , breaks=30 , }
xTab=paste( round(contrast[incIdx],?2) + Xnames[incIdx] , {
c(rep("+",sum(1ncIdx)-1),"") . collapse=" " ) | |
cex.lab = 1.0 ,
main=paste( "X Contrast:", names(contrastL1st)[cIdx] ¥ {
}

dev.copyZeps(fT1e=paste(fnroot,"xContrasts.eps",sep=""))

e |
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# Do NHST ANOVA and t tests:

theData = data.frame( y=y , x=factor(x,labels=xnames) )

aovresult = aov( y ~ x , data = theData ) # NHST ANOVA
cat("\n--------------------- S S S S S S W S L S S S s S B W U O SR A na SEE
print( summary( aovresult ) )

cat("\n

print( model.tables( aovresult , "means" ) , digits=4 )

windows ()

boxplot( y ~ x , data = theData )

print( TukeyHSD( aovresult , "x" ordered = FALSE ) )
windows ()
plot( TukeyHSD( aovresult , "x" ) )
if (7)) |
for ( xIdxl in 1:(NxLvl-1) ) {
for ( xIdx2 in (xIdx1+1):NxLvl ) {
CAT (™ M o =i o s v s s s oy s S S0 8 S s i it = aiiaiieiiii i b - =
cat( "xIdxl =" , xIdxl , ", xIdx2 =" , xIdx2 ,
", M2-M1.= " , mean(y[x==xIdx2])-mean(y[x==xIdx1]) , "\n" )
print( t.test( y[x==xIdx2] , y[x==xIdx1] , var.equal=T ) ) # t test

18.5 EXERCISES

Exercise 18.1. [Purpose: To notice that Bayesian ANOVA with two groups
to agree with an NHST ¢ test] The BRugs program of Section 1
(ANOVAonewayBRugs.R) allows you to specify random data. It exec
Bayesian ANOVA, and at the end of the program it also conducts an NI
ANOVA and t tests (using R’s aov and t.test functions). Run the pro
ten times with different random data by commenting out the set.:
command. Specify ysdtrue = 4.0, atrue = c(2,-2) (which implies
groups because there are two deflections) and npercell = 8. For each
record, by hand, (1) how much of the posterior difference between mean
on one side of zero (see the posterior histogram with the main title °X
trast” and x axis labeled “—1 1+ 1 2”), (2) whether the 95% HDI ex
zero, and (3) the confidence interval and p value of the NHST ¢ test. D

means are different?

Exercise 18.2. [Purpose: To understand the influence of the prior ":
ANOVA.] In the model section of the BRugs program of Section
(ANOVAonewayBRugs.R), and correspondingly in the diagram of F
there are several constants that determine the prior. These constai




n")

n")

the mean value of the baseline (Mo in the diagram), the precision on the base-
line (Tp in the diagram), the precision of the folded-t distribution (T: in the
diagram), and the upper value of the uniform distribution on 0y (Ho, in the
diagram). Because the data are standardized, My should be set at zero, and
To can be modest (not terribly small). Hy, also can be set to a modest value
because the data are standardized. But what about the precision of the folded-¢
distribution, T;? This constant modulates the degree of shrinkage: A large value
of T; indicates prior knowledge that the groups do not differ much, and it
imposes a high degree of shrinkage that must be overcome by the data.

Run the program on the musse] data using a small value of Tt, such as 1.0E-g,
and a large value of T,, such as 1000. Are the results very different? Discuss
which prior value might be appropriate,

Exercise 18.3. [Purpose: To understand Bayesian ANOVA without assuming equal vari-
ances.] Modify the program in Section 18.4.1 (ANOVAonewayBRugs .R) so that it
allows a different variance for each group, with the different variances coming
from a hyperdistribution that has its precision informed by the data. In other
words, instead of assuming the same 7, (=1 /oyz) for all the levels of X, we
allow each group to have its own variance. Denote the precision of the j* group
as 7j, analogous to the deflection Bj. Just as the group deflections are assumed
to come from a higher-leve] distribution, we will assume that the group SDs

But because the group variances are less constrained when they are all allowed
to be different, they are less certain. Therefore, the group means are a little less
certain, and thus the differences of means are a little less certain.

Programrning hints: Here are some code snippets, showing the model specifi-
€ation and chain initialization.

(AN OVAonewayN onhomogvarBrugs. R)

1 model {

12 for ( i in 1:Ntotal ) {

I YOIl ~ dnorm( muli] | taulx[i1] )
s muli] <- a0 + alx[1]1]

15 }

a0 ~ dnorm(0,0.001)

for ( j in T:NxLvl ) ¢
aljl ~ dnorm( 0.0 , atau )
taulj] ~ dgamma( sG , rG )

18.5 Exercises MMI
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}

sG <- pow(m,2)/pow(d,2)

rG <- m/pow(d,2)

m ~ dgamma(1l,1)

d ~ dgamma(1,1)

atau <- 1 / pow( aSD , 2 )

aSD <- abs( aSDunabs ) + .1
aSDunabs ~ dt( 0 , 0.001 , 2 )

(ANOVAonewayNonhomogvarBrugs.R)

# initialization based on data
theData = data.frame( y=datalist$y , x=factor(x,labels=xnames) )
a0 = mean( theData$y )
a = aggregate( theData$y , 1ist( theData$x ) , mean )[,2] - a0
tau = 1/(aggregate( theData$y , 1ist( theData$x ) , sd )[,2])°2
genInitList <- function() {
return(
Tist(

a0 = a0 ,

a=a,

tau = tau ,

m = mean( tau ) ,

d = sd( tau ) ,

aSDunabs = sd(a)

)
}
for ( chainldx in 1 : nchain ) {
modelInits( bugsInits( genInitlList ) )
}
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Sometimes I wonder just how it could be, that
Factors aligned so you'd end up with me.

All of the priors made everyone think, that ‘
Our interaction wasg destined to shrink. i

In this chapter we consider situations with a metric predicted variable and
multiple nominal predictor variables. For example, we might want to predict
Income (a metric variable) on the basis of political party affiliation (a nominal
Variable) and ethnicity (another nominal variable). Or we may want to predict

E 9ing Bayesjan Data Analysis: A Tutorial with R and BUGS. DOI: 10.1016/B978-0-12-381485-2.00019-5
2011, Elsevier In, All rights reserved.
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stimulus (another nominal value: visual, auditory, or tactile). These situationg
are modeled by the cell in the first row and last column of Table 14.1, p. 385,

to the
the pre

In traditional NHST, this situation is known as multifactor ANOVA. We yse deflecti

the same underlying model, but without reference to F sampling distriby-

tions; instead we use hierarchical priors that provide additional structural 19.1.1
constraints. Multifactor ANOVA is a straightforward extension of the mode] The e.ff'
presented in the previous chapter, but with a new concept of interaction there 18
between nominal variables. Just as multiple regression considered interac- f‘hOt'?l
tion of metric predictors, multifactor ANOVA considers interaction of nominal ¥ts levity
predictors. is a non
Figure 1
19.1 BAYESIAN MULTIFACTOR ANOVA ‘Thde' abs
indicate
Recall from the previous chapter that in oneway ANOVA, we describe the effect: the sam
of each level of the predictor as a deflection away from an overall baseline, each pai
where the baseline is the central tendency across all levels of the predictor. In
multifactor ANOVA, the same idea applies to two or more predictors, and th in tb.e I
deflections resulting from each predictor are added. We'll use notation analos additive
gous to the previous chapter, but with extra subscripts to indicate the different the leYe]
predictors, just as we used in multiple regression on continuous predictors. f}‘:ﬂfctt;f’
at the
The mathematical notation was introduced as a case of the generalized lines the inte

model in Section 14.1.6.2, p. 370. Suppose we have two nominal predictors
cleverly denoted %1 and ¥,. These predictor vectors can only take on values¢
(1,0,0,...),(0,1,0,...), and so on, with the j® component having the value
when the predictor has its j nominal level.

predicto:

D

10
L
When the effects of the two predictors are additive, the predicted tendency l;
as follows: P

— —
y=pBo+ f1 X1+ B2 X2

N1 J2
=Bo+ ) Buixii+ Y Borxak

j=1 k=1

To make the parameter values unique, we include the constraints

N1 J2
Y Brj=0 and Y Brp=0
j=1 i=k

Those equations repeat Equations 14.7 and 14.8. In words, the value g
lishes the overall baseline from which the predictors indicate ‘«5?—
When predictor x; has value x1, a deflection of g1, is added to th
line, and when predictor x, has value x; 1, a deflection of Bk 18



|
|
19.1 Bayesian Multifactor ANOVA ~

1
|
(
to the baseline. The deflections may be negative. Indeed, across all levels of !

tions
385. the predictors, the constraints demand as much negative deflection as positive It
deflection, so that the deflections sum to zero for each predictor. ¥
e use il
ibu- 19.1.1 Interaction of Nominal Predictors |
“tural The effect of two predictors may be nonadditive, in which case we say that i
Jo-del there is an “interaction” of the predictors, For example, if a flame is put under ‘ J |
cuof a hot-air balloon, its levity will increase. And if hydrogen is added to a balloon, |
te‘rac- its levity will increase. But if hydrogen and flame are added to a balloon, there |
ninal is a nonadditive interaction, such that levity is not increased. 3
Figure 19.1 displays a simple interaction. Both predictors have only two levels. |
The abscissa groups the two levels of predictor X7, and the shading of the bars |
indicates the two levels of predictor X,. All three panels of Figure 19.1 show
effect the same data, but the nature of the interaction is highlighted differently in ;
eline, each panel.
or 88 In the left panel of Figure 19.1, the dashed parallelogram indicates the best “
\d the additive model for the data. The dashed lines indicate the average change when \
}nalo- the levels of the predictors change. The vertical arrows highlight the nonadditive ‘
ferent deflections, away from the additive average, that constitute the interaction. Notice s
& that the arrows sum to zero across each edge of the parallelogram. Thus, |
linear the interaction components do not change the average deflections of each |
ictors, predictor. ‘
ues of ‘\
alue 1 Deflection from additive Effect of x; depends on X, Effect of x, depends on X4 \
JED g R o EEE ’
ney is A B x5=<0,1> - E x5,=<0,1> 7— 5] E x,=<0,1> Eicc i\ ]
i L !—Z i
6 7 6 - 6 e |
N s e N NN \ it Ml
4 -y 4 1 4 5 ‘
21 2+ 2 {
i !
O-J 0 J Gl 0 J || - |
Xy=<1,0> xy=<1,0> X1=<0,1> X1=<1,0> X1=<0,1> |
X4 X4 Xy |

‘ ves a nonadditive, torsion-like deflection away from the additive model, as indicated by the ’
#ows. The middle panel shows the same data, with lines that emphasize that the effect of Ef] depends on )

Yalue of X, The right panel again shows the same data, but with lines that emphasize that the effect of
#2 dependss on the value of ;.

=,
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The middle and right panels of Figure 19.1 highlight different interpretationg

. . . ey : In those .
of the interaction. The middle panel shows that the effect of %, that is, the equation
amount that y changes when x1 changes, depends on the level of %,: When el of 1l
X, = (1,0), there is only a small change in y when 1 changes, but whep Brel of
X2 = (0, 1), there is a larger change in y when X7 changes. The right pane] Elong evé
makes the same point but with the roles of the predictors reversed: When %} =
(1, 0), the effect of %5 is to decrease y, but when %, = (0, 1), the effect of E; Our goal
is to increase y. observed

bars in Fi
The average deflection from baseline due to a predictor is called the main effect near the |
of the predictor. The main effects of the predictors correspond to the dashed fata at es
lines in the left panel of Figure 19.1. When there is nonadditive interaction actually p

between predictors, the effect of one predictor depends on the level of the and the d:
other predictor. The deflection from baseline for a predictor, at a fixed level of
the other predictor, is called the simple effect of the predictor at the level of the 19.1.2 1
other predictor. When there is interaction, the simple effects do not equal the The comp
main effect. bok daur
It may be edifying to compare Figure 19.1, which shows interaction of nominal Figure 18.

predictors, with Figure 17.8, p. 470, which shows interaction of metric predic-

tors. The essential notion of interaction is the same in both cases: Interactios

is the nonadditive portion of the prediction, and interaction means that the

effect of one predictor depends on the level of the other predictor.

The mathematical formalism for nonadditive interactions was introduced i

Section 14.1.6.3, p. 371, and is repeated here. The nonadditive component

indicated by the vertical arrows in Figure 19.1, are denoted B;x2k WhI

means the interaction of predictors 1 and 2 (denoted 1 x 2) at level j of p1

dictor 1 and level k of predictor 2. The formal expression merely e n(f"fga

the additive model by including the interaction. Recall from Equations 1¢
and 14.10 that the model with interaction term can be written as

—
y=pHo+ ?1_36)1 + gz_x)z + Bix2 X1x2

1 J2 h I
= Bo+ Z B1x1j + Z B2 X2 + Z Z P1x2,jk¥1x2,j)k
j=1 k=1 j=1 k=1
with the constraints
1 J2
Z B1j=0 and Zﬂz,k =0 and
j=1 k=1

J1 J2
> Bixajh=0Vk and Y Bixzjx =0V
j=1 k=1



ns In those last equations, the symbol “V” means “for all” In words, the last two | §
he ‘ equations simply mean that the interaction deflections sum to zero along every i
en | level of the two predictors. A graphic example of this was presented in the left |

en ' panel of Figure 19.1, which shows that the heights of the arrows sum to zero L
el along every edge of the parallelogram. i
g Our goal is to estimate the additive and interactive deflections, based on the

observed data. It is important to understand that the observed data are not the
bars in Figure 19.1; instead, the data are swarms of points at various heights

2ct near the heights of the bars. The bars represent the central tendency of the il

ed data at each combination of the predictors. Thus, what the equations above |

m actually predict is the central tendency u at each combination of predictors, w‘

he and the data are typically modeled as being normally distributed around . “

of ‘
ne 19.1.2 The Hierarchical Prior

Qe The complete generative model of the data is shown in Figure 19.2. It might |

look daunting, but it really is merely the diagram for oneway ANOVA, in !

- Figure 18.1, with the hyperprior replicated for each predictor and interaction. ‘1

lc- ‘
m 0

. "t pF |

folded 7 \

i i |

in > |

ts, _ 1/Gﬂ ;

i 0 \% |

& M, To normal normal |

Is normal ~Jae ~[ ane ~ P |

9 N
' ~W/ = / 2l %ﬁﬁx% =2 Bijxax=0 |
A gl =" sy |
Po+B1X1,1+ B2 X+ Byp Xi o Lo, Ho, e
unif I
2/ I
Ty‘{ 1/O-y ‘ | I

J

Yi g

FIGURE 19.2 il '

Eierarchioal dependencies for model of two-way Bayesian ANOVA. Compare with [ /
IQure 18,9
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The lowest level of Figure 19.2 indicates that the observed data points, y;, are
distributed normally around the predicted value u;. Moving upward in the dia-
gram, the arrow impinging on p; indicates that the predicted value is baseline
plus additive deflection due to each predictor plus interactive deflection due tg
the combination of predictors. The upper levels of the diagram indicate prior
structural assumptions about the deflections. We assume that the deflections
produced by a predictor are centered at zero, and we allow the variance (j.e,,
precision) of the deflections to be estimated from the data. Thus, if most of the
deflections are small, the estimated variance is small, and the hyperdistribution
creates shrinkage in the estimates of other deflections.

200,000 -

150,000 -

A key conceptual aspect of the hyperdistributions is that they apply separately
to the different predictors and interactions. In other words, there is not just
one hyperdistribution that governs all deflections for all predictors and inter-
actions. This division of generative structure reflects a prior assumption that
the magnitude of the effect of one predictor might not be informative regard-
ing the magnitude of the effect of a different predictor. But within a predictor,
the magnitude of deflection produced by one level may inform the magnitude
of deflection produced by other levels of that same predictor.!

Mean of theData$y

100,000 -

50,000 -

As was assumed in the case of oneway ANOVA, we will assume homogene- BFIN

ity of variance: The variability of the observed data is the same within each
combination of predictors. This is indicated in Figure 19.2 by the single param-
eter o, that is used in the likelihood function, regardless of the values of
the predictors. As before, there are two reasons for this assumption. First, th
assumption is a natural simplification in multiple regression on metric predi¢
tors, and ANOVA can be construed as a special case of multiple regressior
Second, the assumption of equal variances is made in NHST ANOVA, ar
we will also make it here in BANOVA to facilitate comparing across the teck
niques. But there is no requirement in BANOVA to assume equal variances.
the situation suggests that different levels of the predictors produce radical
different variances in the data, then the hierarchical prior can allow diffex
variances.

FIGURE 19.3
Mean annual salaries
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19.1.3 An Example in R and BUGS

Figure 19.3 shows the mean annual salaries of faculty in four departmi
at three levels of seniority. The four departments are business finance, €€
seling and educational psychology, chemistry, and theater. These departim

, e display of the 1
'nations of depart
0 other words, the
Ot necessarily equz

1By analogy to multiple regression, if there are many predictors included in a model, it is reas
in principle to include a higher-level distribution across predictors such that the estimated
one predictor informs the estimated variance of another predictor. This would be especially
application includes many nominal predictors, each with many levels. Such applications are fat&
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FIGURE 19.3

Mean annual salaries of faculty in four departments at three levels of seniority.

are the nominal levels of a predictor denoted ¥;. The three levels of senior-
ity are full professor, associate professor, and assistant professor. Assistant
professors are usually within 7 years after completing their doctoral or post-
doctoral studies. Associate professors are usually within about 10 years of
their doctoral or postdoctoral studies. Full professors are anywhere from 10
10 40 years post graduate school. Although seniority could, and perhaps
should, be treated as an ordinal variable, we will treat it as a nominal pre-
dictor, denoted Xa. A glance at the means suggests that there are effects of
department and of seniority. There appears also to be an interaction, mean-
ing that the change in salary due to seniority depends on the department. Our
goal is to estimate the baseline salary, the main effect of department mem-

bership, the main effect of seniority, and the interaction of department and
Seniority.

The display of the means in Figure 19.3 obscures the fact that different com-

inations of department and seniority had different numbers of data points.
In other words, the number of associate professors in business finance was
10t necessarily equal to the number of full professors in theater. In traditional

19.1 Bayesian Multifactor ANOVA m

i




m CHAPTER 19: Metric Predicted Variable with Multiple Nominal Predictors

NHST ANOVA, this sort of “unbalanced” design can cause serious computa-
tional difficulties (e.g., Maxwell & Delaney, 2004, pp. 320-343). But Bayesian
ANOVA has no problem with unbalanced designs.

The model of Figure 19.2 was implemented in R and BRugs and is listed in
Section 19.3.1 (ANOVAtwowayBRugs.R). Several tricks for running the mode]
in BUGS are described in that section, before the program listing. The essen-
tials, however, are much like the oneway ANOVA model of the previoug
chapter.

X: THTR
Mea =:45100
QR%L HN

The results are shown in Figure 19.4. (The means and HDI limits are displayed
with only three significant digits, but more precise values can be obtained
directly from the program.) The top-left histogram shows that the baseline for
these four departments is 111,381. Notice, however, that most of the data fall
below this baseline because the overall data are skewed by the much higher
salaries in one department. For salaries in the department of chemistry, the

fourth histogram in the top row indicates that 2164 should be subtracted from § %&. %
the baseline. For salaries of assistant professors, the first histogram in the bot- =
tom row indicates that 20,100 should be subtracted from the baseline. Thus,

for assistant professors in the department of chemistry, the linearly predicted

salary is 111,381 — 2164 — 20,100 = 89,117. But there is a notable nonlinear

interaction component for that combination: The fourth histogram of the bot-

tom row shows that 10,938 must be subtracted from the linear combination

to get the mean estimate for that combination, namely, 78,179. 3 %

G é-

]

19.1.4 Interpreting the Posterior
In most applications, we are interested not only in estimation of effects for
each group, but we are also interested in deciding whether two groups are cred
ibly different. Just as we compared groups in oneway ANOVA in the previot
chapter, we can compare groups in multifactor ANOVA.

The top and middle rows of Figure 19.5 show selected contrasts of levels =
the main effects. We may ask whether there is a credible difference in salari i
on average, between business finance (BFIN) and counseling and educa _é.

psychology (CEDP). The top-left histogram indicates that the average ditl
ence is about $122,000, and the 95% HDI falls far from zero. We may also:
whether there is a credible difference in salaries, on average, between
and theater (THTR). The top-right histogram indicates that the average &
ence is about $7780, but the 95% HDI spans zero, which indicates that
uncertainty in the estimated difference is fairly large relative to the estim
difference itself. The middle row of Figure 19.5 shows contrasts regardi
els of seniority: There is a credible difference between full professors (FT1
associate professors (FT2), and between FT2 and assistant professors (FT:

It is important to understand that the main effects of department and se
ity are average effects, when the other factors are collapsed. For exalips
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FIGURE 19.5

Selected contrasts for posterior in Figure 19.4. The values for the means and HDI limits are
rounded to three leading digits. The x-axis labels of the bottom row are obscured because
they exceed the boundaries of the plot.

contrast between FT2 and FT3 (middle row, right panel of Figure 19.5) is &
average difference between FT2 and FT3, collapsed across all departments. ]
if you look at the data in Figure 19.3, you can see that the difference betwe
FT2 and FT3 is not the same in every department: There is a fairly large dif
ence in CHEM, but a very small difference in BFIN. The effect of changing fi
FT2 to FT3 depends on the department, which means that there is interact

Main effects must be interpreted and described cautiously when there areit
actions. It would be a mistake to say that “the” difference between FI2 an&
is 13,800. Instead, that is the average difference across departments. Tl}e
difference within any particular department might be quite different. Sim#
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it would be a mistake to say that “the” effect of FT3 is to subtract 20,100 from
the baseline, because the effect of seniority interacts with department.

19.1.4.1 Combining Metric and Nominal Predictors: ANCOVA
Consider again the salary data in Figure 19.3. You can see that the mean salary ‘
for FT'1’s in chemistry is much higher than in theater. This difference might be
attributable solely to being in one department or the other. But the difference
might also be attributable to some other factor, such as years on the job. In
other words, the FT1’s in chemistry might happen to have been employed for
decades, whereas the FT1’s in theater might happen to be relatively young. If
we had the age of each employee, or, better yet, the number of years that the y
employee had been at the current level of seniority, then we could include that

information as an additional predictor of salary. We could then assess whether ‘
department membership contributed any predictiveness beyond number of “
— years on the job.
)00

When a nominal predictor, such as department membership, is combined with
a metric predictor, such as years on the job, the model is sometimes referred to
as analysis of covariance, or ANCOVA. The metric predictor is the “covariate.” i

Programming ANCOVA in BUGS is a trivial combination of the models we've J
used for linear regression and ANOVA. Denote the nominal group member-
ship for individual i as xNom[ i 1, and denote the metric covariate value as
xMet[1]. Then the core of the BUGS model specification is |

0 muli] <- a0 + a[ xNom[i] 1 + bMet * xMet[{] \
" CHEM FT y[il ~ dnorm( mulil , tau )

.~ where a[] is the deflection of each group from baseline, and bMet is the

- regression coefficient on the covariate, As in standard ANOVA, the deflec-
e tions a[ ] and intercept a0 should be transformed so that the deflections sum i
to zero.

When initializing the chains for ANCOVA in BUGS, it can help to start at the

.. maximum likelihood estimate (MLE). The 1m() function in R provides the \

is {68 MLE. If we type
ts. But ’
;tween xNom = factor( xNom ) # makes xNom g "factor"

differ- ImInfo = Im( y ~ xNom + xMet ) 1 3
;‘ng' then TmInfo is a list of information about the linear model that “best” fits the b
F data. The best fitting coefficients are stored in 1mInf o$coef. The first compo- ‘

Hents of TmInfo$coef are the deflections for the levels of xNom and the last

1d FT. €Omponent of TmInfo$coef is the slope coefficient for xMet (because of the

actua Ordering of the variables in the call to Tm). The deflections are parameterized fifl

yilar felative to the first component, however. To convert to the parameterization | J
!
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that we use, in which the deflections sum to zero around a baseline, we cap
use the following code:

NxNomLevels = Tength( Tevels( xNom ) ) # number of Tevels of xNom
i # Next Tine adds first xNom component to other xNom components:

a = c( ImInfo$coef[1] , TmInfo$coef[1] + ImInfo$coef[2:NxNomlLevels] )
| a0Init = mean( a )
alnit = a - mean( a )

ANCOVA models can also involve a separate slope for every level of the
nominal predictor. Then the core of the BUGS model specification is

mulil <- a0 + a[ xNom[i]l 1 + ( bMet + bMetI[ xNom[i] 1 ) * xMet[i]
y[il ~ dnorm( muli]l , tau )

where bMet+bMetI[xNom[i]] is the group-specific regression coefficient on
the covariate for the xNom[ i 1 group. The coefficient bMet is the overall slope,
and deflection bMetI[xNom[i]1] adjusts steeper or shallower for each group.
To make the slopes identifiable, the group-specific deflections are constrained
to sum to zero: ) ,yombMetI[xNom]l = 0. Just as in multiple regression, a
hyperprior can be put on the group-specific slopes, whereby the group-specific
slopes come from a normal (or t) distribution, and the precision of that
distribution is itself estimated.

The ANCOVA model, with a distinct intercept and slope for each group,
closely resembles the model for repeated-measures simple linear regressiw
in Section 16.3, p. 433. The model in that section had a distinct intercept and
slope for each subject. If the subject variable in that model is considered to be
a nominal predictor analogous to xNom here, then that model is essentially
equivalent to one used here. The two model expressions are different, how
ever, in how naturally they generalize to situations with more predictors. Th
‘ formulation in the present section uses the general ANOVA formulation

the group-specific coefficients (i.e., deflections that sum to zero) and therefo

generalizes naturally to situations with multiple nominal predictors.

Additional information about non-Bayesian ANCOVA can be found in a v
ety of other sources. A brief Bayesian treatment can be found in the book
i Ntzoufras (2009), but beware that the formulation there uses no hyperprior
! the nominal or metric coefficients, and the method used there to imple ,‘
' the sum-to-zero constraint cannot be used with hyperpriors, as was discus
{ previously on p. 497.

19.1.4.2 Interaction Contrasts
Just as we can ask whether differences among particular levels of predic?
credible, we can ask whether interactions among particular combinatit
predictors are credible. Consider again the data in Figure 19.3. The differ
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between full professors (FT1) and assistant professors (FT3) appears to be large
in the chemistry department (CHEM) but smaller in the theater department

nonzero?

This sort of difference of differences is called an interaction contrast. In general,
an interaction contrast is constructed by taking any set of contrast coefficients
on %1, and any set of contrast coefficients on X2, and computing their outer
product. The outer product was described in Section 8.8.1 (BernTwoGrid.R),
p. 178. Formally, the outer product of two vectors is denoted by the sym-
bol “®.” To provide an example of an interaction contrast as an outer product
of main-effect contrasts, we will recast the one we are presently considering,
namely, (CHEM.FT 1—CHEM.FT3)—(THTR.FT1 —THTR.FT3), in generic nota-
tion. Notice that CHEM is level 3 of predictor 1, and hence can be written
as %13. Writing the other components in the same fashion, the interac-
tion contrast is (?1,3.?2,1 — 71,3.?2,3) — (?1,4.?2,1 - ?114.?2,3). That can
be algebraically Tearranged to highlight the coefficients on the particular
combinations:

(+1)71,3~72,1 + (—1)?1,3._3_6)2,3 + (—1)71,476)2,1 + (+1)71,4-?2,3

Those highlighted coefficients can be obtained as the outer product of main-
effect contrasts, namely, the contrast ¢; = (0,0,+1,—1), which expresses
CHEM minus THTR, and the contrast ¢, = (+1,0, —1), which expresses FT'1
minus FT3:

?1®_C>2= 71,1 ?1,2 ?1,3 76‘)1,4 ?2,1 7“)2,2 _x)2,3
( 0 0 +1 -1 Y®( +1 o _1 )
X2,1 72,2 X2,3
_x>1,1 0 0 0
= X2 0 o 0
_x>1,3 +1 0 -1
EiT -1 0 41

Notice that the coefficients in the matrix match the highlighted coefficients in
the difference of differences that was expressed a few sentences previously. The
Posterior of this interaction contrast is shown in the bottom-left histogram of
Figure 19.5. The mean of 34,600 indicates that the difference between FT'1 and
FI2 is about 34,600 greater for CHEM than for THTR. The 95% HDI clearly
&cludes zero, indicating that this interaction contrast is credibly nonzero.

Interaction contrasts can involve “complex” comparisons just as simply as pair-
Wise comparisons. For example, suppose we are interested in comparing BFIN
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against the average of the other nonbusiness departments, specifically for g Equal 1:
contrast between FI'1 and lesser ranks. This interaction contrast is expressed ag . tion. If
(+1,-1/3,-1/3,—1/3) ® (+1,—1/2,—1/2). The posterior of this contrast ig the sala
shown in the bottom-right histogram of Figure 19.5. (The label on the x axig craticm
exceeds the margins of the figure because there are 12 combinations of levels 1.176, ¢
involved in the contrast specification.) The result suggests that there is con- arithmic
siderable uncertainty in the larger difference, between FT1 and other ranks, parties,
in BFIN than in other departments. Therefore, we would not want to con- ders. In
clude that the interaction contrast is credibly nonzero. Exercise 19.2 gives you no inter
hands-on practice with specification of interaction contrasts.
It may ¢
many si
; s measure
19.1.5 Noncrossover Interactions, Rescaling, and Bicch, i
Homogeneous Variances earthqu:
When interpreting interactions, it can be important to consider the scale on which is
which the data are measured. This is because an interaction means nonadditive: measure
effects when measured in the current scale. If the data are nonlinearly tran; finish (v
formed to a different scale, then the nonadditivity can also change. . not unig
Consider an example, using utterly fictional numbers merely for illustration The gens
Suprose the average salary of Democratic women is 10 monetary units, for two leve
Democratic men it's 12 units, for Republican women it's 15 units, and for combina
Republican men it's 18 units. These data indicate that there is a nonad combina
ditive interaction of political party and gender, because the change in pay can see 1
from women to men is 2 units for Democrats, but 3 units for Republica % = 2 tl
Another way of describing the interaction is to notice that the change in 2 transforr
from Democrats to Republicans is 5 units for women but 6 units for individu;
A researcher might be tempted to interpret the interaction as indicating s compute
extra advantage attained by Republican men, or some special disadvantage st - interactic
fered by Democratic women. But such an interpretation may be inappropiz they are ;
because a mere rescaling of the data makes the interaction disappear, as ¥ The tran:

be described next.
Noncrosso:

Salary raises and comparisons are often measured by percentages and rat The lines
not by additive or subtractive differences. Consider the salary data in pé this situa
age terms., Among Democrats, men make 20% more than women. Al ‘that the
Republicans, the men again make 20% more than the women. A column ¢
women, Republicans make 50% more than Democrats. Among men, 8 tretching

licans again make 50% more than Democrats. In these ratio terms. shows th,
is no interaction of gender and political party: Change from fema 1 and x,
male predicts a 20% increase in salary regardless of party, and chan 0 have

Democrat to Republican predicts a 50% increase in salary regardi€
gender.

legative)
1€ signs




Equal ratios are transformed to equal distances by a logarithmic transforma-
tion. If we measure salary in terms of the logarithm of monetary units, then
the salary of Democratic women is log;,(10) = 1.000, the salary of Demo-
craticmen islog,,(12) = 1.079, the salary of Republican women is log;(15) =
1.176, and the salary of Republican men is logy,(18) = 1.255. With this log-
arithmic scaling, the increase in salary from women to men is 0.079 for both
parties, and the increase from Democrat to Republican is 0.176 for both gen-
ders. In other words, when salary is measured on a logarithmic scale, there is
no interaction of gender and political party.

It may seem strange to measure salary on a logarithmic scale, but there are
many situations for which the scale is arbitrary. The pitch of a sound can be
measured in terms of frequency (i.e., cycles per second) or in terms of perceived
pitch, which is essentially the logarithm of the frequency. The magnitude of an
earthquake can be measured by its energy or by its value on the Richter scale,
which is the logarithm of energy. The pace of a dragster on a racetrack can be
measured by the average speed during the run or by the duration from start to
finish (which is the reciprocal of average speed). Thus, measurement scales are
not unique and are instead determined by convention.

The general issue is illustrated in Figure 19.6. Suppose that predictor x; has
two levels, as does predictor x2. Suppose we have three data points at each
combination of levels, yielding 12 data points altogether. The means at each
combination of levels are shown in the top-left graph of Figure 19.6. You
can see that there is an interaction, with the effect of x; being bigger when
Xy = 2 than when x, = 1. But this interaction goes away when the data are
transformed by taking the logarithm, as shown in the lower-left graph. Each
individual data point was transformed, and then the means in each cell were
computed. Of course, the transformation can go the other way: Data with no
interaction, as in the lower-left plot, can be made to have an interaction when
they are rescaled as in the upper-left plot, via an exponential transformation.

The transformability from interaction to noninteraction is only possible for
noncrossover interactions. This terminology is merely a description of the graph:
The lines do not cross over each other (and they have the same sign slope). In
this situation, the ¥ axis can have different portions stretched or shrunken so
that the lines become parallel. If, however, the lines cross, as in the middle
column of Figure 19.6, then there is no way to uncross the lines merely by
Stretching or shrinking intervals of the y axis. The right column of Figure 19.6
shows the same data as the middle column, but it is plotted with the roles of
*1 and x; exchanged. When plotted this way, the lines do not cross, but they
do have opposite-sign slopes (i.e., one slope is positive and the other slope is
fegative). There is no way that stretching or shrinking the y axis can change

€ signs of the slopes, hence the interaction cannot be removed merely by

|
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Noncrossover interaction Crossover interaction Crossover interaction are chang
%01 %01 z 3 variances
40 40 A = either the
45 56, -3 i of varianc
> 20 4 > 20 4 The mod
2 which mu
104 L P mally dis
[ Tt shape of 1
1 2 non-norn
X2 function.
U log transformed In summ
NONCIOSSC
3.5 A 3.5 4 : :
/ interactio
. 807 _ 307, is the onl
820 B ool R
1. nonadditi
1.5 159 "l reasonabl
1.0 4 1.0 1 Tl might be 1
] ; ever, no re
X change the
Be sure th:
FIGURE 19.6 homogene
Top row shows means of original data; bottom row shows means of logarithmically transformed on whatev
data. Left column shows a noncrossover interaction; middle and right columns show the same “hands on
crossover interaction plotted against x; or x;. ,
transforming the data. Because these data have crossing lines when plotté 19.2 RF
as in the middle column, they are said to have a crossover interaction eve W
when they are plotted as in the right column. (Test your understanding: Is & '
interaction in Figure 19.1 a crossover interaction?) In many s
] 3 the predic
It is important to note that the transformation applies to individual raw d ple can pr
values, not to the means of the conditions. A consequence of transformi appear in
the data, therefore, is changes in the variances of the data within each con fone. The :

tion. For example, suppose one condition has data values of 100, 110, ¢
120, whereds a second condition has data values of 1100, 1110, and 1
For both conditions, the variance is 66.7 (i.e., there is homogeneity of v
ance). When the data are logarithmically transformed, the variance of
group becomes 1.05e—3, but the variance of the second group becomes.
orders of magnitude smaller, namely, 1.02e—5 (i.e., there is not homogel

nondomin
1ty and ha

€r a tos

ation is sc
of variance). tedictors |
Therefore, when applying the hierarchical model of Figure 19.2, we i : " { fa
>S€Ntial as

aware that it assumes homogeneity of variance. If we transform the dat
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i
are changing the variances within the levels of the predictors. The transformed U
variances might or might not be fairly homogeneous. If they are not, then

either the data should be transformed in such a way as to respect homogeneity
of variance or the model should be changed to allow unequal variances.

The models we have been using also assume a normal likelihood function, (bl
which means that the data at any level of the predictors should be nor-
mally distributed. When the data are transformed to a different scale, the
shape of their distribution also changes. If the distributions become radically
non-normal, it may be misleading to use a model with a normal likelihood | ‘
function. For a discussion of these issues, review Section 15.1 4, p. 399. ‘ |

In summary, this section has made two main points. First, if you have a | \
NONCIossover interaction, be careful what you claim about it. A noncrossover !
interaction merely means nonadditivity in the scale you are using. If this scale B |
is the only meaningful scale, or if the this scale is the overwhelmingly domi- |
nant scale used in that field of research, then you can cautiously interpret the
nonadditive interaction with respect to that scale. But if transformed scales are 1
reasonable, then keep in mind that nonadditivity is scale specific, and there w
‘ might be no interaction in a different scale. With a crossover interaction, how- \‘ ‘
ever, no rescaling can undo the interaction. Second, nonlinear transformations ;
change the within-cell variances and the shapes of the within-cell distributions.
Be sure that the model you are using is appropriate to the homogeneity or non-
homogeneity of variances in the data and to the shapes of the distributions,
on whatever scale you are using. Exercise 19.1 has you consider these issues
“hands on.” fha

19.2 REPEATED MEASURES, A.K.A.
WITHIN-SUBJECT DESIGNS

In many situations, a single “subject” contributes data to multiple levels of Il
the predictors. For example, suppose we are interested in how quickly peo- |
Ple can press a button in Tesponse to a stimulus onset. The stimulus could

appear in the visual modality as a light, or in the auditory modality as a

tone. The subject could respond with his or her dominant hand or with the \
nondominant hand. Thus, there are two nominal predictors, namely modal-
ity and hand. The new aspect is that a single subject contributes data to all /
Combinations of the predictors. On many successive trials, the subject gets

either a tone or light and is instructed to respond with either the dominant |
Ornondominant hand. Because every subject is measured many times, this sit-

Uation is sometimes called a repeated measures design. Because the levels of the f /!
Predictors change within subjects, this situation is also called a within-subject

design. T fayor the latter terminology because it more explicitly connotes the (
§8sential aspect of the design, that the same subject contributes data in more r
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than one condition. Within-subject designs are contrasted with between-subject

designs, in which different subjects contribute data to different levels of the ;isg
predictors. A
When every subject contributes many data points to every combination of pre- mer
dictors, then the model of the situation is a straightforward extension of the Alth
models we've already considered. We merely add “subject” as another predic- ditic
tor in the model, with each individual subject being a level of the predictor. If com
there is one predictor other than subject, the model becomes each
th
y=Fo+ B1 7 + BsEs + Buixs Fixs g:er
, mea
This is exactly the two-predictor model we have already considered, with the his :
second predictor being subject. When there are two predictors other than ; tion
subject, the model becomes Eherc
the 1
y=PBo+ Fr %1+ Ba®r+ BsRs + 73>1x2_x)1x2 + 73)1xs71xs subje
+ —ﬂ)zxs—x>2xs + ?1x2xs71x2xs -
This model includes all the two-way interactions of the factors, plus the three-
way interaction. Again, subject merely plays the role of the third predictor. In ot
The preceding model, which includes all the high-order interactions with s with
ject, is fine in principle but may be overkill in practice. Unless you have specifi s
theoretical motivations to seek out and interpret high-order interactions o S(fble
subject with other predictors, there is little reason to model them, and tribut
is difficulty making sense of them even if you did model them. Instead, if ye thz%n ‘
have many data points from each subject in every cell, an alternative approad tior
is to apply a Bayesian ANOVA model to each subject’s data, and then put desig;
higher-order prior across the subject parameter estimates, so that different su comb
jects mutually inform each other’s estimates and provide a stable group-lei be cos
estimate. Thus, every subject has a baseline, So;, and there is a higher-oré 19
group-level prior on the distribution of B, across subjects. Each predictora 2.
has subject-specific estimates, with the effect of the jth level of predi 0 The p
denoted B1s,j. Each of these effect parameters has a higher, group-level pi mth
across subjects. (This was the modeling approach taken for repeated me desigr
in simple linear regression in Section 16.3, p. 433.) Finally, the group ’ i Po!
effects have a hyperprior that provides shrinkage on the effects of a predil e
In other words, the shrinkage prior, on effects of a predictor, is set at the g8 - Cot
level, not at the subject level. ‘ i t;ot

There are other situations, however, in which each subject contribut 370. F
one datum to a combination of the other predictors. For example, in fourth
of the response-time study described earlier, perhaps we have only the m differe
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I

’ct response time of the subject in each combination of hand and modality. As
e another example, suppose the value to be predicted is IQ, as measured by
a lengthy exam, with one predictor being noisy versus quiet exam environ-

ment and the other predictor being paper versus computerized exam format. il _1
Although it is conceivable that subjects could be repeatedly tested in each con- I
dition, it would be challenging enough to get people to sit through all four i
combinations even once. Thus, each subject would contribute one value to
each condition.

In the situation when each subject contributes only one datum per condition,

the models described earlier, with al] the interaction terms, are not identifiable, |

meaning that there are more parameters than data points. The simplest case of |
1e this situation is trying to estimate the mean and variance of a normal distribu-
in tion from a single data point. A Bayesian analysis can still be conducted, but
there will be high uncertainty in the parameter estimates, governed largely by

the priors. Therefore, instead of attempting to estimate all the interactions of ‘

subjects with other predictors, we assume a simpler model in which the only |

‘N influence of subjects is on the baseline:

— — —
y =ﬁo+?s?s+ B1x1 + B2 %y + Bixs Zixo

In other words, we assume a main effect of subject but no interaction of subject
' with other predictors. In this model, the subject effect (deflection) is constant
across treatments, and the treatment effects (deflections) are constant across
of subjects. Notice that the model makes no requirement that every subject con- i
tributes a datum to every condition. Indeed, the model allows zero or more
than one datum per subject per condition. As mentioned earlier, the compu-
h tations in Bayesian ANOVA make no assumptions or requirements that the
3 design is “balanced” If you do have many observations per subject in every i
b- combination of predictors, then one of the previously described models may ‘
4 be considered. |
i

19.2.1 Why Use a Within-Subject Design? And Why Not? I

The primary reason to use a within-subject design is that you can achieve |
much greater precision in the estimates of the effects than in a between-subject |
design. For example, suppose you are interested in measuring the effect on
feésponse time of using the dominant versus nondominant hand. Suppose
I there is 5 population of four subjects from whom you could measure data. If [
We could measure every subject in every condition, we would know that for the ,’
first subject, his or her response times for dominant and nondominant hands |
dfe 300 and 320 msec. For the second subject, the response times are 350 and fel
370. For the third subject, the response times are 400 and 420, and for the
f(?urth subject, the response times are 450 and 470. Thus, for every subject, the
difference between dominant and nondominant hands is 20 msec. Suppose
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measures have comparable effects on all conditions. '

we have the resources to measure only two data points in each condition. We
measure response times from the dominant hands of two subjects. Should we =
measure response times from the nondominant hands of the same two subjects
or the nondominant hands of two other subjects? If we measure from the same
two subjects, then the estimated effect for each subject is 20 msec, and we have
high certainty in the magnitude of the effect. If we measure from two other sub-
jects, then the estimated effect of dominant versus nondominant hand is the
average of the first two subjects versus the average of the second two subjects,
and the difference is badly affected by random sampling. The between-subject
design yields lower precision in the estimate of the effect. Exercise 19.3 has you
examine, hands on, a case of this improvement in precision.

Because of the gain in precision, it is desirable to use within-subject designs.
But there are many dangers of within-subject designs that need to be consid-
ered before they are applied in any particular situation. The key problem is
that, in most situations, when you measure the subject you change the subject,
and therefore subsequent measurements are not measuring the same subject.
The simplest examples of this are mere fatigue or generic practice effects. In
measures of response time, if you measure repeatedly from the same subject,
you will find improvement over the first several trials because of the subject
gaining practice with the task, but after a while, as the subject tires, there will
be a decline in performance. The problem is that if you measure the dominant
hand in the early trials and the nondominant hand in the later trials, then
the effect of practice or fatigue will contaminate the effect of handedness. The
repeated measurement process affects and contaminates the measure that is

supposed to be a signature of the predictor. |

Practice and fatigue effects can be overcome by randomly distributing an I
repeating the conditions throughout the repeated measures, if the practi
and fatigue effects influence all conditions equally. Thus, if practice improves
both the dominant and nondominant hand by 50 msec, then the difference
between dominant and nondominant hands is unaffected by practice. Buf
practice might affect the nondominant hand much more than the dominani
hand. You can imagine that in complex designs with many predictors, eac
with many levels, it can become difficult to justify an assumption that repeatés

Worse yet, in some situations there can be differential carryover effects 1ol
one condition to the next. For example, having just experienced practice
the visual modality with the nondominant hand might improve subseque
performance in the auditory modality with the nondominant hand, ,{:f
might not improve subsequent performance in the visual modality with &
dominant hand. Thus, the carryover effect is different for different subsequeé
conditions.
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When you suspect strong differential carryover effects, you may be able to
explicitly manipulate the ordering of the conditions and measure the carry-
over effects, but this might be impossible mathematically and impractical,
depending on the specifics of your situation. In this case, you must revert

to a between-subject design and simply include many subjects to attenuate
between-subject noise,

In general, all the models we have been using assume independence of
observations. The probability of the combined data is the product of the prob-
abilities of the individual data points. When we use repeated measures, this
assumption is much less easy to justify. On the one hand, when we repeatedly
flip a coin, we might be safe to assume that its underlying bias does not change
much from one flip to the next. But, on the other hand, when we repeatedly
test the response time of a human subject, it is less easy to justify an assump-
tion that the underlying response time remains unaffected by the previous
trial. Researchers will often make the assumption of independence merely as
an approximation of convenience, hoping that by arranging conditions ran-

domly across many repeated measures, the differential carryover effects will be
minimized.

19.3 R CODE
19.3.1 Bayesian Two-Factor ANOVA

Several implementation details of the program are the same as the oneway
ANOVA program of the previous chapter:

Data are normalized so that prior constants can be more generic.
Initialization of chains is based on the data. It is important to do this,
otherwise burn-in can take forever.

®  Because there is nasty autocorrelation, we use a large thinning constant

and we also use multiple chains. For a reminder of the issues of burn-in
and thinning, see Section 23.2, p. 623.

A new detail arises in how the uncentered parameter estimates are recentered
{0 respect the sum-to-zero constraints. The uncentered estimates from BUGS

are a0, all], a2[]1, and ala2[, J. By definition of the ANOVA model, the
Predicted mean of cell i, jis

mli,jl = a0 + al[i] + az2ljl + ala2[i,j]

We use these predicted means to construct the zero-centered parameters. First,
00 is the mean across all the predicted means:

b0 = mean( m[,] )

19.3 R Code m
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Then the main effect deflections are the marginal means minus the overal]
mean:

; b1[i] mean( m[{i,1 ) - bO
| b2[j] = mean( m[,31 ) - bO

Il

It is easy (honest!) to check that those deflections do indeed sum to zero (i.e,
sum( b1[] ) = 0 and sum( b2[] ) = 0). Finally, the interaction deflec-
tions are the residuals after the additive effect of bl and b2 is taken into
account:

blb2[i,j] = mli,j1 - ( bO + b1[i] + b2[j] )

| Again, it is easy to check that the rows and columns of b1b2[, ] all sum to
zero.

In the data section of the program, one option is to load data from the article
‘ of Qian & Shen (2007). The program here uses a hierarchical structure similar
to that used by Qian & Shen (2007), but their program did not recenter the
parameters as is done here. It may be instructive to compare the results of the
program here with the results reported by Qian & Shen (2007).

l BUGS for many factors. The program that follows applies only for cases of two
| nominal predictors. If you have many nominal predictors, along with their
two-way, three-way, and higher-order interactions, it becomes unwieldy to
I explicitly and separately name all the deflection parameters. Instead, it can be
more elegant to use a technique of dummy coding, whereby we essentially revert
back to using vectors for coding the values of the predictors instead of inte
ger indices. That is, X1 = level 2 is coded by the “dummy” vector (0, 1,0, ...}
instead of by the integer index 2. Interactions are represented by matrices
dummy codes that have been flattened into vectors. For an example of pro-
1 gramming this technique in BUGS, see Ntzoufras (2009, Ch. 6). Unfortunately

those examples do not incorporate the higher-level prior structure emphasize

in Figure 19.2.

(ANOVAtwowayBRugs.R)

graphics.off()
rm(1ist=1s(all=TRUE))
fnroot = "ANOVAtwowayBrugs" -
Tibrary(BRugs) ## Kruschke, J. K. (2010). Doing Bayesian data analysis
## A Tutorial with R and BUGS. Academic Press / E]sev e

# THE MODEL.

[ R B S T

modelstring =
# BUGS model specification begins here...
model {

= B8
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i}
|
19.3 R Code a"“
‘
|
I
(("
12 for (i in 1:Ntotal ) { |
13 Y[i1 ~ dnorm( mulil , tau )
14 mulil <- a0 + allx1[i1] + az2lx2ril] + a1a2[x1[1],x2[1]]
15 } | ,
16 # |
17 tau <- pow( sigma , -2 ) il '}
18 sigma ~ dunif(0,10) # vy values are assumed to be standardized
19 # ‘
2 a0 ~ dnorm(0,0.001) #y values are assumed to be standardized i
2 #
7 for (31 in 1:NxlLvl ) g allj1] ~ dnorm( 0.0 , altay )}
23 altau <- 1 / pow( a1sp i 2)
2 alSD <- abs( alSDunabs ) + .1
25 alSDunabs ~ dt( ¢ , 0.001 , 2

26 #

27 for ( j2 in 1:Nx2Lv] ) { az2[j2] ~ dnorm( 0.0 , a2tay ) )
P aZtau <- 1 / pow( a2sD , 2 ) |
29 a2SD <- abs( a2SDunabs ) + .1

30 az2SDunabs ~ dt( 0 . 0.001 , 2

31 # |
32 for ( J1 in 1:Nx1Lv] ) { for ( j2 in 1:Nx2Lvl ) ¢

33 ala2[j1,32] ~ dnorm( 0.0 , ala2tau )

34 bo)

35 ala2tau <- 1 / pow( ala2SD , 2 )
36 ala2SD <- abs( ala2SDunabs ) + .1
37 ala2SDunabs ~ dt( 0 , 0.001, 2)
38 }

» # ... end BUGS mode] specification

w " close quote for modelstring

a ff Write model to 3 file, and send to BUGS:
) writeLines(modeTstring,con="mode1.txt")

s modelCheck( "model.txt" )

T ‘
s THE DATA. il
@ Specify data source:

# dataSource = ¢( “0ianS2007" , "Salary" , "Random" » "Ex19.3" )[4]

o # Load the data:

s if ( dataSource == "QianS2007" ) {
52 fnroot = paste( fnroot , dataSource , sep="")

53 datarecord = read.table( "QianSZOO7SeaweedData.txt" . header=TRUE , sep="," )
54 # Logistic transform the COVER value:

55 # Used by Appendix 3 of QianS$2007 to replicate Ramsey and Schafer (2002).
56 datarecord$COVER = -log( ( 100 / datarecord$COVER ) - 1)

57 y = as.numeric(datarecord$COVER)

58 X1 = as.numeric(datarecord$TREAT)

59 Xlnames = ]eve]s(datarecord$TREAT)

60 X2 = as.numeric(datarecord$BLOCK) i
61 XZ2names = 1evels(datarecord$BLOCK) i
62 Ntotal = length(y) ‘

6 Nx1Lv] = Tength(unique(x1))

64 NXx2Lv1

I

Tength(unique(x2)) ‘
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l 388 dim=c(NROW(contrast),NCOL(contrast),chainLength) )
389 contrastlLab = ""

\ 390 for ( x1idx in 1:Nx1Lvl ) {

U\ 391 for ( x2idx in 1:Nx2Lvl ) {

| 392 if ( contrastixlidx,x2idx] !=0 ) {

: 393 contrastlLab = paste( contrastlab , "+" ,
394 signif(contrastixlidx,x2idx]1,2) , I
395 xlnames[x1idx] , x2names[x2idx] ) C
396 }
397 } .
398 } r
399 histInfo = plotPost( apply( contrastArr % blb2Sample , 3 , sum ) , 1
400 compVal=0 , breaks=30 , xlab=contrastlLab , cex.lab = 0.75 , i

| 401 main=paste( names(xlx2contrastList)[cldxl ) ) £

| 402 }

t 403 dev.copyZeps(fi1e=paste(fnroot,"xleContrasts.eps",sep="")) F
404 } fi
405 S
406 # t]
sz 1 Do NHST ANOVA:
408 U
w0 theData = data.frame( y=y , xl=factor(xl,labels=xlnames) , 7

410 x2=factor(x2,labels=x2names) )
a windows()
m2  interaction.plot( theData$xl , theData$x2 , theDatas$y , type="b" )
( as  dev.copy2eps(file=paste(fnroot,"DataPlot.eps",sep=""))
| saa  aovresult = aov( y ~ x1 %= x2 , data = theData )
i g5 CHL LM N\n == == == o s s s mem ws o e i i o o i e e R SIS B ST S s s S e s o G \n\mfH

as  print( summary( aovresult ) )
| D R G Y | e \n\n")
| as  print( model.tables( aovresult , type = "effects", se = TRUE ) , digits=3 )
! 49 CAL(™\M-- - " == emmeo oo om—mmsso-cSCieo-oSssossssoeo-o-o-oooooSool \n\n")

421 #

‘ 19.4 EXERCISES

} Exercise 19.1. [Purpose: To inspect an interaction for transformed data.] Consider th
data plotted in Figure 19.3, p. 521.

(A) Is the interaction a crossover interaction or not? Briefly explain yo ‘

‘ answer.
t (B) Suppose we are interested in salaries thought of in terms of percent
' (i.e., ratio) differences rather than additive differences. Therefore we &
the logarithm, base 10, of the individual salaries (the R code has
option built into to the data section, where the salary data are 102 de
Run the analysis on the transformed data, producing the results
contrasts analogous to those in Figures 19.4 and 19.5. Do any ot
conclusions change? _
(C) Examine the within-cell variances in the original and in the transfor
data. (Hint: Try using the aggregate function on the data. As a5
see how the function is used to initialize ala2. Instead of applyin




th) )

mean to the aggregated data, apply the standard deviation. The result is
the within-cell standard deviations. Are they all roughly the same?) Do
the original or the transformed data better respect the assumption of
homogeneous variances?

transformed.

(A) Load the data and run the program. You will find that there are too
many levels of the two predictors to fit all the posterior histograms
into a single multipanel display. Therefore, modify the plotPost.R pro-
gram so that it produces only the mean and HDI limits, marked by a
horizontal bar with a circle at the mean (without a histogram) and per-
haps without a main title. Name your program something other than
plotPost.R, and use it in the plotting section at the end of the pro-
gram instead of plotPost.R. Show your results. (A secondary goal of
this part of the exercise is to give you experience modifying graph-
ics in R to suit your own purposes.) Hints: There are many ways to
do this, but here are some options. To suppress plotting of the his-
togram, just put this argument in the h i st function: plot=F. To suppress
a title on a plot, just use the argument main="". To adjust the font
size, specify the “character expansion”: cex for text, cex.lab for axis
labels, and so forth. To reduce the margins around a plot, so there
is more room for the plot itself, try variations of these margin speci-
fications: par( ‘mar:c(Z,O.S,l,O.S), mgp=c(0.5,0,0) ). The par
command needs to be called before the plots are made.

(B) The program already includes contrasts that consider whether there is an
effect of small fish, an effect of large fish, and an effect of limpets. What
conclusions do you reach from the posteriors of these contrasts?

(C) Construct a contrast of the average of Blocks 3 and 4 versus the average
of Blocks 1 and 2. Show your specification, the graph of the posterior on
the contrast, and state your conclusion.

(D) Is the effect of limpets different in Block 6 than in Block 72 To answer this
question, construct an interaction contrast using an outer product (Hint:
refer to the already-coded L_effect for the contrast that specifies the
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effect of limpets). Is the effect of small fish different in Blocks 1 and 7
than in Blocks 3 and 5? For both questions, show the contrast vectors
that you constructed and show the posterior of the contrast, and state
your conclusion.

Exercise 19.3. [Purpose: To notice that within-subject designs can be more sensitive
(hence more powerful) than between-subject designs.] Consider these data:

2

X1 Xo y S| X X y S
1 1 101 1 2 1 105 1
1 1 102 2 2 1 107 2
1 1 103 3 2 1 106 3
1 1 105 4 2 1 108 4
1 1 104 5 2 1 109 5
1 2 104 1 2 2 109 1
1 2 105 2 2 2 108 2
1 2 107 3 2 2 110 3
1 2 106 4 2 2 111 4
1 2 108 5 2 2 112 5

Note: The table is split into two halves so it fits the
page more compactly. The continuation of the first col-
umn appears in the fifth column. The continuation of the
second column appears in the sixth column, and so forth.

(A) Ignoring the last column, which 1nd1cates the sub)ect who generated the
data, conduct a Bayesian ANOVA using X1 and X, as predictors of y.
Show the code you used to load the data, and show the resulting pos-
terior histograms of Bo, B1,j, B2,k and Bixajk- Also show the posterior
of the contrast B1,2 — 1,1 (i.e., the marginal difference between levels 1
and 2 of factor 1, also called the main effect of factor 1) and the posterior
of the contrast B2 — B2,1 (i.e., the marginal difference between levels 1.
and 2 of factor 2, also called the main effect of factor 2).

(B) Now include the subject as a predictor by expanding the model to
include a deflection from baseline due to subject. (Do not include 4
subject interaction terms.) Again show the posteriors of the B's request
in the previous part. Are the certainties on the estimates and contras
different than in the previous part? In what way, and why?
(Hint regarding the answer: Figure 19.7 shows posterior hlstograms i
the main effect of factor 2, when the data are considered to be be
subject or within subject. Notice that the means are essentially the san
in both histograms, but the uncertainties are very different! '

Programming hints: The model specification without a subject factor is
; EES
mulil <- a0 + al[x1[i11 + a2[x2[i]] + ala2[x1[i],x2[il]

but with a subject factor becomes i
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X; Contrast: X2.2vXx2.1 X, Contrast: X2.2vX2.1

Mean =2.95 Mean=2.98
I0%s0<100% ’O%SO<100%
: 95% HDI : 95% HDI
: 1.45 4.43 : 2.22 3.84
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T T T — _-I%
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FIGURE 19.7

For Exercise 19.3. Left panel: Posterior for difference between levels of factor 2 when
data are considered to be between subject. Right panel: Posterior for difference
between levels of factor 2 when data are considered to be within subject. Notice that
the means are (essentially) the same in both histograms, but the uncertainties are very
different!

where S[1] is the subject number for the i th datum, and aS[] are the deflec-
tions from baseline for each subject. You must, of course, specify a prior on
aS[] analogous to the prior on a1 L]

The conversion of the a[ ] values to zero-centered b[ ] values proceeds anal-
ogously to what was explained at the beginning of Section 19.3.1 (ANOVA

00 # Convert the a values to Zero-centered b values.

I ml2Sample is predicted cell means at every step in MCMC chain:
a ml2Sample = array( 0, dim=c( datalist$NxILv] . datalist$Nx2Lv]
21 datalist$nNSLv] |, chainlength ) )

23 for ( stepldx in l:chainlength ) {

214 for ( alidx in 1:Nx1lLv] ) |

25 for ( a2idx in 1:Nx2Lv] ) |

216 for ( aSidx in 1:NSLv] ) {

27 ml2Samplel[ alidx , a2idx .~ aSidx , stepldx ] =
218 a0SamplelstepIdx]

29 + alSamp]e[alidx,stepIdx]

20 + aZSample[aZidx,stepIdx]

21 + alaZSamp]e[alidx,a21dx,stepIdx]

2 + aSSamp]e[aSidx,stepIdx] )

I b0Sample is mean of the cell means at every step in chain:

2 b0Sample = apply( ml2Sample , 4 , mean )

20 blSample is deflections of factor 1 marginal means from b0Sample:
B blSample = ( apply( ml2Sample , c(1,4) , Mmean )

2 - matrix(rep( bOSample ,leLv]),nrow=Nx1Lv1,byrow=T) )
B b2Sampie is deflections of factor 2 marginal means from b0Sample:
B b2Sample = ¢( apply( ml2Sample , c(2,4) , mean )

19.4 Exercises "
i
il
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E S

235 - matrix(rep( bOSample ,Nx2Lv1),nrow=Nx2Lv1,byrow=T) )
236 4 bSSample is deflections of factor S marginal means from bOSample:
237 bSSample = ( apply( ml2Sample , c(3,4) , mean )

238 - matrix(rep( bOSample ,NSLv1),nrow=NSLv1,byrow=T) )

29 # linpredSample is Tinear combination of the marginal effects:

20 linpredSample = O0xml2Sample

a1 for ( stepldx in l:chainlLength ) {

Di

202 for ( alidx in 1:Nx1Lvl ) {

203 for ( a2idx in 1:Nx2Lvl ) {

244 for ( aSidx in 1:NSLvl ) {

25 TinpredSample[alidx,a2idx,aSidx,stepldx ] = (

246 bOSample[stepldx]

247 + blSample[alidx,stepldx]

248 + b2Sample[a2idx,stepldx]

249 + bSSamplelaSidx,stepldx] )
250 }

251 } 20.1

252 ]

253 }

254 {f blb2Sample is the interaction deflection, i.e., the difference

255 fF between the cell means and the linear combination:

256 blb2Sample = apply( ml2Sample - TinpredSample , c(1,2,4) , mean )

257

258 4 Convert from standardized b values to original scale b values:

259 b0Sample = b0Sample % ySDorig + yMorig

260 blSample = blSample % ySDorig

260 b2Sample = b2Sample * ySDorig 202
22 bSSample = bSSample = ySDorig -
23 blb2Sample = blb2Sample = ySDorig 20.3

Exercise 19.4. [Purpose: To conduct a power analysis for Bayesian ANOVA, for wi 20.4 (
subject versus between-subject designs.] Conduct power analyses for the between- |
subject and within-subject versions of the previous exercise. Specifically 2051
suppose the goal is for the 95% HDI of the contrast on factor 2 to have a width

of 2.0 or less. Conduct a retrospective power analysis for this goal, for the

within-subject version and the between-subject version. Caution: This exercif 206 1

demands a lot of programming and could be time consuming, but the rest
drive home the point that within-subject designs can be more powerful tha
between-subject designs.



