Comparative case studies

Jan Osička

Lecture outline

- Case selection process
- Comparative case study
- Exercises

Case selection

- Starts with definition of population
 - Am I interested in particular case? Why? What is it that I want to study? What is this case a case of?
 - Theory building or theory testing?
 - Restricting the population is crucial for inference we are about to make.
 - Case boundaries: apples or fruit?
 - Temporal boundaries: what makes different periods of time different?

Exercise I

What was the second war in Iraq a case of?

Case selection

Theory building (Gerring 2007)

Diverse	Cases (two or more) illuminate the full range of variation on X_1 , Y, or X_1/Y .
Extreme	Cases (one or more) exemplify extreme or unusual values on X ₁ or Y.
Deviant	Cases (one or more) deviate from some cross-case relationship.
Most- similar	Cases (two or more) are similar on specified variables other than X ₁ and/or Y.
Most- different	Cases (two or more) are different on specified variables other than X ₁ and Y.

Exercise 2

Suggest at least one case for each of outlined theory building case selection techniques.

Theory testing (Gerring 2007)

Influential	Cases (one or more) with influential configurations of the independent variables.
Crucial	Cases (one or more) are most- or least likely to exhibit a given outcome.
Pathway	Cases (one or more) where X ₁ , and not X ₂ , is likely to have caused a positive outcome.
Typical	Cases (one or more) are typical examples of some cross-case relationship.
Diverse	Cases (two or more) illuminate the full range of variation on X ₁ , Y, or X ₁ /Y.
Most-similar	Cases (two or more) are similar on specified variables other than X ₁ and/or Y.
Most- different	Cases (two or more) are different on specified variables other than X ₁ and Y.

Suggest at least one case for each of outlined theory testing case selection techniques.

Comparative CS

Aims

- Simultaneous work with theory
 - Generating, testing, illustrating on two or more cases
- Macro-context analysis
 - New fundamental questions arising from comparisons
- Within-population analysis
 - Logic of understanding

Many variables, small N

- Social reality is complex
- Equifinality is inherent
- How to differentiate among the effects of particular variables?
- → Reducing variables (aggregation, hierarchy)
- \rightarrow Adding cases

Comparability

- Cases must be comparable for a comparative CS to be valid.
- Comparability: majority of independent variables (X) show similar values.
- Achieving comparability
 - Geographical simply more units
 - Diachronical same unit in more time periods

Exercise 1

Suggest comparable pair of cases.

Mill's methods

Elimination methods of Agreement x Difference

Agr.	X1	X2	X3	X3	X4	Y
Case 1	+	-	+	-	+	+
Case 2	+	+	-	+	-	+

Dif.	X1	X2	X3	X3	X4	Y
Case 1	+	+	+	+	+	+
Case 2	-	+	+	+	+	-

Exercise 2

Suggest examples of two cases based on (a) method of agreement, (b) method of difference