
Lecture 5 
Bayesian data analysis 

R101: A practical guide to making R your everyday statistical tool (PSY532)  



Programme 

• Bayes’ Rule 

• Simple “real-world” Bayesian problems: a demonstration of 
the rule’s rationality 

• Bayesian data analysis and its rationality 

• Bayesian ANOVA example: Described in detail in readings 
from Kruschke textbook 

• Demonstration: A Bayesian approach to our most recent 
analyses 

 



Bayes’ Rule 

• Derivable from the laws of probability 

• Premised on the idea that probability is a degree of belief inside a learner’s 
head 

 

 

 

 

 

 

 

 

 

 

The probability that hypothesis h is 
true, given that we (the learners) 
have observed data d; i.e., our 
degree of belief in h after seeing the 
data 

The prior: Our degree of 
belief in h before seeing the 
data 

The likelihood: Our degree of belief in seeing 
the data if h is true (given our assumptions 
about the generating mechanism behind all 
possible datasets – i.e., the sample space) 

The marginal likelihood: The likelihood of 
the data under hypothesis h and all other 
possible hypotheses in the hypothesis 
space H; can also be expressed as:  

 
or 

Reading: Navarro lecture 4; Kruschke Ch 4 



Bayesian inference: rational in the real world 

• The taxicab problem illustrates that, in the real world, the prior matters! 

• The game show problem illustrates that, in the real world, the likelihood 
matters! 

• (The following slides describing the problems and their solutions are from 
Daniel Navarro’s  2011 lectures on Computational Cognitive Science at The 
University of Adelaide. This is the link to the full course, and this is the link to 
the specific lecture used – Lecture 4.) 

Reading: Navarro lecture 4 

http://health.adelaide.edu.au/psychology/ccs/docs/ccs-class/previous.html
http://health.adelaide.edu.au/psychology/ccs/docs/ccs-class/lecture04.pdf


The taxicab problem 



The game show problem 



Argued to also be more rational in data 
analysis 

• In the Bayesian version of the analyses 
we’ve been doing, the linear model and its 
assumptions are expressed in the likelihood 
function, which takes the form of a normal 
distribution (or a t-distribution in some 
cases). 

• For each predictor, there is a prior 
distribution (usually of gamma form), 
expressing the learner’s beliefs about the 
strength of the relationship between the 
predictor and the outcome variable. 

• The marginal likelihood is usually not 
computed. 

All four components of Bayes’ 
Rule are probability 
distributions; that is: 
• They have a certain shape, 

expressed in a function (i.e., 
formula). 

• For probability density 
functions (continuous 
variables), the area under the 
shape (i.e., the integral of the 
function) equals 1. For 
probability mass functions 
(categorical variables) the 
sum of the categories’ 
probabilities is 1. 

Reading: Kruschke Ch 11 (not provided) 



Bayesian data analysis logic continued 

• The marginal likelihood is the conjoint (summed) probability of the data 
points given the model. The reason we usually need specialised techniques to 
estimate this value is that it takes the form of a complex integral. For 
example, for a model with three parameters: 

 

 

• It follows from Bayes’ Rule that the posterior is a weighted average of the 
prior mean and the data, with weighting corresponding to the relative 
precisions of the prior and likelihood. Precisions are related to standard 
deviations and reflect the learner’s (i.e., the analyst’s) uncertainty in prior 
beliefs, or, alternatively, model predictions. The precisions are estimated from 
the data through the use of hyperpriors.  That is, 

– if the prior is fairly vague, and the data are numerous, the posterior will 
be near the parameter values that maximise the likelihood of the data. 

– “natural shrinkage” occurs, similar to the shrinkage in multilevel 
modelling. 



Bayesian data analysis : Typical steps 

1. Determine priors, likelihood, and hyperpriors (or get R to do this for you) 

2. Estimate the posterior (and possibly the marginal likelihood) through a 
Markov Chain Monte Carlo process (Metropolis-Hastings, Gibbs’ sampling) 

– Since there is a prior for each predictor, there is a posterior for each 
parameter.  

3. Determine whether the parameter value predicted by the null hypothesis 
(e.g., a slope value of zero) falls within the 95% Highest Density Interval 
(HDI) of the posterior for the parameter. It does in the case below! 

 

 

 

Regression slope value 



Bayesian data analysis : Advantages over the standard 
“Frequentist” approach 

1. The use of priors allows us to incorporate findings from previous studies 
into the data analysis. This is particularly useful if there is a large number of 
preceding studies while the current study’s data set is small. 

2. HDI more interpretable than frequentist “confidence intervals”: If a 
parameter value falls within the 95% HDI, it is among the most believable  
parameter values. Frequentist confidence intervals indicate that it is 95% 
likely that the parameter value could not be in the interval range if the null 
hypothesis were true. 

3. Subtle but philosophically important point discussed at length by Kruschke: 
The Bayesian analyst’s model assumptions are transparent and not 
dependent on sample size (degrees of freedom). 

 

 



Bayesian ANOVA example 
Reading: Kruschke Ch 18, 19 

Likelihood function Normal 

Prior over slope parameters Normal 

(Hyper)prior over prior precisions Folded-t 

Prior over error (likelihood function 
precision) 

Uniform 



A Bayesian approach to our most recent 
analyses 

Demonstration – bayesglm function in arm package. For generalized linear 
modelling using the Bayesian approach. 

 

 

 

 

 

 

 

 

For mixture models (discussed in Lecture 4), you could explore the package 
MCMCglmm and the function of the same name within it. 

Likelihood function Normal 

Prior over slope parameters Cauchy, t 

(Hyper)prior over prior precisions - (standardization of predictors and 
fixing of SD, which is related to the 
precision, to 0.5 or 1) 

Prior over error (likelihood function 
precision) 

Uniform 

Reading: Gelman et al 2009 



Reading 

Gelman, A., Jakulin, A., Pittau, M. G., & Su, Y. (2009). A 
weakly informative default prior distribution for logistic 
and other regression models. The Annals of Applied 
Statistics, 2, 1360-1383. Available online: 
http://www.stat.columbia.edu/~gelman/research/publish
ed/priors11.pdf 

 

Kruschke, J. K. (2011). Doing Bayesian Data Analysis. 
Elsevier: Oxford. Chapter 4 “Bayes’ Rule”, Chapter 18 
“Bayesian Oneway ANOVA”, and Chapter 19 “Metric 
predicted variable with multiple nominal predictors” will 
be provided online 

http://www.stat.columbia.edu/~gelman/research/published/priors11.pdf
http://www.stat.columbia.edu/~gelman/research/published/priors11.pdf

