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R101: A practical guide to making R your everyday statistical tool (PSY532)  



Programme 

• Factor analysis 

− Logic of the analysis 

− Conducting the analysis: 11 steps 

− Two examples (one just in the code, and with an accompanying 
reading) 

• Further analysis of interaction effects in ANOVA 

− Interpreting the interaction contrasts provided by the summary 
function for lm, glm and bayesglm 

− Exploratory analyses and significance tests in the phia package 

 



Factor analysis 



Logic of the analysis/ Key concepts 

• Factor analysis identifies groups of observed variables that tend to hang 
together empirically. The variables are usually items in a questionnaire. 

• Purposes: 

– understand the structure of a set of variables (e.g., intelligence) 

– development of new questionnaires: do the items have an expected 
factor structure? (e.g., Do the items of a new intelligence test capture the 
known distinction between “fluid” and “crystallised” intelligence?) 

– data set reduction, often involving the calculation of factor scores 

The factor analyses in this lecture have all of these purposes. 

• Two main types: 

– Principal component analysis (not technically “factor analysis”) 

– Factor analysis (usually, with a principal axis factoring fitting procedure, 
but maximum likelihood available as well) 

Tend to produce similar results, but not in all cases. So analyses typically 
examine the results from both methods. 

• Performed on a correlation or covariance matrix of the observed variables. 

Readings: 1 (Field), 2 (Costello  & Osborne);  others specified in the slides 



Key concepts: Factor loadings 

• One of the main final “outputs” of the regression analysis 
• Structure matrix: loadings expressed as the average correlation, across all 

participants i, of score on the observed variable and score on the factor  
• Pattern matrix: loadings expressed as regression coefficients: 

Illusion of natural controli = 0.95 x Practicei + 0.75 x GoalieMovesi + 0.69 x 
Skilli … + 0.39 x Lucki  + errori  

Illusion of supernatural controli = -0.13 x Practicei +… 0.63 x LuckyPlayi + 0.59 
x LuckyMomentsi+ 0.43 x Lucki  + errori  

• Correlations and regression coefficients are the same thing when an 
orthogonal rotation is used (see “Rotation” concept). 

 



Key concepts: Factor scores (Reading: 3)  

• A person’s score on a factor could be calculated as just the average of all the 
items loading on that factor, but this can be a suboptimal measure given that 
the items have different weights. 

• There are various ways of calculating factor scores, the most common one 
being “regression”, which takes correlations between factors and items into 
account. 



Key concepts: Communality, and its role in distinguishing principal 
component analysis from principal axis factoring  

• Principal axis factoring (PAF)/ maximum likelihood assumes that the 
covariation in the observed variables is due to the presence of one or more 
latent variables (factors) that exert causal influence on these observed 
variables. Under this assumption, each observed variable can have variance 
not caused by the latent variable. This unique variance can occur because of 
measurement error (random variance) or reliable individual differences not 
related to the latent variable. In mathematical terms, this translates into the 
assumption that, for each observed variable, the communality (a measure of 
the variance shared with other observed variables) is not necessarily equal 
to one. The initial communality is the squared multiple correlation of each 
variable with all the others (the R2 if all the other variables are assumed to be 
predictors in a linear regression). See this webpage for the details. 

• Principal component analysis (PCA) makes no assumptions about an 
underlying causal model. It is simply a variable reduction procedure aimed at 
identifying a relatively small number of components that account for most of 
the variance in a set of observed variables. Communalities are assumed to 
equal one. 

http://www.real-statistics.com/multivariate-statistics/factor-analysis/principal-axis-method/


Key concepts: Eigenvalues 

• Eigenvalues are calculated for each uncovered factor/component during both 
PAF and PCA. PAF just uses a slightly different correlation matrix, where the 
initial communalities replace the ‘1s’ along the diagonal. There are always as 
many factors/components as observed variables, and the first 
factor/component always accounts for the largest amount of total variance 
relative to the other factors.  

• Eigenvectors consist of the “weights” (loadings) of each observed variable on 
the factor. Eigenvalues are a property of the eigenvectors and have a complex 
geometrical definition. The higher a factor’s eigenvalue, however, the greater 
the amount of total variance it accounts for. 

• Eigenvalues can be illustrated in a scree plot. This plot might show slightly 
different values, depending on whether it illustrates the PAF or PCA 
calculations. However, the general shape of a scree plot is always the same, 
illustrating, as per the first dot point, higher relative importance for the first 
factor.  

• As will be discussed later in “Analysis steps”, scree plots are used to decide 
whether to retain more than one factor. 

http://math.stackexchange.com/questions/243533/how-to-intuitively-understand-eigenvalue-and-eigenvector


Key concepts: Rotation 

• Performed so that the loadings of the 
observed variables are maximised  on the 
factor that they relate to most. 

• Can be: 

– Orthogonal (varimax, quatrimax, 
BentlerT, geominT): factors are 
assumed to be independent (i.e., at 
right angles, as in the diagram) 

– Oblique (olimin, promax, simplimax, 
BentlerQ, geominQ): factors are 
assumed to be related 

• Often, both are performed, with the 
“factor correlation matrix” then being 
checked to determine whether there are 
substantial correlations between factors 
that warrant discarding the orthogonal 
solution. Factors in human data tend to 
be correlated. 

• Factor rotation methods matter: e.g., 
promax is recommended over oblimin for 
very large data sets. 

Variable 1 

Image from: 
http://www.ats.ucla.edu/stat/sas/l

ibrary/factor_ut.htm 

http://www.ats.ucla.edu/stat/sas/library/factor_ut.htm
http://www.ats.ucla.edu/stat/sas/library/factor_ut.htm


Key concepts: Sample size 

• Often discussed in terms of the ratio of subjects to observed 
variables/questionnaire items: 

– In practice, researchers use factor analysis with ratios as low as 2:1, with 
most using 5:1 and 10:1.  The “classic” recommendation is to have 
between 5 and 10 times the number of participants as items. 

• However, recent simulation studies suggest that the above recommendation is 
too simplistic: 

– Reading 4 (MacCallum et al.) suggests, for example, that sample size 
matters when factor loadings are low or factors are not easily 
distinguishable from each other. 

• The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy can be used to 
gauge the degree to which any obtained factors are likely to be 
“distinguishable”. The KMO is the ratio of the squared correlation between 
variables to the squared partial correlation. The partial correlation for each 
pair of variables corresponds to the correlation between those variables after 
partialling out the influence of all of the other variables in the factor analysis. 
If the variables share distinct common factor(s), then the partial correlations 
should be small and the KMO should be close to 1 (rather than 0). 



Analysis steps 

1. Determine the factor structure you expect and some possible alternatives. 
A one-factor solution is the obvious comparison structure, but there might 
be others. For example, you might expect the questionnaire items you are 
using to load on two factors, as has been found in most previous studies. 
However, one previous study might have obtained a three-factor solution. 

2. If considering using a maximum likelihood fitting procedure, check that 
responses on the items are normally distributed. We will use principal axis 
factoring here, because it is more common, and because responses in the 
first example are not normally distributed. 

3. Remove two kinds of items: 
– Weak items: Those that do not correlate highly with many other items 

(i.e., for which r = 0.3 or less in many cases). Look at these items to see 
what’s wrong with them. 

– Singular items: Those that correlate highly (> .8) with any other item, 
suggesting multicollinearity. 

Reading: 1 (Field) 



4. Run formal tests of factorability: 
– KMO (mentioned on previous slide) 
– Bartlett’s test of sphercity (are all the items quite weak?): If no, the 

correlation matrix should be significantly different from an identity matrix. 

5. Determine the number of factors to extract using a scree plot and parallel 
analysis. “Parallel analysis” runs a preliminary (unrotated) principal components 
analysis (PCA) or princial axis factoring analysis (PAF) on your data. It also does 
this for a random data set with the same number of observed values. The two 
sets of eigenvalues  are then compared. If the eigenvalues from the random data 
are larger then the eigenvalues from the PCA, the components/factors are 
concluded to be random noise and a one-factor solution is recommended. 

6. Run a PCA with orthogonal and oblique rotations. 

7. Run PAF analyses with the same rotations and determine which results to treat 
as “final” based on your understanding of the debate between defenders of PCA 
and PAF. 

8. If, in your chosen solution, there are a small number of items that have loadings 
on more than one factor because of some ambiguity in the wording, remove 
those items and re-run the analysis (the single one you have chosen). 

9. Interpret the item loadings in your final solution. What factors/ components do 
the items suggest? 

10. Compute factor scores if they are needed for a subsequent analysis. 

11. Calculate Cronbach’s alpha, a measure of split-half reliability (see reading), for 
your obtained factors/components. 



Example 1: Illusions of natural and supernatural 
control in the SS data 

Is the following clustering of the items supported by exploratory factor 
analysis? Can we calculate factor scores to use as outcome measures instead 
of the item averages we have been using throughout the course? 

When thinking about your wins/goals, to what extent would you use each of 
the following statements to describe how they came about? (0 to 10 for each 
statement) 
 
‘Natural’ IoC 

1. My skill in playing the game. 

2. I got better with practice. 

3. My knowledge of soccer. 

4. I developed a logical strategy for playing. 

5. Experience in playing computer games. 

6. The players I chose. 

7. The kick directions I chose. 

8. I learned how to predict the movements 
of the goalkeeper. 

‘Supernatural’ IoC 
1. I took advantage of moments 

when my luck was good. 
2. I’ve always been a lucky kind of 

person. 
3. I deserved to win. 
4. I knew how to make my luck turn 

good. 
5. A certain lucky way of playing just 

seemed to work for me.  

Reading: 5 (Ejova et al.) 



• The packages you’ll need: 
– psych 

– nFactors 

– GPArotation 

• Refer to the script for code pertaining to each of the steps 
• Note regarding Step 1: Based on studies where people who gamble 

were interviewed or surveyed, we expect the statements 
comprising the questionnaire to form two groups, representing the 
illusions of natural and supernatural control. If the statements are 
vague, however, and people understood them in different ways, 
there might be only one factor.  

• Note regarding Step 3: As Table C.1 in the Reading shows, there 
were many zero ratings for each statement (and many ratings of 
“10” for “It was all chance”). Thus, each item was screened for 
whether scores on it correlated with other items when only 
participants without zero ratings on the item were considered. The 
“Chance” item was excluded based on this screening, as shown in 
the script. 

• Factor Analysis Example 2 is in the script for those who are 
interested in a similar analysis involving more items. The motivation 
for the analysis is in Reading 6. 



More on interaction effects 



Interpreting interaction contrasts 
provided by the summary function 

Interactions between categorical variables in linear models 
Let’s consider the analysis for testing Hypothesis 1 in the SS dataset. You 
encountered it in Assignment 2.  In the answer sheet, I suggested making prior 
beliefs a categorical variable and then testing its effect in interaction with the 
main predictor of interest – success slope type (descending vs. U-shaped vs. 
ascending, etc.) Remember that the illusion of natural control is the average of 
eight items, each of which have a maximum value of 10. Thus, our outcome 
measure also has a maximum value of 10. 

#Make prior beliefs (PreDBC_IOC) a categorical variable: 

SS$CatPreDBC_IOC <- cut(x = SS$PreDBC_IOC, breaks = 2, labels = 

c("Low", "High")) 

#Run ANOVA allowing for main effects and interaction 

anova1 <- aov(PostNaturalIoC ~ SeqCond*CatPreDBC_IOC, data = 

SS) 

summary.lm(anova1) 



      Estimate Std. Error t value Pr(>|t|)     

(Intercept)                          1.74330    0.24602   7.086 8.57e-12 *** 

SeqCondU                         0.04836    0.35113   0.138   0.8905     

SeqCondAsc                       0.57641    0.35455   1.626   0.1050     

SeqCondFlat                      0.06062    0.35635   0.170   0.8650     

CatPreDBC_IOCHigh                0.99808    0.42119   2.370   0.0184 *   

SeqCondU:CatPreDBC_IOCHigh      1.24151    0.58829   2.110   0.0356 *   

SeqCondAsc:CatPreDBC_IOCHigh    0.95073    0.60672   1.567   0.1181     

SeqCondFlat:CatPreDBC_IOCHigh    1.03891    0.58870   1.765   0.0785 .  

Intercept/constant: Illusion of natural control (on a 10-point scale) when all predictors 
and interaction terms are equal to zero.  

Example of main effect contrast 1: Number of units out of 10 by which the illusion of 
natural control is larger when the success slope is U-shaped rather than Descending. 

Example of main effect  contrast 2: Number of units out of 10 by which the illusion of 
control is larger when prior belief in gambling game controllability is high rather than 
low. 

Example of a two-way interaction contrast: Number of units out of 10 by which the 
illusion of natural control is larger when the success slope is U-shaped and prior 
beliefs are high, as opposed to when the success slope is Descending and prior beliefs 
are low. 

The second described main effect contrast (for prior beliefs) and the described 
interaction contrast are significant.  



Interactions between categorical and numeric variables in linear 
models 
Let’s re-run the previous analysis, but with prior beliefs as a numeric (interval-
scale) variable showing total score on the “illusion of control” scale of the Drake 
Beliefs About Chance Inventory. 

 

anova2 <- aov(PostNaturalIoC ~ SeqCond*PreDBC_IOC, data = 

SS) 

summary.lm(anova2) 



    Estimate Std. Error t value Pr(>|t|)    

(Intercept)               0.28750    0.60806   0.473  0.63666    

SeqCondU                -1.41429   0.85977  -1.645  0.10094    

SeqCondAsc               -1.83316   0.96936  -1.891  0.05950 .  

SeqCondFlat              -1.27483   0.86497  -1.474  0.14149    

PreDBC_IOC               0.06482    0.02086   3.108  0.00205 ** 

SeqCondU:PreDBC_IOC      0.07154    0.02961   2.416  0.01623 *  

SeqCondAsc:PreDBC_IOC    0.09298    0.03286   2.830  0.00495 ** 

SeqCondFlat:PreDBC_IOC   0.06307  0.02948   2.139  0.03314 * 

Intercept/constant: Illusion of natural control (on a 10-point scale) when all predictors 
and interaction terms are equal to zero.  

Example of main effect contrast 1: Number of units out of 10 by which the illusion of 
natural control is larger when the success slope is U-shaped rather than Descending. 

Example of main effect contrast 2: Number of units out of 10 by which the illusion of 
control is smaller when prior belief in gambling game controllability increases by one 
unit on the Drake Beliefs About Chance scale. 

Example of a two-way interaction contrast: Number of units out of 10 by which the 
illusion of natural control is larger when the success slope is Ascending rather than 
Descending and prior beliefs increase by one unit. 

The second described main effect contrast (for prior beliefs) and all two-way 
interaction contrasts are significant. 



Interactions in generalised linear models 
Let’s consider the generalised linear modelling analysis from Assignment 4, 
where we examined reported average monthly gambling expenditure as a 
function of three predictor variables: whether one has ever played online 
(yes/no), whether one is a young male (yes/no), and income (low, average, 
high). 

 

Sp1 <- Spending[(Spending$Spend < 10000),]   

 #creating a new data frame with outliers removed 

library(MASS) 

glmnba <- glm.nb(Spend ~ Online*YoungMale*IncomeCat,  

 data = Sp1) 

summary(glmnba) 



        Estimate   Std. Err  z value      Pr(>|z|)     
(Intercept)                                                                        4.7612     0.3555   13.392  < 2e-16 *** 
OnlineYes                                                                          0.3734     0.4898   0.762  0.445828     
YoungMaleYes        0.2494     0.4315   0.578  0.563225     
IncomeCatMid (salary 10-20 000)                                1.3943     0.4190   3.328  0.000876 *** 
IncomeCatHigh (salary over 20 000)                            1.2857     0.4440   2.896  0.003780 **  
OnlineYes:YoungMaleYes                                               1.1307     0.6020   1.878  0.060369 .   
OnlineYes:IncomeCatMid (salary 10-20 000)            -0.4452     0.6037   -0.737  0.460897     
OnlineYes:IncomeCatHigh (salary > 20 000)              -0.3361     0.6605   -0.509  0.610882     
YoungMaleYes:IncomeCatMid (salary 10-20 000)    -0.4964     0.5430   -0.914  0.360661     
YoungMaleYes:IncomeCatHigh (salary > 20 000)     -0.4253     0.5865   -0.725  0.468320     
OnlineYes:YoungMaleYes:IncomeCatMid                   -0.5555     0.7733   -0.718  0.472575     
OnlineYes:YoungMaleYes:IncomeCatHigh                  -0.3544     0.8561   -0.414  0.678868     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Intercept/constant: Expenditure (in log counts) when all predictors and interaction terms are 
equal to zero. Log counts means that, if you raise e (approx. 2.718) to the power of the 
estimate, you get the coefficient in the original units (Czech Crowns): 1.56. 

Example of main effect: e^0.373 is the number of Crowns by which the expenditure is larger if 
one is a young male rather than a woman or older male. 

Example of a two-way interaction effect: e^0.336 is the number of Crowns by which 
expenditure is smaller if one has never played online and earns a low income, compared to 
when one has had online experience and earns a high income. 

Example of a three-way interaction effect: e^0.556 is the number of Crowns by which 
expenditure is smaller if one has never played online, is not a young male, and has low income, 
compared to when one has played online, is a young male and has ‘mid’ income. 

None of the interaction effects are significant in this case.  



Significance tests in the phia package 

• The phia package can be used for graphing interaction effects and testing 
the significance of the group differences apparent in the plots. 

• These mean differences might not be automatically tested in summary. In 
phia, it is possible to indicate a wide variety of group differences. 

• The script presents examples for generalized linear models encountered in 
Lecture  4 and Assignment 4 (as well as Assignment 2). The first interaction 
we examine is the one interpreted in the two previous slides. 

• Reading 6 provides excellent example code, with a special section on 
generalized linear models. 

• The next two slides provide clarification where Reading 6 is a little technical. 

Reading: 6 



A note on the “fixed” and “pairwise” arguments 

• In the command testInteractions(glmnba, fixed="YoungMale", 
across="Online"), using the argument “fixed” means looking at the simple 
effects of Online (yes/no) at the two levels of YoungMale (yes/no) separately.  For 
linear models, t-tests or F-tests are conducted, depending on whether the “across” 
variable has two or more groups. The F-test is used in the latter situation. How 
many F-tests or t-tests are conducted depends on the number of groups in the 
“fixed” variable (two in our example, leading to two t-tests or F-tests). For 
generalized linear models, such as the one in our example, t-tests and F-tests are 
replaced by Wald chi-square tests. A correction (Holm) is applied to adjust for the 
effects of multiple testing. 

• In the command testInteractions(glmnba, pairwise = 
"YoungMale", across="Online"), using the argument “pairwise” means 
testing the significance of the difference of differences. That is, we use the t-
distribution or F-distribution (for linear models) or a chi-squared distribution (for 
generalized linear models) as the sampling distribution in testing whether the 
following difference is significantly different from zero: 

[m(0, 1) - m(0, 0)] - [m(1, 1) - m(1, 0)] 

Here, the first variable in the brackets is the variable specified for pairwise 
(YoungMale), while the second variable is the variable specified for across (Online). 
0 and 1 refer to “yes” and “no”, respectively. So, here, we’re testing whether 
[NotYoungMaleOnline - NotYoungMaleNotOnline] - [YoungMaleOnline - 
YoungMaleNotOnline] is significantly different from zero. 



Creating a custom.contr matrix 

Creating a custom contrasts matrix in phia means creating different meanings 
for the first and/or second variables. In our examples, we create different 
meanings just for the first variable, SeqCond. Since we are not specifying 
“pairwise” and “across” variables any longer, it’s more useful to think of the first 
variable as the one labelled in the rows of the output, and of the second variable 
as the one labelled in the columns or not seen. 

So, in the first row of the output on line 343 of the script, the row variable is “Asc 
vs. all” with 0 meaning “Ascending” and 1 meaning “All”. In the second row, the 
row variable is Asc vs. Desc where 0 means Ascending and 1 means “All”. The 
column variable in both rows is question wording (CaptionType). Zero on this 
variable is the reference level, which can be found by writing: 
levels(SS$PostHowManySingleCaptionType). The first level – the reference  level 
– is “goals”, so this is the wording corresponding to 0 on this variable. 

[m(0, 1) - m(0, 0)] - [m(1, 1) - m(1, 0)] 

 



Readings 

All available as pdfs in Study Materials/Lecture 7. 
1. Field, A., Miles, J., & Field, Z. (2012). Discovering Statistics Using R. Sage: UK. 

Chapter 17. Exploratory Factor Analysis. 
2. Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor 

analysis: Four recommendations for getting the most from your analysis. 
Practical Assessment, Research & Evaluation, 10.  

3. DiStefano, C., Zhu, M., & Mîndrilă, D. (2009). Understanding and using factor 
scores: Considerations for the applied researcher. Practical Assessment, Research 
& Evaluation, 14. 

4. MacCallum, R. C., Widaman, K. F., Zhang, S. & Hong, S. (1999). Sample size in 
factor analysis. Psychological Methods, 4, 84-99. 

5. Ejova, A., Navarro, D. J., & Delfabbro, P. H. (2013). Success-slope effects on the 
illusion of control and on remembered success-frequency. Judgment and 
Decision Making, 8, 498–511. 

6. Ejova, A., Delfabbro, P. H., & Navarro, D. J. (2013). Erroneous gambling-related 
beliefs as illusions of primary and secondary control: A confirmatory factor 
analysis, Journal of Gambling Studies. Available only as an electronic pre-
publication. 

7. De Rosario Martinez (2013). Analysing interactions of fitted models. R 
supplementary documentation. 


