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Correlation

• Pearson’s product-moment correlation 
coefficient (r). 

• Correlation measures the strength of the 
relationship between two variables. 

• Ranges between -1 (perfect negative corr) and 
1 (perfect positive corr). 

• 0 indicates no systematic linear relationship 
between variables. 

• Value does not depend on variables’ units. 

• It is a sample statistic. 





Correlation

• Assumptions and limitations:

– Normal distribution of X and Y

– Linear relationship between X and Y

– Homoscedasticity

– Sensitive to outliers



The standard normal distribution









Correlation

• Normal distribution of X and Y
• Histograms and descriptive statistics

• Linear relationship between X and Y
• Scatterplot

• Histogram of residuals

• Homoscedasticity
• Same as with linear relationship 



Correlation vs. causation

Correlation does not imply causation.

• Correlation is necessary but not sufficient 
condition for causation. 



Correlation vs. causation

General patterns:
– X causes Y  and Y causes X (bidirectional causation):

• Democracies trade more, therefore trade increases 
democracy. 

– Y causes X (reverse causation):
• The more firemen is sent to a fire, the more damage is done.  

– X and Y are consequences of common cause:
• There is a correlation between ice cream consumption and 

street criminality (both more prevalent during summer).

– There is no connection between X and Y (coincidence):
• Number of meaningless “funny correlations”. 











Correlation: example

• Assume we have 2 variables: X and Y.

• What is correlation (r) of these two variables? 

X Y

1 0

2 1

1 4

6 8

7 4



• Correlation = covariance / combined total variance.



• First: we calculate variance of variables.

• mean(x) = 3.4; mean(y) = 3.4

• R command = var() 

• s^2(X) = 33.2 / 4 = 8.3; s^2(Y) = 39.2 / 4 = 9.8 

X (x – m) dev. dev.^2

1 (1 – 3.4) -2.4 5.76

2 (2 – 3.4) -1.4 1.96

1 (1 – 3.4) -2.4 5.76

6 (6 – 3.4) 2.6 6.76

7 (7 – 3.4) 3.6 12.96

sum 0 0 33.2

Y (y – m) dev. dev.^2

0 (0 – 3.4) -3.4 11.56

1 (1 – 3.4) -2.4 5.76

4 (4 – 3.4) 0.6 0.36

8 (8 – 3.4) 4.6 21.16

4 (4 – 3.4) 0.6 0.36

sum 0 0 39.2



• Second: we calculate covariance of variables.

• Covariance is a sum of deviation products of 
two variables divided by n–1. 

cov(X, Y) = 24.2 / 4 = 6.05; R command = cov()

(x – m) (y – m) cross-prod.

(1 – 3.4) (0 – 3.4) 8.16

(2 – 3.4) (1 – 3.4) 3.36

(1 – 3.4) (4 – 3.4) -1.44

(6 – 3.4) (8 – 3.4) 11.96

(7 – 3.4) (4 – 3.4) 2.16

0 0 24.2



• Third: we divide X, Y covariance by square 
rooted product of X and Y variances.

– r = cov(X, Y) / sqrt(var(X) * var(Y))

– r = 6.05 / sqrt(8.3 * 9.8) = 0.67

– R command: cor()



• Correlation = covariance / combined total variance.



(Linear) regression

• Regression is a statistical method used to 
predict scores on an outcome variable based 
on scores of one ore more predictor variables.

• Linear regression: models linear relationship. 

• Bivariate (simple) linear regression: uses only 
one predictor variable. 

• Multivariate (multiple) linear regression: uses 
more than one predictor variable. 



Regression: terminology / notation

X Y

cause effect

independent variable dependent variable

predictor variable outcome variable

explanatory variable response variable

α, a, b, β0, B0, m β, B, b ε, e

intercept slope error / 
residual

constant coefficient

alpha Beta



Linear regression: assumptions

• Independence of observations (random sampling). 

• Normal distribution of Y. 

• Linear relationship between X and Y. 

• Normal distribution of residuals. 

• Homoscedasticity. 

• Independence of residuals (over time). 

• Applicable for continuous variables. 

• Sensitive to outliers. 



Normal distribution of residuals

Draper & Smith 1998



Independence of residuals

OriginLab 2015



Linear relationship

• A relationship where two variables are related in 
the first degree.

• Meaning the power of variables is 1. 
• Linear relationship is represented by formula:
• Y = a + bX
• Y = β0 + β1X + ε ; population regression function
• Y = a + bX + e ; sample regression function
• Y’ = 0.75 + 0.425*X + 2.791; sample regression line

• Linear relationship is graphically represented by 
straight line.  



Fitting a straight line



Fitting a straight line



Fitting a straight line



Fitting a straight line



Ordinary least squares

• Ordinary least squares (OLS): estimates parameters 
(intercept and slope) in a linear regression model.

• Minimizes squared vertical distances between the 
observations (Y) and the straight line (predicted value 
of Y = Y’). 

• Residual = (Y - Y’) 

• ∑ (Y - Y’) = 0 ; ∑ (Y - Y’)^2 >= 0

• OLS: Y’ = min ∑ (Y - Y’)^2



Ordinary least squares



Ordinary least squares

• Comparison of mean and OLS estimation.



Linear regression: example

• Assume we have two variables: X and Y.

• To what extent X explains Y? 

X Y

1 1

2 2

3 1.3

4 3.75

5 2.25



Linear regression: example

• Statistics for calculating regression line:

• The slope (b): r(X, Y) * s(Y) / s(X)

• The intercept (a): m(Y) – b*m(X)

• b = 0.627 * 1.072 / 1.581 = 0.425

• a = 2.06 – 0.425 * 3 = 0.75

m(X) m(Y) s(X) s(Y) r(X, Y)

3 2.06 1.581 1.072 0.627



Linear regression: example

• Fitting a straight line by using OLS.



Total / unexplained / explained variation



Linear regression: example

• Residual: difference between observed values 
Y and predicted values Y’ . 

X Y Y’ Y – Y’ (Y – Y’)^2

1 1 1.21 -0.210 0.044

2 2 1.653 0.365 0.133

3 1.3 2.060 -0.760 0.578

4 3.75 2.485 1.265 1.600

5 2.25 2.910 -0.660 0.436

sum 0 2.791



Linear regression: example

• Model is a representation of the relationship 
between variables. Linear regression model 
predicts (models) values of Y based on values of X. 

• Model is represented by formula in a form of 
linear equation: Y’ = a + bX + e.

• Model in example: Y’ = 0.75 + 0.425*X + 2.791.

• R command: lm()



Linear regression: interpretation

• Model in example: Y = 0.78 + 0.425*X

• Intercept: value of Y when value of X = 0.

• Slope: change in Y when X increases by 1 unit.

• Error: unexplained variance of Y.

• What is the Y’ for X = 2?

• Y’ = 0.75 + (0.425)*2 

• Y’ = 0.75 + 0.850 = 1.6



Coefficient of determination

• CoD (R^2) indicates proportion of Y explained variation 
(SSM) to Y total variation (SST) = SSM / SST.

• SST = SSM (explained var.) + SSR (unexplained var.)



Coefficient of determination

• Unexplained variation = difference between observed 
values of Y and predicted values of Y’ (regression line) = 
sum of squares of residuals (SSR).  

• Explained variation = difference between predicted values 
of Y’ and mean of Y = sum of squares of model (SSM).

• Total variation = difference between observed values of Y 
and mean of Y = SSE + SSR = sum of squares of total 
variation (SST).

• Explained variation (%) = SSM / SST =                             
coefficient of determination = R^2



Coefficient of determination: example

• SST = SSM + SSR = 1.81 + 2.791 = 4.59

• R^2 = SSM / SST = 1.81 / 4.59 = 0.39 = 39 %

Y’ mean Y (Y’ – mY) (Y’ – mY)^2

1.210 2.06 -0.850 0.72

1.653 2.06 -0.425 0.18

2.060 2.06 0 0

2.485 2.06 0.425 0.18

2.910 2.06 0.850 0.72

sum (SSM) 1.81

Y Y’ Y – Y’ (Y – Y’)^2

1 1.210 -0.210 0.044

2 1.653 0.365 0.133

1.3 2.060 -0.760 0.578

3.75 2.485 1.265 1.600

2.25 2.910 -0.660 0.436

sum (SSR) 2.791


