Descriptive statistics

Petr Ocelík

ESS401 Social Science Methodology

13th October 2015

Outline

- Measures of central tendency, position, and variability.
- Graphic displays of descriptive statistics.
- R introduction: cont'd.

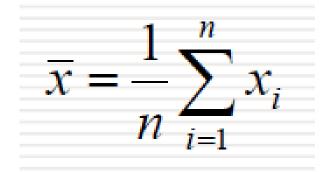
Descriptive statistics

- The purpose is to **summarize data**.
- Quantitative variables have two key features:
 The center of the data a typical observation.
 - The variability of the data the spread around the center.

Notation

	Mean	Standard Deviation	Variance
Population	μ	σ	σ^2
Sample	\overline{x}	S	s ²

- \sum = "the sum of ..."
- *n* = number of pieces of data (population)
- n-1 = number of pieces of data (sample)
- \overline{x} = mean (average) of data
- x_i = each of the values in the data


 $x_1, x_2, x_3, x_4, \dots x_n$ (as *i* goes from 1 to *n*)

Central tendency

- The statistics that describe the center of a frequency distribution for a quantitative variable.
- Shows a **typical** observation/case.
- Most common measures: mean, mode, and median.

Central tendency: mean

• Arithmetic mean

- Properties:
 - Center of gravity of a distribution.
 - Can be used only for metric scales.
 - Strongly influenced by outliers.

Central tendency: mode

- Value that **occurs most frequently** in the sample.
- Applicable at all levels of measurement.
- Used mainly for highly discrete variables such as categorical data.
- {"catholic", "Muslim", "Hindu", "catholic", "catholic", "Muslim", "catholic", "catholic"}
- $-\{1, 2, 3, 1, 1, 2, 1, 1\}$
- {"agree", "agree", "disagree", "agree", "neutral", "disagree", "disagree", "disagree", "agree"}
- {1, 1, -1, 1, 0, -1, -1, 1}
- Years of education.

Central tendency: median

- Observation that is in the middle of the ordered sample (between 50th bottom and 50th upper percentile).
- Splits data into two parts with equal # of observations.
- For even sized samples: average value of the two middle observations.
- Applicable at least at ordinal level.

Central tendency: median

- Identification of median: (n + 1) / 2;
 n = # of observations in the data
- Odd numbered n: {1, 1, 2, 2, 3, 3, 5, 6, 6, 6, 7, 10, 39}
 Median = (13 + 1)/2 = 7th position = 5

- Even numbered *n*: {1, 1, 2, 2, 3, **3, 5**, 6, 6, 6, 7, 10}
- Median = $(12 + 1)/2 = 6.5^{\text{th}}$ position = $(6^{\text{th}} + 7^{\text{th}} \text{ position})/2 = (3 + 5)/2 = 4$

Central tendency: median

Set 1	8	9	10	11	12
Set 2	8	9	10	11	100
Set 3	0	9	10	10	10
Set 4	8	9	10	100	100

Finlan & Agresti 2009: 43

Central tendency

- Mode
- Median
- Mean
- {1, 1, 2, 2, 3, 3, 5, 6, 6, 6, 7, 10, 39}

Central tendency

- Mode
- Median
- Mean
- {1, 1, 2, 2, 3, 3, **5**, **6**, **6**, **7**, 10, 39}

Position

- The measures of central tendency are not sufficient for description of data for a quantitative variable.
- Does not describe the **spread of the data**.

• **Position measures:** describe the point at which a given percentage of the data fall below or above that point.

Position: percentile

Percentile. The *pth* percentile is the point such that *p%* of the observations fall below that point and (and 100 - p)% fall above it.

- E.g. 89th percentile = indicates a point where 89% of observations lie below and 11% lie above it.
- Median is a 50th percentile.
- "Standard" percentiles: (25, 50, 75), or (10, 25, 50, 75, 90).

Position: IQR

Interquartile range

- Difference between the values of observations at
 75% (upper quartile) and 25% (lower quartile).
- Shows spread of middle half of the observations.

{1, 1, 2, 2, 3, 3, 5, 6, 6, 6, 7, 10, 39} Median = $(13 + 1)/2 = 7^{\text{th}}$ observation = 5 Q1 = $(6 + 1)/2 = 3.5^{\text{th}}$ observation = (2 + 2)/2 = 2Q2 = $(6 + 1)/2 = 3.5^{\text{th}}$ observation = (6 + 7)/2 = 6.5IQR = Q3 - Q1 IQR = 6.5 - 2 = 4.5

Position: quartile

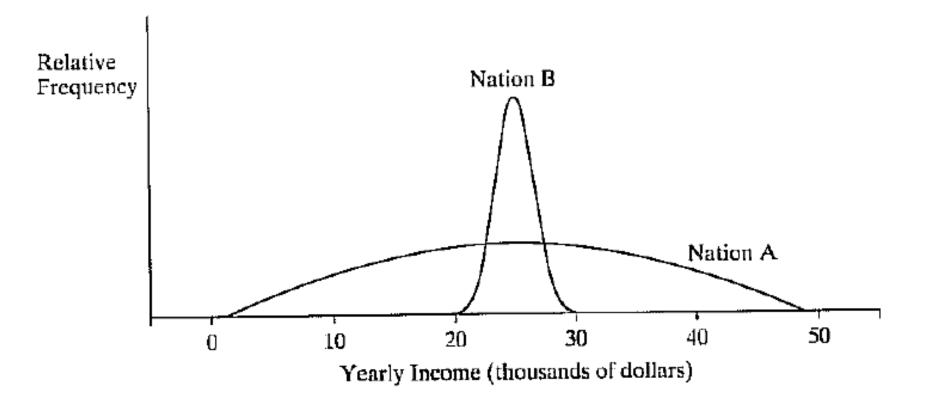
- Quartile
 - Values of observations at 25% (Q1), 50% (Q2), and
 75% (Q3) of a distribution.

$$\{1, 1, 2, 2, 3, 3, 5, 6, 6, 6, 7, 10, 39\}$$

Q1 (25 %) = 2
Q2 (50 %) = 5
Q3 (75 %) = 6.5

Measures of center and position: R commands

mean(data)

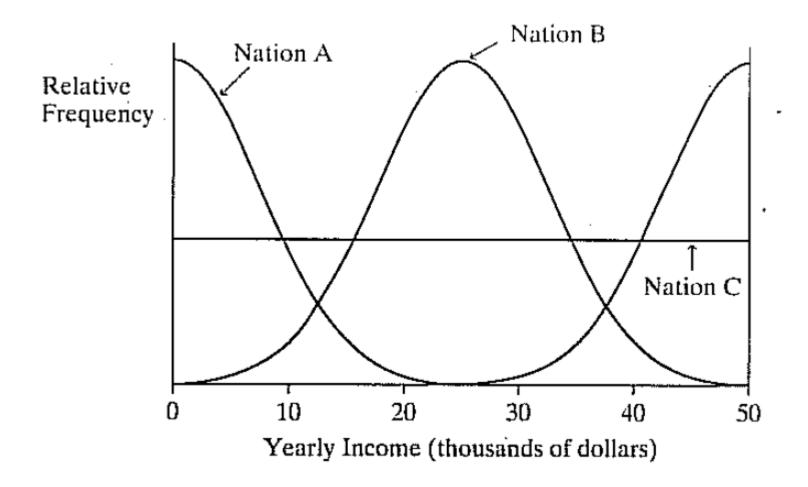

mode does not have standard R function
median(data)
range(data)
IQR(data, na.rm=F)
quantile(data, c(0.25, 0.5, 0.75))

Variability

- The measures of central tendency are not sufficient for description of data for a quantitative variable.
- Does not describe the **spread of the data**.

- Variability measures: describe the deviations of the data from a measure of center (such as mean).
 - With exception of a range.

Variability


Finlan & Agresti 2009: 46

Variability: range

- **Range:** difference between largest and smallest value.
- The simplest measure of variability.
- Does not describe deviations from the mean.

{**1**, 1, 2, 2, 3, 3, 5, 6, 6, 6, 7, 10, **39**} Range = 39 – 1 = 38

Variability

Finlan & Agresti 2009: 47

Variability: deviation

Deviation

Difference between value of observation and mean.

$$\frac{(x_i - \mu)}{(x_i - \overline{x})}$$

Variability: deviation

- Deviation
 - Difference between value of observation and mean.
 - Positive deviation: observation value > mean
 - Negative deviation: observation value < mean</p>
 - **Zero** deviation: observation value = mean.
 - Since sum of deviations = 0, the absolute values or the squares are used in measures that use deviations.

Variability: variance

• Mean is usually not very indicative for data dispersion:

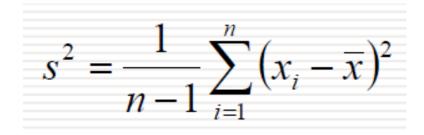
{4, 4, 6, 6}; mean = 5; s^2 = 1.33 {0, 0, 10, 10}; mean = 5; s^2 = 33.33

Therefore we need other measures such as variance (s^2).

Variability: variance

• Variance

- Squared mean deviation from mean.

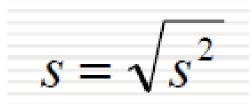

$$\frac{1}{n}\sum_{i=1}^{n}(x_i-\mu)^2$$

population = {1, 3, 6, 10} $\frac{1}{4} * ((1 - 5)^2 + (3 - 5)^2 + (6 - 5)^2 + (10 - 5)^2)$ $\frac{1}{4} * ((-4)^2 + (-2)^2 + 1^2 + 5^2)$ $\frac{1}{4} * (16 + 4 + 1 + 25) = \frac{1}{4} * 46 = 11.5$

Variability: variance

• Variance

- Squared approximate mean deviation from mean.



sample = $\{1, 3, 6, 10\}$ 1/3 * $((1 - 5)^2 + (3 - 5)^2 + (6 - 5)^2 + (10 - 5)^2)$ 1/3 * $((-4)^2 + (-2)^2 + 1^2 + 5^2)$ 1/3 * (16 + 4 + 1 + 25) = 1/3 * 46 = 15.33

Variability: standard deviation

Standard deviation

– Measure of average deviation. S =

- Typical distance of observation from the mean.
- Sensitive to outliers.

```
sample = \{1, 3, 6, 10\}
s^2 = 15.33
s = sqrt(15.33) = 3.92
```

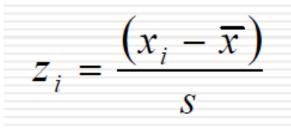
Variability: standard deviation

- Properties
 - *s >=* 0
 - -s = 0 only when all observations have same value.
 - The greater variability about mean, the larger s.
 - If data are rescaled, the s is rescaled as well.
 - E.g. if we rescale s of annual income in \$ = 34,000 to thousands of \$ = 34, the s also changes by factor of 100 from 11,800 to 11.8.

Variability: standard deviation

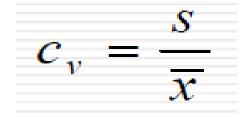
Interpretation

- Scale dependent.
- E.g. assume that average amount of points received in this course is 50 points graded on a scale 0 to 60.
- s = 0 extremely unlikely (no differences in performance).
- As well as s > 20 (huge differences in performance).


Variability: dimensionless measures

• Coefficient of variability

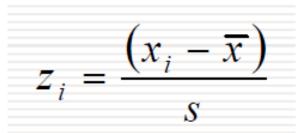
- Allows comparisons across different distributions (units, means, ...).
- Applicable only to ratio scale.


• Z-score

- Standardized measure of variability.
- Express variation in standard deviations instead of original metric.

Variability: dimensionless measures

• Coefficient of variability

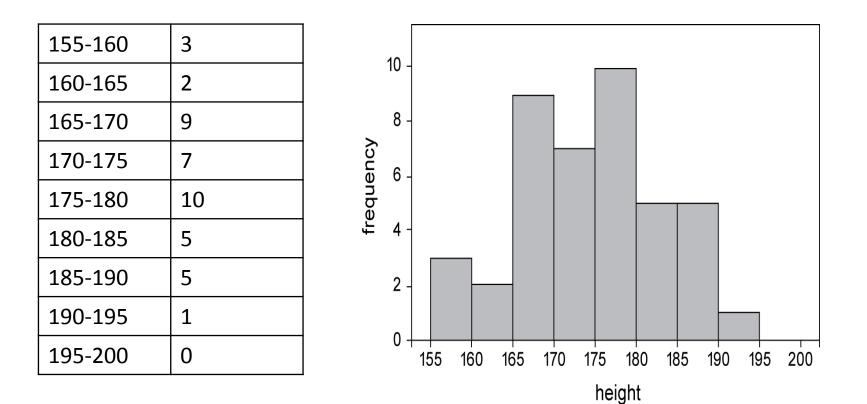


- Proportion of std. dev. on the mean value.
- Allows to compare variability of different data sets.

mean = 80, std. dev. = 12, CV = 12 / 80 = 0.15
mean = 50, std. dev. = 20, CV = 20 / 50 = 0.40

Variability: dimensionless measures

• Z-score


- Shows a distance of an observation in # of standard deviations from the mean.
- For bell-shaped distributions very unlikely to have values larger than 3 std. deviations from the mean.
- Data = {1, 3, 6, 10}; mean = 5; s = 3.92
- Z-score for 2nd case: (3 5) / 3.92 = 0.51
- -0.51 * 3.92 = 1.99; 1.99 + 3 ~ 5
- Z-scores = (-1.02, -0.51, 0.26, 1.28)

Measures of variability: R commands

```
range(data)
var(data)
sd(data)
scale(data) = z-scores
sd(data) / mean(data) = coefficient of variability
```

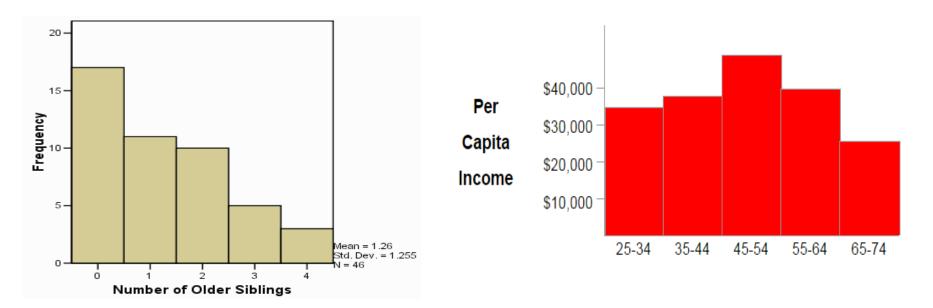
Frequency distribution

• Frequency distribution: table or visual display of the **frequency** of variable values.

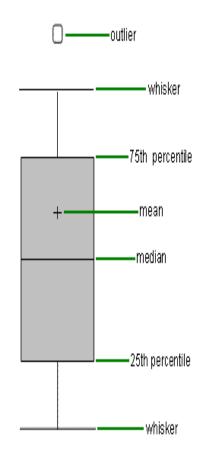

Frequency distribution

- Absolute frequency: # of the observations of a category.
- **Relative frequency:** proportion of the observations of a category over total # of observations.
- **Percentage:** proportion multiplied by 100.

155-160	3	0.07	7%
160-165	2	0.05	5%
165-170	9	0.21	21%
170-175	7	0.17	17%
175-180	10	0.24	24%
180-185	5	0.12	12%
185-190	5	0.12	12%
190-195	1	0.02	2%
195-200	0	0	0%


Bar chart

- The columns are positioned over values of categorical variable (U.S. states).
- The height of the column indicates the value of the variable (per capita income).


Histogram

- The columns are positioned over a values of **quantitative variable.**
- The column label can be single value or range of values.
- The height of the column indicates the value of the variable.

Boxplot

- Splits data into quartiles (position measure).
- Box: from Q1 to Q3.
- Median (Q2): line within the box.
- Whiskers: indicate the range from:
 - Q1 to smallest non-outlier.
 - Q3 to largest non-outlier.
- Outlier > 1.5 * (Q3 Q1) from Q1 or Q3
- Outliers are represented separately.

