Introduction to quantitative analysis

Petr Ocelík

ESS401 Social Science Methodology

6th October 2015

Outline

- Data and data types
- Descriptive vs. inferential statistics
- Introduction to R

Data

- Concept of data usually taken for granted.
- Data is information that has been collected and recorded.
- What we understand as data depends on our philosophical position.
- Quantitative research is typically embedded in positivist tradition.

Types of data

- Qualitative vs. quantitative data.
- Typically described as words vs. numbers.

• Blaikie: all primary data start as words.

Data

• What does data consist of?

- **Case:** is a unit of observation / analysis.
- Variable: is a concept that can have different mutually exclusive values.
- Value / score: particular category or point on a measurement scale.

(Kittel 2013)

Everyday usage	Science	Statistics
Object	Unit of analysis, unit of observation	Case
Property	Attribute	Variable
Specific property	Attribute level	Value

Case-by-variable matrix (Kittel 2013)

Discrete and continuous variables

- **Discrete variables:** separate values without intermediate values.
 - Categories (single, married, divorced)

- Whole numbers (0, 1, 2, ...)

• **Continuous variables:** any value over certain interval.

- Real numbers (0, 1, 1/3, 0.333, 3.14, ...)

Levels of measurement

Categorical measurement:

- Assigns entity to a discrete category.

• Metric measurement:

Levels of measurement

- Categorical measurement:
 - Nominal
 - Ordinal
- Metric measurement:
 - Interval
 - Ratio

Nominal measurement

- Construction of categories must be:
- Homogeneous
- Mutually exclusive
- Exhaustive

• We can arbitrarily assign numbers to categories.

Ordinal measurement

- Defined by same conditions as nominal level plus orders categories along some dimension.
- We can order categories, but distance between them is not equal.

• Numbers indicate only order of categories.

Interval measurement

- Defined by same conditions as ordinal level plus scores on a scale are at the same distance apart.
- We can measure and compare intervals.
- No true zero: position of zero is arbitrary.

 Measures how many (counts), not how much (ratios).

Ratio measurement

 Defined by same conditions as interval level plus it has true zero.

We can measure and compare ratios / proportions.

Degrees Celsius (interval) vs.
 degrees Kelvin (ratio).

(Kittel 2013)

Measurement level	Comparison of characteristics	Comparison of values	Transformations	Examples
Nominal	same/ different	a = b, a ≠ b	unequivocal	Religious denomination, preferred musical style, nationality
Ordinal	bigger/smaller	a < b, a > b, a = b	monotonous	School grades, soccer league, university ranking
Interval	differences	a – b = c – d	linear x' = ax + b	Temperature in °C, years, IQ-Scale
Ratio	ratios	a/b = c/d	proportional x' = ax (defined origin)	Income, age, duration of marriage

What do we mean by statistics

• Broad sense: collection and analysis of numeric data.

 Narrow sense: "the mathematics of the collection, organization, and interpretation of numerical data, especially analysis of population characteristics by inference from sampling." (American Heritage Dictionary).

Population and sample

- **Population:** a particular complete set of objects / items with at least one shared property of our interest.
 - Parameter: numerical description of population characteristic.
- **Sample:** a subset of population from which data is collected.
 - (Sample) statistic: numeric description of sample characteristic.

Descriptive vs. inferential stats

• **Descriptive:** accounts for summarizing and describing data.

• Inferential: uses sample statistics to estimate population parameters.

Sampling

• Simple random sample:

- Define population
- Define sampling frame
- Specify sampling method
- Choose desired number of items to sample

Sampling variability: R example

- **Population:** sequence of whole numbers from 0 up to 100.
- **Cases:** integers from 0 up to 100.
- Mean of the population (parameter) = 50.
- **Sample:** 10 randomly drawn numbers from the population.
- Mean of the sample (statistic).

Sampling error

- Sampling error: the difference between the values of sample statistic and population parameter.
- Sampling error is caused by random selection of the sample.
- There is always sampling error since sample does not include all members of population.

Sampling

- Simple random sample
- Stratified random sample
- Cluster random sample

Non-sampling errors

- Measurement error: the difference between measured value of a quantity and its true value.
 - Systematic
 - Random

Non-sampling errors

• Response bias

- Question wording
- Social acceptability
- Response set

Non-response bias

- Refusal to participate in survey
- Refusal to respond a specific question
- Missing data

R: advantages

- Freeware
- Open source
- Worldwide active community
- Flexible and developed

R community / sources

- There is huge number of free resources
- R package / library manuals
- R site: <u>http://cran.r-project.org</u>
- Community forums:
 - <u>http://stackoverflow.com</u>
 - <u>http://www.statmethods.net</u>
 - <u>http://www.r-bloggers.com</u>
- Youtube videos: <u>https://www.youtube.com/watch?v=qHfSTRNg6jE</u>
- Googling (often fastest)

R libraries / packages

- Library / package:
 - Can be though of as an extension that adds new functionality.
 - Libraries must be installed (just before the first use) and loaded.
 - Sometimes there can be conflicts among libraries (e.g. different functions with same names) – we can unload them.
 - Often there are dependencies among libraries (some libraries use functions from other libraries).

R: disadvantages

- Not as easily accessible as "clicking-programs"
- Data preparation could be demanding
- Could be slower for large datasets

R language

- object-oriented programming
 - object: instance of certain data class that can be manipulated according set of procedures (methods)
- functional-oriented programming
 - function: relation that associates input(s) with output(s)
- We can define certain objects and apply functions on them and vice versa.

Data types

- Numeric: continuous numeric data (-1, 0.5, 10.49)
- Integer: discrete numeric data (-1, 0, 1, ...)
- Character: string values = "anythingwithinquotes"
- Logical: output of logical operation
 5 > 10 = FALSE
 - 5 < 7 | 7 > 10 = **TRUE**

Data types: factor

- Factor: variable that take limited number of discrete values levels (categorical variable).
- Factor function converts vector of values into vector of **factor values** (always have form of **character**).
- Factors can be unordered (nominal variable) or ordered (ordinal variable).
 - > data = c(1,2,2,3,1,2,3,3,1,2,3,3,1)
 - > fdata = factor(data)
 - > fdata

[1] 1 2 2 3 1 2 3 3 1 2 3 3 1

Levels: 1 2 3

R: object and function

• Object:

vector <- c(1,2,3,4,5)

• Function:

fun <- function(x) { x^2 }</pre>

• Output:

fun(vector) = 1, 4, 9, 16, 25

• Nesting:

fun_2 <- function(x) { fun(x) + 1 }</pre>

R functions

- *word()* indicates function
- mean(vector)
- function(argument_1, argument_2, ...)
- sample(0:100, 10, rep=FALSE)
- basic functions (part of the basic R package)
- package functions (part of the particular package)
- user functions (user-defined functions)

R objects

- Vector
 - Sequence (1-dimensional) of elements of same data type
- Matrix
 - 2-dimensional rectangular collection of elements of same data type
 - Array: n-dimensional matrix.
- List

- Vector that can contain elements of **different data types**

Data frame

- List of vectors of equal length
- Table data

http://www.r-tutor.com/

> c(TRUE, FALSE, TRUE, FALSE, FALSE) [1] TRUE FALSE TRUE FALSE FALSE

> c("aa", "bb", "cc", "dd", "ee")
[1] "aa" "bb" "cc" "dd" "ee"

> c(2, 3, 5) [1] 2 3 5

Vector

Matrix

 $\begin{bmatrix} 1,1 \end{bmatrix} \begin{bmatrix} 2,2 \end{bmatrix} \begin{bmatrix} 3,3 \end{bmatrix}$ $\begin{bmatrix} 1,1 \end{bmatrix} \begin{bmatrix} 2 & 4 & 3 \end{bmatrix}$ $\begin{bmatrix} 2,1 \end{bmatrix} \begin{bmatrix} 1 & 5 & 7 \end{bmatrix}$

List

```
> n = c(2, 3, 5)
> s = c("aa", "bb", "cc", "dd", "ee")
> b = c(TRUE, FALSE, TRUE, FALSE, FALSE)
> x = list(n, s, b, 3)  # x contains copies of n, s, b
```

```
> x[c(2, 4)]
[[1]]
[1] "aa" "bb" "cc" "dd" "ee"
[[2]]
[1] 3
```

Data frame

> mtcars

	mpg	cyl	disp	hp	drat	wt	• • •			
Mazda RX4	21.0	6	160	110	3.90	2.62				
Mazda RX4 Wag	21.0	6	160	110	3.90	2.88				
Datsun 710	22.8	4	108	93	3.85	2.32				