Study material. Do not distribute

Chapter 4
Simple Functions

In previous chapters, we demonstrated how to enter data; read data from a
spreadsheet, ascii file, or a database; and extract subsets of data. In this chapter,
we discuss applying some simple functions to the data, such as the mean or the
mean of a single data subset. These are functions that may be useful; however,
they are not the tools that will convince you to become an R user. Use them
when it is convenient. Upon first reading of the book, you may skip this chapter.

4.1 The tapply Function

R provides functions for calculating the mean, length, standard deviation,
minimum, maximum, variance, and any other function of a single variable,
multiple variables, or on subsets of observations. For illustration, we use a
vegetation dataset. Sikkink et al. (2007) analysed grassland data from a
monitoring program conducted in two temperate communities, Yellowstone
National Park and the National Bison Range, USA. The aim of the study was
to determine whether the biodiversity of these bunchgrass communities chan-
ged over time, and, if so, whether the changes in biodiversity related to
particular environmental factors. For our purposes we use only the Yellow-
stone National Park data. To quantify biodiversity, the researchers calculated
species richness, defined as the number of different species per site. The study
identified about 90 species. The data were measured in 8 transects, with each
transect being assessed at intervals of 4-10 years, for a total of 58
observations.

The following code can be used to import the data and gain basic informa-
tion on the variables.

> setwd ("C:/RBook/")

> Veg <- read.table(file="VegetationZ2.txt",
header= TRUE)

> names (Veg)

A.F. Zuur et al., A Beginner’s Guide to R, Use R, 77
DOI 10.1007/978-0-387-93837-0_4, © Springer Science+Business Media, LLC 2009

Study material. Do not distribute

78 4 Simple Functions
[1] "TransectName" "Samples” "Transect”
[4] "Time" "R" "ROCK"
[7}] "LITTER" "MLY "BARESOIL™
[10] "FallPrec™ "SprPrec” "SumPrec”
[13] "WinPrec" "FallTmax" "SprTmax”
[16] "SumTmax" "WinTmax" "FallTmin®
[19] "SprTmin" "SumTmin" "WinTmin"
[22] "PCTSAND" "PCTSILT" "PCTOxrgC™
> str(Veg)
‘data. frame’ : 58 obs. of 24 variables:
$ TransectName: Factor w/ 58 levels
S Samples :int 12 345678910
$ Transect :int 1111111222
$ Time : int 1958 1962 1967 1974 1981 199%4...
$ R : int 8 6 8 8 10 7 6 5 8 6
S ROCK : num 27 26 30 18 23 26 39 25 24 21
$ LITTER : num 30 20 24 35 22 26 19 26 24 16

<Cut to reduce space>

The data are stored in the ascii file “Vegetation2.txt.” Once the read.table
function has been executed, we need to ensure that richness is indeed a numerical
vector or integer. If, for some reason, R imports richness as a factor (e.g., because
there is an alphanumerical in the column, or there are problems with the decimal
separator), functions such as mean, sd, and the like will give an error message'.

4.1.1 Calculating the Mean Per Transect

One of the first things we would like to know is whether the mean richness per
transect differs. The code below calculates the mean richness, as well as mean
richness for each transect (see Chapter 3 for selecting subsets of data):

> m <- mean (VegSR)

> mi<- mean (VegSR [Veg$Transect == 1])
> m2<- mean (VegSR [Veg$Transect == 2])
> m3<- mean (VegSR [VegSTransect == 3])

" If you import data that are decimal comma separated with the default settings (i.e., with
decimal point separation) or vice versa, R will see all variables as factors, and the strcom-
mand will tell you so. Hence, to check that data were imported correctly, we recommend
always using the str command on the imported data frame immediately after importing the
data.

4.1 The tapply Function 79
> m4<- mean (Veg$R [VegSTransect == 4])
> m5<- mean (VegSR [VegSTransect == 5])
> mé6<- mean (Veg$R [Veg$Transect == 6])
> m7<- mean (VegSR [VegSTransect == 7])
> m8<- mean (Veg$SR [VegSTransect == 8])
> c(m, ml, m2, mB, m4,;}m5, mé6, m7, m8)
&

[1] 9.965517 7.571429 6.142857 10.375000 9.250000
[6] 12.375000 11500000 10.500000 11.833333

The variable m contains the mean richness of all 8 transects, and m1 through
m8 show the mean richness values per transect. Note that the mean command is
applied to Veg $R, which is a vector of data. It is not a matrix; hence there is no
need for a comma between the square brackets.

4.1.2 Calculating the Mean Per Transect More Efficiently
It is cumbersome to type eight commands to calculate the mean value per
transect. The R function tapply performs the same operation as the code

above (for m1 through m8), but with a single line of code:

> tapply (VegSR, VegSTransect, mean)

1 2 3 4 5
7.571429 6.142857 10.375000 9.250000 12.375000
6 7 8

11.500000 10.500000 11.833333

You can also run this code as

> tapply (X = VegS$SR, INDEX = VegSTransect, FUN = mean)

The tapply function splits the data of the first variable (R), based on the levels
of the second variable (Transect). To each subgroup of data, it applies a func-
tion, in this case the mean, but we can also use the standard deviation (function
sd), variance (function var), length (function length), and so on. The following
lines of code calculate some of these functions for the vegetation data.

> Me <- tapply(VegSR, VegSTransect, mean)
> Sd <~ tapply(VegSR, VegSTransect, sd)
> Le <- tapply(VegSR, VegSTransect, length)
> cbind(Me, Sd, Le)

Me sd Le
1 7.571429 1.3972763 7
2 6.142857 0.8997354 7

8

3 10.375000 3.5831949

Study material. Do not distribute 4 Simple Functions

4 9.250000 2.3145502
5 12.375000 2.1339099
6 11.500000 2.2677868
7 10.500000 3.1464265
8 11.833333 2.7141604

o Oy © w ©

Each row in the output gives the mean richness, standard deviation, and
number of observations per transect. In a later chapter we discuss graphic tools
to visualise these values.

4.2 The sapply and lapply Functions

To calculate the mean, minimum, maximum, standard deviation, and length of
the full series, we still need to use mean (Veg$R), min (Veg$R), max (Vegs$R),
sd (Veg$R), and length (Veg$R). This is laborious if we wish to calculate the
mean of a large number of variables such as all the numerical variables of
the vegetation data. We specifically say “numerical” as one cannot calculate
the mean of a factor. There are 20 numerical variables in the vegetation dataset,
columns 5-25 of the data frame Veg. However, we do not need to type in the
mean command 20 times. R provides other functions similar to the tapply to
address this situation: the 1apply and the sapply. The use of sapply and its
output is given below:

> sapply(Veg[, 5:9], FUN= mean)

R ROCK LITTER ML BARESOIL
9.965517 20.991379 22.853448 1.086207 17.594828

To save space, we only present the results of the first five variables. It is
important to realise that tapply calculates the mean (or any other function)
for subsets of observations of a variable, whereas lapply and sapply calcu-
late the mean (or any other function) of one or more variables, using all
observations.

The word FUN stands for function, and must be written in capitals. Instead
of the mean, you can use any other function as an argument for FUN, and you
can write your own functions. So what is the difference between sapply and
lapply? The major differences lie in the presentation of output, as can be seen
in the following example.

> lapply (Veg[, 5:9], FUN= mean)
SR

[1]1 9.965517

SROCK

[1] 20.99138

4.3 The summary Function 81

SLITTER
[1] 22.85345
SML
[1] 1.086207
SBARESOIL
[1] 17.59483 .
o ey
The output of lapply is presented as a list, whereas sapply gives it as a
vector. The choice depénds on the format in which you would like the output.
The variable that contains the data in lapply and sapply needs to be a
data frame. This will not work:

> sapply (cbind (VegR, VegROCK, VegSLITTER, VegSML,
Veg$BARESCIL), FUN = mean)

It will produce one long vector of data, because the output of the cbind
command is not a data frame. It can easily be changed to a data frame:

> sapply (data. frame (cbind (VegSR, VegS$SROCK, VegSLITTER,
VegsML, VegSBARESOIL)), FUN = mean)

X1 X2 X3 X4 X5
9.965517 20.991379 22.853448 1.086207 17.594828

Note that we have lost the variable labels. To avoid this, make a proper data
frame (Chapter 2) before running the sapply function. Alternatively, use the
colnames function after combining the data with the cbind function.

Do Exercise 1 in Section 4.6. This is an exercise in the use of the
tapply, sapply, and lapply functions with a temperature
dataset.

4.3 The summary Function

Another function that gives basic information on variables is the summary
command. The argument can be a variable, the output from a cbind com-
mand, or a data frame. It is run by the following commands.

> Z <-cbind(Veg$R, VegSROCK, VegSLITTER)
> colnames(Z) <- c¢("R", "ROCK", "LITTER")
> summary (Z)

Study material. Do not distribute 4 Simple Functions

R ROCK LITTER
Min. : 5.000 Min. : 0.00 Min. : 5.00
1st Qu. : 8.000 1st Qu. : 7.25 1st Qu. :17.00
Median :10.000 Median :18.50 Median :23.00

Mean : 9.966 Mean :20.99 Mean :22.85
3rd Qu. :12.000 3rd Qu. :27.00 3rd Qu. :28.75
Max. :18.000 Max. :59.00 Max. :51.00

The summary command gives the minimum, first quartile, median, mean,
third quartile, and maximum value of the variable. An alternative R code gives
the same result:

> summary (Veg[, c("R","ROCK","LITTER") 7)

or

> summary (Veg[, c(5, 6, 7)1)

QOutput is not presented here.

4.4 The table Function

In Exercises 1 and 7 in Section 2.4, we introduced the deer data from Vicente
et al. (2006). The data were from multiple farms, months, years, and sexes. One
of the aims of the study was to find a relationship between length of the animal
and the number of E. cervi parasites. It may be the case that this relationship
changes with respect to sex, year, month, farm, or even year and month. To test
this, one needs to include interactions in the statistical models. However,
problems may be encountered if there are no sampled females in some years,
or if some farms were not sampled in every year. The table function can be
used to learn how many animals per farm were sampled, as well as the number
of observations per sex and year. The following code imports the data, and
shows the results.

> setwd("c:/RBook/")

> Deer <- read.table(file="Deer.txt", header= TRUE)

> names (Deer)

[1] "Farm” "Month" "Year" "Sex"” "clasl 4"
[6] "LCT" "KFI L "Ecervi " "Tb 114

> str (Deer)

[1] "FParm" "Month™ "Year" "Sex" "clasl_4"
[6] "LCT" "KFI" "ECGIVi" "Tb"

4.4 The table Function 83

> str(Deer)

‘data.frame’ : 1182 obs. of 9 variables:

$ Farm : Factor w/ 27 levels"AL","AU","BA",..: 1...
$ Month : int 10 10 10 10 10 10 10 10 10 10

S Year :int 00 0000 0CO0O0O

$ Sex :dnt 1141111111

S clasl 4 *: int 43 4 4 4 4 4 4 4 ...

$ LCT : num 191 180 192 196 204 190 196 200 19
$'KFI : num 20.4 16.4 15.9 17.3 NA

$ Ecervi :num 0 0 2.38 0 0 0 1.21 0 0.8 0

$ Tb : int 0 0 0 O NA ONA 1 0O O ..

Farm has been coded as AL, AU, and so on, and is automatically imported
as a factor. The other variables are all vectors of numerical or integer values.
The number of observations per farm is obtained by

> table (DeerSFarm)
AL AU BA BE CB CRC HB LCV LN MAN MB

15 37 98 19 93 16 35 2 34 76 41
MO NC NV PA PN QoM RF RN RO SAL SAU
278 32 35 11 45 75 34 25 44 1 3

SE TI TN VISO VY
26 21 31 15 40

At one farm, 278 animals were sampled and, at others, only one. This dataset
typically requires a mixed effects modelling® approach in which “farm” is used as a
random effect (see Zuur et al., 2009). This method can cope with unbalanced
designs. However, the inclusion of a sex/year interaction term? in such models for
these data will give an error message. This is because both sexes were not measured
in every year, as can be seen from the following contingency table. (The labels 0, 1,
2,3,4,5, and 99 in the horizontal direction refer to 2000, 2001, 2002, 2003, 2004,
2005, and 1999, respectively. In the vertical direction 1 and 2 indicate sex).

> table (DeerSSex, DeerSYear)

0 1 2 3 4 5 99
1 115 85 154 75 78 34 21
2 76 40 197 123 60 35 O

In 1999, animals of only one sex were measured. We recommend always
using the table command before including interactions between two catego-
rical variables in regression type models.

2 A mixed effects model is an extension of linear regression.
? A sex/year interaction term allows the effect of sex to differ over the years.

Study material. Do not distribute 4 Simple Functions

84

___ Do Exercise 2 in Section 4.6. This is an exercise in using the table
function with a temperature dataset.

4.5 Which R Functions Did We Learn?

Table 4.1 shows the R functions that were introduced in this chapter.

Table 4.1 R functions introduced in this chapter

Function Purpose Example

tapply Apply FUN on y for each level of x tapply (v, %, FUN = mean)
sapply Apply FUN on each variable in y sapply (y, FUN = mean)
lapply Apply FUN on each variable in y tapply (y, FUN = mean)

sd Calculate the standard deviation of y sd (y)

length Determine the length of y. length (y)

summary Calculate general information summary (y)

table Calculate a contingency table table (x, y)

4.6 Exercises

Exercise 1. The use of the tapply, sapply, and lapply functions to calculate
mean temperature per month.

The file remperature.xls contains temperature observations made at 31 loca- -
tions along the Dutch coastline. The data were collected and provided by the
Dutch institute RIKZ (under the monitoring program MWTL; Monitoring

Waterstaatkundige Toestand des Lands). Sampling began in 1990, and the final

measurements in the spreadsheet were taken in December 2005, a period of

16 years. Sampling frequency was 0-4 times per month, depending on the season.

Calculate a one-time series of monthly averages using data from all stations.
The end result should be a variable of dimension 16 x 12. Also calculate the
standard deviation and number of observations per month.

Exercise 2. The use of the table function for the temperature data.
Using the data in Exercise 1, determine the number of observations per

station. How many observations were made per year? How many observations

were made at each station per year?

Chapter 5
An Introduction to Basic Plotting Tools

We have demonstrated the use of R tools for importing data, manipulating
data, extracting subsets of data, and making simple calculations, such as mean,
variance, standard deviation, and the like. In this chapter, we introduce basic
graph plotting tools. If you are interested in only simple graphing, this chapter
will suffice; however, to construct more sophisticated graphs, or to add more
complicated embellishments such as tick marks, or specialized fonts and font
sizes, to basic graphs, you will need the more advanced plotting techniques
presented in Chapters 7 and 8.

A discussion of elementary plotting tools may seem out of place at this stage,
rather than being included in the sections on graphing beginning with Chapter 7.
However, when teaching the material presented in this book, we became aware
that, after discussing the relatively pedestrian material of the first four sections,
the course participants were eagerly awaiting the lively, more visual, and easier,
plotting tools. Therefore, we present a first encounter with graphing here, which
allows the presentation of the more complex subjects in the next chapter with the
aid of active tools such as the plot function.

5.1 The plot Function

This section uses the vegetation data introduced in Chapter 4. Recall that these
are grassland data from a monitoring program conducted in two temperate
communities in Yellowstone National Park and the National Bison Range,
USA. To quantify biodiversity, species richness was calculated. In a statistical
analysis, we may want to model richness as a function of BARESOIL (or any of
the other soil and climate variables). Suppose we want to make a plot of species
richness versus the substrate variable “exposed soil,” denoted by BARESOTIL.
The R commands to create such a graph is

> setwd("c:/RBook/")

> Veg <~ read.table(file = "Vegetation2.txt",
header = TRUE)

> plot (Veg$SBARESOIL, VegSR)

A.F. Zuur et al., A Beginner’s Guide to R, Use R, ' 85
DOI 10.1007/978-0-387-93837-0_5, © Springer Science+Business Media, LLC 2009

StUdy material. Do not di§tnm'~l‘$§oduction to Basic Plotting Tools

98
Table 5.1 R functions introduced in this chapter
Function Purpose Example .
— 1t

plot Plots y versus x plot (y, %, xlab="X label",
xlim=c (0, 1), pch=1,
main="Main", ylim=c(0, 2),
ylab="y label", col=1)

lines Adds lines to an existing graph lines(x, y, lwd=3, lty=1,
col=1)

order Determines the order of the data order (x)

loess Applies LOESS smoothing M<-loess(y~=x)

fitted Obtains fitted values fitted (M)

killed along a road in Portugal using generalised additive.mixsed modelling
techniques. In this exercise, we use the plot command to visualise a segment
of the data. Open the file Amphibian_road_Kills.xls, prepare a spreadsheet, and

import the data into R. . . .
The variable, TOT_N, is the number of dead animals at a sampling site,

OLIVE is the number of olive groves at a sampling site, and D Park is the

distance from each sampling point to the nearby natural park. Create a plot of

TOT N versus D_park. Use appropriate labels. Add a smoothing curve. Make
the same plot again, but use points that are proportional to the value of OLIVE
(this may show whether there is an OLIVE effect).

Chapter 6
Loops and Functions

When reading this book for the first time, you may skip this chapter, as building
functions' and programming loops® are probably not among the first R proce-
dures you want to learn, unless these subjects are your prime interests. In
general, people perceive these techniques as difficult, hence the asterisk in the
chapter title. Once mastered, however, these tools can save enormous amounts
of time, especially when executing a large number of similar commands.

6.1 Introduction to Loops

One of R’s more convenient features is the provision for easily making your
own functions. Functions are useful in a variety of scenarios. For example,
suppose you are working with a large number of multivariate datasets, and for
each of them you want to calculate a diversity index. There are many diversity
indices, and new ones appear regularly in the literature. If you are lucky, the
formula for your chosen diversity index has already been programmed by
someone else, and, if you are very lucky, it is available in one of the popular
packages, the software code is well documented, fully tested, and bug free. Butif
you cannot find software code for the chosen diversity index, it is time to
program it yourself!

If you are likely to use a set of calculations more than once, you would be well
advised to present the code in such a way that it can be reused with minimal
typing. Quite often, this brings you into the world of functions and loops (and
conditional statements such as the i £ command).

The example presented below uses a dataset on owls to produce a large
number of graphs. The method involved is repetitive and time consuming,
and a procedure that will do the hard work will be invaluable.

! A function is a collection of codes that performs a specific task.

2 A loop allows the program to repeatedly execute commands. It does this by iteration
(iteration is synonymous with repetition).

A.F. Zuur et al., A Beginner's Guide to R, Use R, 99
DOI 10.1007/978-0-387-93837-0_6, © Springer Science+Business Media, LLC 2009

100 Study material. Do not distribute 6 Loops and Functions

Developing this procedure requires programming and some logical thinking.
You will need to work like an architect who draws up a detailed plan for
building a house. You should definitely not begin entering code for a function
or loop until you have an overall design.

You also must consider how foolproof your function needs to be. Do you
intend to use it only once? Should it work next year on a similar dataset (when
you have forgotten most settings and choices in your function)? Will you share
it with colleagues?

Functions often go hand in hand with loops, as they both help to automate
commands.

Suppose you have 1000 datasets, and for each dataset you need to make a
graph and save it as a jpeg. It would take a great deal of time to do this
manually, and a mechanism that can repeat the same (or similar) commands
any number of times without human intervention would be invaluable. This is
where a loop comes in. A plan for the 1000 datasets could be

For iis from 1 to 1000:
Extract dataset i
Choose appropriate labels for the graph for dataset i
Make a graph for dataset i
Save the graph for dataset i
End of loop

Note that this is not R code. It is merely a schematic overview, which is the
reason that we put the text in a box and did not use the “>” symbol and the
Courier New font that we have been using for R code. The sketch involves a
loop, meaning that, once the code is syntax correct, R executes 1000 iterations,
with the first iteration having i = 1, the second iteration i = 2, and in the final
iteration i = 1000. In each iteration, the commands inside the loop are
executed.

This plan has only four steps, but, if we want to do more with the data, it may
make sense to group certain commands and put them in a function. Suppose we
not only want a graph for each dataset, but also to calculate summary statistics
and apply a multivariate analysis. We will very quickly end up with 10-15
commands inside the loop, and the code becomes difficult to manage. In such
a scenario, using functions can keep the code simple:

For iis from 1 to 1000:
Extract dataset i
Execute a function to calculate summary statistics for dataset i.
Execute a function to make and save a graph for dataset i.
Execute a function that applies multivariate analysis on dataset i.
End of loop

6.2 Loops 101

Each function is a small collection of commands acting on individual datasets.
Each function works independently, unaffected by what happens elsewhere, and
does only what it has been told to do. There is a mechanism in place to allow only
the dataset into the function and to return information for this dataset. Once
programmed, the function should work for any dataset. Program it once, and, if
all goes according to plan, you never have to think about it again.

Just as a house can be @§§i§ned to be built in different ways, your plan can
take more than one approach. In the sketch above, we created a loop for i from
I to 1000, which, in each iteration, extracts data and passes the data to a
furiction. You can also do it the other way around:

Execute a function to calculate summary statistics for each dataset.
Execute a function to make and save a graph for each dataset.
‘Execute a function to apply multivariate analysis on each dataset.

Each function will contain a loop in which the data are extracted and
subjected to a series of relevant commands. The building of the code depends
entirely on personal programming style, length of the code, type of problem,
computing time required, and so on.

Before addressing the creation of functions, we focus on loops.

6.2 Loops

If you are familiar with programming languages like FORTRAN, C, C+ +, or
MATLAB,? you are likely to be familiar with loops. Although R has many tools
for avoiding loops, there are situations where it is not possible. To illustrate a
situation in which a loop saves considerable time, we use a dataset on begging
behaviour of nestling barn owls. Roulin and Bersier (2007) looked at nestlings’
response to the presence of the mother and the father. Using microphones
inside, and a video camera outside, the nests, they sampled 27 nests, studying
vocal begging behaviour when the parents bring prey. A full statistical analysis
using mixed effects modelling is presented in Roulin and Bersier (2007) and also
in Zuur et al. (2009).

For this example, we use “sibling negotiation,” defined as the number of calls
by the nestlings in the 30-second interval immediately prior to the arrival of a
parent, divided by the number of nestlings. Data were collected between 21.30
hours and 05.30 hours on two consecutive nights. The variable ArrivalTime
indicates the time at which a parent arrived at the perch with prey.

Suppose that you have been commissioned to write a report on these data
and to produce a scatterplot of sibling negotiation versus arrival time for each
nest, preferably in jpeg format. There are 27 nests, so you will need to produce,

? These are just different types of programming languages, similar to R.

102 Study material. Do not distribute 6 Loops and Functions

and save, 27 graphs. This is not an uncommon type of task. We have been
involved in similar undertakings (e.g., producing multiple contour plots
for >75 bird species in the North Sea). Keep in mind that they may ask you
to do it all again with a different plotting character or a different title! Note that
R has tools to plot 27 scatterplots in a single graph (we show this in Chapter 8),
but assume that the customer has explicitly asked for 27 separate jpeg files. This
is not something you will not want to do manually.

6.2.1 Be the Architect of Your Code

Before writing the code, you will need to plan and produce an architectural
design outlining the steps in your task:

1. Import the data and familiarise yourself with the variable names, using the
read.table, names, and str commands.

2. Extract the data of one nest and make a scatterplot of begging negotiation
versus arrival time for this subset.

3. Add a figure title and proper labels along the x- and y-axes. The name of the
nest should be in the main header.

4. Extract data from a second nest, and determine what modifications to the

original graph are needed.

. Determine how to save the graph to a jpeg file.

6. Write a loop to extract data for nest i, plot the data from nest 7, and save the
graph to a jpeg file with an easily recognized name.

w

If you can implement this algorithm, you are a good architect!

6.2.2 Step I: Importing the Data
The following code imports the data and shows the variable names and their
status. There is nothing new here in terms of R code; the read. table, names,

and str commands were discussed in Chapters 2 and 3.

> setwd ("C:/RBook/")

> Owls <- read.table(file = "Owls.txt", header = TRUE)
> names (Owls)
[1] "Nest™ "FoodTreatment"

[3] "SexParent" "ArrivalTime"

[5] "SiblingNegotiation” "BroodSize"

[7] "NegPerChick"

> str(Owls)

" data.frame’ : 599 obs. of 7 variables:
$ Nest : Factor w/ 27 levels

6.2 Loops 103
$ FoodTreatment Factor w/ 2 levels

$ SexParent : Factor w/ 2 levels

S ArrivalTime P num 22.2 22.4 22.5 22.6

$ SiblingNegotiation: int 4 0 2 2 2 2 18 4 18 0

$ BroodSize :int 5555555555 ., :

S NegPerChlck ¢ num 0.8 0 0.4 0.4 0.4 0.4 ...

The vamdbles Nest, FoodTreatment and SexParent are defined using
alphanumerical values in the ascii file, and therefore R considers them (cor-
rectly) as factors (see the output of the str command for these variables).

6.2.3 Steps 2 and 3: Making the Scatterplot and Adding Labels

To extract the data from one nest, you first need to know the names of the nests.
This can be done with the unique command

> unique (OwlsSNest)

[1] AutavauxTV Bochet Champmartin
[4] ChEsard Chevroux CorcellesFavres
[7] Etrabloz Forel Franex

[10] GDLV Gletterens Henniez

[13] Jeuss LesPlanches Lucens

[16] Lully Marnand Moutet

[19] Murist Oleyes Payerne

[22] Rueyes Seiry SEvaz

[25] StAubin Trey Yvonnand

27 Levels: AutavauxTV Bochet Champmartin ... Yvonnand

There are 27 nests, and their names are given above. Extracting the data of
one nest follows the code presented in Chapter 3:

> Owls.ATV <- Owls [OwlsSNest=="AutavauxTV”,]

Note the comma after Owls$Nest = ="AutavauxTV" to select rows of the
data frame. We called the extracted data for this nest Owls.ATV, where ATV
refers to the nest name. The procedure for making a scatterplot such as that
needed to show arrival time versus negotiation behaviour for the data in
Owls.ATV was discussed in Chapter 5. The code is as follows.

> Owls.ATV <- Owls [OwlsSNest == "AutavauxTV",]
> plot(x = Owls.ATVSArrivalTime,
v Owls.ATVSNegPerChick,
xlab = "Arrival Time", main = "AutavauxTV"
ylab = "Negotiation behaviour)

i

104 Study material. Do not distribute 6 Loops and Functions

You will be plotting the variable ArrivalTime versus NegPerChick from
the data frame Owls.ATV, hence the use of the § sign. The resulting graph is
presented in Fig. 6.1. So far, the procedure requires no new R code.

Fig. 6.1 Scatterplot of AutavauxTV
arrival time (horizontal axis)
versus average negotiation
behaviour per visit (vertical
axis) for a single nest
(AutavauxTV). Time is
coded from 22 (22.00) to 29
(4.00). Measurements were
conducted on two
consecutive nights

oo

{ 1 | 1 L

15 20 25 30 35

Negotiation behaviour
I
[¢3

1.0

00

1

00 05
8

i
o

22 23 24 25 26 27 28
Arrival Time

6.2.4 Step 4: Designing General Code

To investigate the universality of the code, go through the same procedure for
data from another nest. The code for the second nest requires only a small
modification; where you entered AutavauxTV, you now need Bochet.
> Owls.Bot <- Owls [Owls$Nest ==
> plot(x Owls.BotSArrivalTime,
v Owls.Bot$NegPerChick,
xlab = "Arrival Time",
ylab = "Negotiation behaviour”,

"Bochet”,]

i

main = "Bochet?”)

The graph is not shown here. Note that we stored the data from this
particular nest in the data frame Owls.Bot, where “Bot” indicates “Bochet.”
If you were to make the same graph for another nest, you need only replace the
main title and the name of the data frame and the actual data (the loop will do
this for us).

The question is, in as much as you must do this another 25 times, how can
you minimise the typing required? First, change the name of the data frame to
something more abstract. Instead of Owls.ATV or Owls.Bot, we used
Owls.i. The following construction does this.

6.2 Loops 105
> Owls.i <- Owls [Owls$SNest == "Bochet”,]
> plot(x = Owls.i$ArrivalTime,
y = Owls.iSNegPerChick, xlab = "Arrival Time”,
ylab = "Negotiation behaviour"”, main = "Bochet”)

Instead of a specific name for the extracted data, we used a name that can
apply to any datasetand pass i it'on to the plot function. The resulting graph is
not presented here. The name “Bochet™ still appears at two places in the code,
and they need to be changed each time you work with another dataset. To
minimise typing effort“’(dnd the chance of mistakes), you can define a variable,
Nest.i, containing the name of the nest, and use this for the selection of the
data and the main header:

> Nest.i <- "Bochet”
> Owls.i <- Owls [OwlsSNest == Nest.i,]

> plot(x = Owls.iSArrivalTime, y = Owls.iSNegPerChick,
xlab = "Arrival Time'", main = Nest.1i,
ylab = "Negotiation behaviour™)

In order to make a plot for another nest, you only need to change the nest
name in the first line of code, and everything else will change accordingly.

6.2.5 Step 5: Saving the Graph

You now need to save the graph to a jpeg file (see also the help file of the jpeg
function):

1. Choose a file name. This can be anything, for example,”’ AnyName. jpg’ ’ .

2. Open a jpeg file by typing jpeg(file = '’ AnyName.jpg’ ').

3. Use the plot command to make graphs. Because you typed the jpeg
command, R will send all graphs to the jpeg file, and the graphic output
will not appear on the screen.

4. Close the jpeg file by typing: dev.off ().

You can execute multiple graphing commands in Step 3 (e.g., plot, lines,
points, text)and the results of each will go into the jpeg file, until R executes
the dev.off (device off) command which closes the file. Any graphing com-
mand entered after the dev.of £ command will not go into the jpeg file, but to
the screen again. This process is illustrated in Fig. 6.2.

At this point, you should consider where you want to save the file(s), as it is
best to keep them separate from your R working directory. In Chapter 3 we
discussed how to set the working directory with the setwd command. We set it
to “C:/AllGraphs/” in this example, but you can easily modify this to your own
choice.

106 Study material. Do not distribute 6 Loops and Functions

X<~8ag
ye-seg{l; 100

ploti{x, ¥}
lines(x,y) All output goes to a graph on the screen
points (X, v}

VWOV W Y Y Y Y

dpeg{file="anyNane. Ipy”}

plot{x, v}
tines iz, ¥1 All output goes to a jpg file
points (X, v} put g Jpgﬁ
dav.off{}
windows
2

VWYV W

~

plot{x, v}

1ines (%, y) } All output goes to a graph on the screen

Rints (X, v}

WOV

v

G

Fig. 6.2 Summary of the jpeg and dev.off commands. The results of all graphing com-
mands between the jpeg and dev.off commands are sent to a jpg file. The x- and y-
coordinates were arbitrarily chosen

The final challenge is to create a file name that automatically changes when
we change the name of the nest (the variable Nest . 1). You will need a file name
that consists of the nest name (e.g., Bochet) and the file extension jpg. To
connect “Bochet” and “.jpg” with no separation between these two strings
(i.e., “Bochet.jpg”) use the paste command:

> paste(Nest.i, ".jpg", sep = "")
[1] "Bochet.jpg"

The output of the paste command is a character string that can be used as
the file name. You can store it in a variable and use it in the jpeg command. We
called the variable YourFileName in the code below, and R sends all graphic
output created between the jpeg and dev.of f commands to this file.

> setwd("C:/AllGraphs/")

> Nest.1i <- "Bochet"”

> Owls.1i <- Owls [OwlsSNest == Nest.i,]

> YourFileName <- paste(Nest.i, ".jpg", sep="")

> jpeg(file = YourFileName)

> plot(x = Owls.iSArrivalTime, y = Owls.i$NegPerChick,
xlab = "Arrival Time"”, main = Nest.1i,
ylab = "Negotiation behaviour")

> dev.off()

6.2 Loops 107

Once this code has been executed, you can open the file Bocher jpg in your
working directory with any graphic or photo editing package. The help file for the
jpeg function contains further information on increasing the size and quality of
the jpeg file. Alternative file formats are obtained with the functions bmp, png,
tiff, postscript, pdf, and windows. See their help files for details.

e

e
6.2.6 Step 6: Constructing the Loop

You still have to mod&’i‘fy the variable Nest .1 27 times, and, each time, copy
and paste the codé¢ into R. Here is where Step 6 comes in, the loop. The syntax of
the loop command in R is as follows.

for (i in 1 : 27) {
do something
do something
do something

“Do something” is not valid R syntax, hence the use of a box. Note that the
commands must be between the two curly brackets { and }. We used 27 because
there are 27 nests. In each iteration of the loop, the index i will take one of the
values from 1 to 27. The “do something” represent orders to execute a specific
command using the current value of 7. Thus, you will need to enter into the loop
the code for opening the jpeg file, making the plot, and closing the jpeg file for a
particular nest. It is only a small extension of the code from Step 5.

On the first line of the code below, we determined the unique names of the
nests. On the first line in the loop, we set Nest. i equal to the name of the ith
nest. So, if i is 1, Nest.i is equal to’’ AutavauxTV'’ ;i = 2 means that
Nest.i ="'’ Bochet’’ ; and,ifiis 27, Nest.1i equals’’ Yvonnand’’ The
rest of the code was discussed in earlier steps. If you run this code, your working
directory will contain 27 jpeg files, exactly as planned.

> AllNests <- unigue (OwlsS$Nest)
> for (i in 1:27){
Nest.i <- AllNests[i1]
Owls.i <- Owls [OwlsSNest == Nest.i,]
YourFileName <- paste(Nest.i, ".jpg", sep = "")
jpeg(file = YourFileName)
plot(x = Owls.iSArrivalTime, y = Owls.iSNegPerChick,
xlab = "Arrival Time",
yvlab = "Negotiation behaviour”, main = Nest.i)
dev.off ()
}

108 Study material. Do not distribute 6 Loops and Functions

e

Do Exercise 1 in Section 6.6. This is an exercise in creating loops;
using a temperature dataset.

6.3 Functions

The principle of a function may be new to many readers. If you are not familiar with
it, envision a function as a box with multiple holes on one side (for the input) and a
single hole on the other side (for the output). The multiple holes can be used to
introduce information into the box; the box will act as directed upon the information
and feed the results out the single hole. When a function is running properly, we are
not really interested in knowing how it obtains the results. We have already used the
loess function in Chapter 5. The input consisted of two variables and the output

was a list that contained, among other things, the fitted values. Other examples of

existing functions are the mean, sd, sapply, and tapply, among others.

The underlying concept of a function is sketched in Fig. 6.3. The input of the
function is a set of variables, A, B, and C, which can be vectors, matrices, data
frames, or lists. It then carries out the programmed calculations and passes the
information to the user.

The best way to learn how to use a function is by seeing some examples.

Function carries out
A eyl X Results

| —— tasks
L

N <

Fig. 6.3 Illustration of the principle of a function. A function allows for the input of multiple
variables, carries out calculations, and passes the results to the user. According to the order in
which the variables are entered, A, B, and C are called x, y, and z within the function. This is
called positional matching

6.3.1 Zeros and NAs

Before executing a statistical analysis, it is important to locate and deal with any
missing values, as they may present some difficulties. Certain techniques, such as
linear regression, will remove any case (observation) containing a missing value.
Variables with many zeros cause trouble as well, particularly in multivariate
analysis. For example, do we say that dolphins and elephants are similar because
they are both absent on the moon? For a discussion on double zeros in multi-
variate analysis, see Legendre and Legendre (1998). In univariate analysis, a
response variable with many zeros can also be problematical (See the Zero Inflated
Data chapter in Zuur et al., 2009).

We recommend creating a table that gives the number of missing values, and
the number of zeros, per variable. A table showing the number of missing values
(or zeros) per case is also advisable. The following demonstrates using R code to

6.3 Functions

109

create the tables, but before continuing, we suggest that you do Exercise 2 in
Section 6.6, as it guides you through the R code in this section.

Our example uses the vegetation data from Chapter 4. We imported the data
with the read. table command, and used the names command to see the list
of variables:

> setwd("C:/RBook/")-, ~~
> Veg <- read.table(file = "VegetationZ.txt",
header = TRUE)

> zi’}gmes (Veg)

[1] "TransectName" "Samples" "Transect"”

[4] "Time" "R "ROCK™

[7] "LITTER" "MLY "BARESOIL"
[10] "FallPrec"” "SprPrec” "SumPrec"
[13] "WinPrec" "FallTmax" "SprTmax"
[16] "SumTmax" "WinTmax"™ "FallTmin"
[19] "SprTmin" "SumTmin™ "WinTmin"
[22] "PCTSAND" "PCTSILT" "PCTOrgC"

The first four variables contain transect name, transect number, and time of
survey. The column labelled R contains species richness (the number of species)
per observation. The remaining variables are covariates.

Suppose you want a function that takes as input a data frame that contains
the data, and calculates the number of missing values in each variable. The
syntax of such a function is

NAPerVariable <- function(X1l) {
DI <- is.na(X1)
colSums (D1)
} A
If you type this code into a text editor and paste it into R, you will see that
nothing happens. The code defines a function with the name NAPervVariable,

but it does not execute the function. This is done with the command

> NAPerVariable(Veg[,5:24])

R ROCK LITTER ML BARESOIL FallPrec

0 0 0 0 0 0
SprPrec SumPrec WinPrec FallTmax SprTmax SumTmax

0 0 0 0 0 0
WinTmax FallTmin SprTmin SumTmin WinTmin PCTSAND

0 0 0 0 0 0
PCTSILT PCTOrgC

0 0

110 Study material. Do not distribute 6 Loops and Functions

We omitted the first four columns of the data frame Vegq, as these contain the
transect and time information. There appear to be no missing values in the listed
variables. Take a closer look at what is going on inside the function. The first, and
only, argument of the function is X1. We assume that the variables are in columns
and the observations in rows. The command is.na(X1l) creates a Boolean
matrix of the same dimension as X1, with the value TRUE if the corresponding
element of X1 is a missing value and FALSE if not. The colSums function is an
existing R function that takes the sum of the elements in each column (variable).
Normally, colSums is applied to a data matrix with numbers, but if it is applied
to a Boolean matrix, it converts a TRUE to 1, and a FALSE to 0. As a result, the
output of colSums(D1) is the number of missing values per variable.

If you replace the colSums command with the rowSums command, the
function gives the number of missing values per observation.

6.3.2 Technical Information

There are a few aspects of the function that we need to address: first, the names
of the variables used inside the function. Note that we used X1 and D1. You may
wonder why the code inside the function runs at all, as X1 seems to come out of
the blue. The application here is called positional matching. The first and, in this
case, only, argument in NAPerVariable, is a subset of the data frame Veg.
Inside the function, these data are allocated to X1, because X1 is the first
variable in the argument of the function. Hence, X1 contains columns 5 — 24
of the data frame Vegq.

The principle of positional matching was illustrated in Fig. 6.1. The external
variables A, B, and C are called x, y, and z within the function. R knows that x is
A, because both are the first argument in the call to the function. We have already
seen this type of action with the arguments in the plot, lines, and loess
functions. The reason for changing the variable designations is that you should
not use names within a function that also exist outside the function. If youmake a
programming mistake, for example, if you use D1 <- is.na(X) instead of D1
<-is.na(X1), R will look first inside the function for the values of X. If it does
not find this variable inside the function, it will look outside the function. If such a
variable exists outside the function, R will happily use it without telling you.
Instead of calculating the number of missing values in the variable veg, it will
show you the number of missing values in X, whatever X may be. The convention
of using different, or new, names for the variables inside a function applies to all
variables, matrices, and data frames used in the function.

A second important aspect of functions is the form in which the resulting
information is returned to the user. FORTRAN and C+ + users may assume
that this is done via the arguments of the function, but this is not the case. It is
the information coded for on the final line of the function that is returned. The

6.3 Functions 111

function NAPerVariable has colSums(D1) on the last line, so this is the
information provided. If you use

> H <~ NAPerVariable(Veg[, 4 : 24])

H will contain the number of missing values in vector format. If the final line
of the function is a list, then i will be a list as well. In an example presented later
in this chapter, we see that this is useful for taking back multiple variables (see
also Chapter 3).

As always, you shoiild document your code well. Add comments (with the
symbol) to the function, saying that the data must be in an “observation by
variable” format, and that it calculate the number of missing values per column.

You should also ensure that the function will run for every possible dataset
that you may enter into it in the future. Our function, for example, will give an
error message if the input is a vector (one variable) instead of a matrix; colSums
only works if the data contain multiple columns (or at least are a matrix). You
need to document this, provide an understandable error message, or extend the
function so that it will run properly if the input consists of a vector.

6.3.3 A Second Example: Zeros and NAs

The red king crab Paralithodes camstchaticus was introduced to the Barents Sea
in the 1960s and 1970s from its native area in the North Pacific. The leech
Johanssonia arctica deposits its eggs into the carapace of this crab. The leech is
a vector for a trypanosome blood parasite of marine fish, including cod.
Hemmingsen et al. (2005) examined a large number of cod for trypanosome
infections during annual cruises along the coast of Finnmark in North Norway.
We use their data here. The data included the presence or absence of the parasite
in fish as well as the number of parasites per fish. Information on the length,
weight, age, stage, sex, and location of the host fish was recorded. The familiar
read.table and names functions are used to import the data and show the
variable names:

> setwd ("c:/RBook/")

> Parasite <- read.table(file = "CodParasite.txt"”,
header = TRUE)

> names (Parasite)

[1] "Sample" "Intensity" ‘"Prevalence" "Year"
[5] "Depth" "Weight" "Length" "Sex"
[9] "Stage" "Age" "Area"

Because we already copied and pasted the function NAPervVariable into R
in Section 6.3.1, there is no need to do this again. To obtain the number of
missing values per variable, type

12 Study material. Do not distribute 6 Loops and Functions

> NAPerVariable (Parasite)

Sample Intensity Prevalence Year Depth
0 57 0 0 0
Weight Length Sex Stage Age
6 6 0 0 0

Area

0

There are 57 missing values in the variable Intensity, and 6 in each of the
variables Length and Weight.

In a statistical analysis, we would model the number of parasites as a
function of year and length or weight, sex, and location of host fish. This is
typically done with generalised linear modelling for count data. Problems may
occur if the response variable is zero inflated (too many zeros). Therefore,
we need to determine how many zeros are in each variable, especially in
Intensity. Our first attempt is the function

JerosPerVariable <- function(X1) {
Dl = (X1 == 0)
colSums (D1)

1t is similar to the earlier function NAPerVariable, except that D1 is now
a matrix with values TRUE if an element of X1 equals 1, and FALSE otherwise.
To execute the function, use

> JZerosPerVariable (Parasite)

Sample Intensity Prevalence Year Depth
0 NA 654 0 0
Weight Length Sex Stage Age
NA NA 82 82 84
Area
0

There are 654 fish with no parasites, and 82 observations with a value of 0 for
Sex. The fact that Sex and Stage have a certain number of observations equal to
0 is a matter of coding; these are nominal variables. So it is not a problem. There
are NAs for the variables Intensity, Weight, and Length. This is because
the colSums function gives NA as output if there is an NA anywhere in the
variable. The help file of colSums (obtained by typing ? colSums) shows that
the option na.rm = TRUE can be added. This leads to:

ZerosPerVariable <- function(X1l) {
Dl = (X1 == 0)

6.3 Functions ‘ 113
colSums (D1, na.rm = TRUE)
Missing values are now ignored because of the na.rm = TRUE option. To
execute the new function, we use

> ZerosPervariéble(%gfésite)

Sample Intensity Prevalence Year Depth
0 654 654 0 0
Weight Length Sex Stage Age
0 » 0 82 82 84

Area

0

The output now shows no observations with weight or length equal to
0, and this makes sense. The fact that both Intensity and Prevalence
have 654 zeros also makes sense; absence is coded as 0 in the variable
Prevalence.

6.3.4 A Function with Multiple Arguments

In the previous section, we created two functions, one to determine the number
of missing values per variable and another to find the number of zeros per
variable. In this section, we combine them and tell the function to calculate the
sum of the number of observations equal to zero or the number of observations
equal to NA. The code for the new function is given below.

VariableInfo <= function (X1, Choicel) {
if (Choicel == "Zeros"”){ DI = (X1 == (0) }
if (Choicel == "NAs") { DI <- is.na(X1)}
colSums (D1, na.rm = TRUE)

il

I

The function has two arguments: X1 and Choicel. As before, X1 should
contain the data frame, and Choicel is a variable that should contain either
the value “Zeros” or “NAs.” To execute the function, use

> VariableInfo (Parasite, "Zeros")

Sample Intensity Prevalence Year Depth
0 654 654 0 0
Weight Length Sex Stage Age
0 0 82 82 84

Area

0

114 Study material. Do not distribute 6 Loops and Functions
For the missing values, we can use

> VariableInfo (Parasite, "NAs")

Sample Intensity Prevalence Year Depth
0 57 0 0 0
Weight Length Sex Stage Age
6 6 0 0 0
Area
0

As you can see, the output is the same as in the previous section. So, the
function performs as we intended. We can also allocate the output of the
function to a variable in order to store it.

> Results <- VariablelInfo (Parasite, "Zeros")

If you now type Results into the console, you will get the same numbers as
above. Figure 6.4 gives a schematic overview of the function up to this point.
The function takes as input the data frame Parasite and the character string
"Zeros", and internally calls them X1 and Choicel, respectively. The func-
tion then performs its calculations and the final result is stored in D1. Outside
the function, the results are available as Results. Once everything is perfectly
coded and bug free, you can forget about X1, Choicel, and D1, and what is
going on inside the function; all that matters is the input and the results.

Parasite %1 Based on Choicel,
e
calculate D1
"Zeros” [
-3 Choicel D1] Results

Fig. 6.4 Illustration of the function to calculate the number of zeros or the number of missing
values of a dataset. Due to positional matching, the data frame Parasite and the argument
“Zeros” are called X1 and Choicel within the function

The only problem is that our current function is not robust against user
error. Suppose you make a typing mistake, spelling “Zeros” as “zeroos”™:

> VariableInfo (Parasite, "zeroos")
Error in inherits(x, "data.frame"): object "D1" not
found

The variable Choicel is equal to the nonexistent “zeroos”, and there-
fore none of the commands is executed. Hence, D1 has no value, and an

6.3 Functions 115

error message is given on the last line. Another possible mistake is to
forget to include a value for the second argument:

> VariablelInfo (Parasite)
Error in VariableInfo(Parasite): argument "Choicel™ is
missing, with no default

&

The variable Choicel has no value; the code crashes at the first line. The

challenge in making a function is anticipating likely errors. Here, we have seen
two,silly (but common) mistakes, but the function can be written to provide a
safety net for these types of errors.

6.3.5 Foolproof Functions

To make a foolproof function, you have to give it to hundreds of people and ask
them all to try it and report any errors, or apply it on hundreds of datasets. Even
then, you may be able to crash it. But there are a few common things you can do
to make it as stable as possible.

6.3.5.1 Default Values for Variables in Function Arguments

The variable Choicel can be given a default value so that if you forget to enter
a value for Choicel, the function will do the calculations for the default value.
This is done with

VariableInfo <- function(X1l, Choicel = "Zeros") {
if (Choicel == "Zeros"){ DI = (X1 == 0) }
if (Choicel == "NAs") { DI <- is.na(X1l)}
colSums (D1, na.rm = TRUE)

The default value is now “Zeros.” Executing this function without specifying
a value for Choicel produces valid output. To test it, type

> VariableInfo (Parasite)

Sample Intensity Prevalence Year Depth
0 654 654 0 0
Weight Length Sex Stage Age
0 0 82 82 84

Area

0

116 Study material. Do not distribute 6 Loops and Functions

To calculate the number of missing values, use as before:
> VariableInfo (Parasite, "NAs")

In this case, the second i f command in the function is executed. The output
of this command is not shown here. Don’t forget to write a help file to document
the default value!

6.3.5.2 Misspelling

We also want a function that executes the appropriate code, depending on the
value of Choicel, and gives a warning message if Choicel is not equal to
“Zeros” or “NAs”. The following code does just that.

VariableInfo <- function (X1, Choicel = "Zeros") {
i1f (Choicel == "Zeros"){ D1 = (X1 == 0) }
1f (Choicel == "NAs") { DI <- is.na(X1)}
if (Choicel "Zeros" & Choicel != "NAs") |
print ("You made a typo") } else {
colSums (D1, na.rm = TRUE) }

|

i

The third if statement will print a message if Choicel is not equal to either
“Zeros” or “NAs”. If one of these conditions is TRUE, then the colSums
command is executed. To see it in action, type:
> VariablelInfo (Parasite, "abracadabra')

[1] "You made a typo"

Note that internally the function is doing the following steps.

If A then blah blah
If B then blah blah
If C then blah blah, ELSE blah blah

A professional programmer will criticise this structure, as each i f statement is
inspected by R, even if the argument is “Zero” and only the first 1 f statement is
relevant. In this case, this does not matter, as there are only three if statements
which won’t take much time, but suppose there are 1000 1 £ statements, only one
of which needs to be executed. Inspecting the entire list is a waste of time. The
help file for the i f command, obtained by ? i f, provides some tools to address
this situation. In the “See also” section, there is a link to the i felse command.
This can be used to replace the first two commands in the function:

6.4 More on Functions and the 1 f Statement 117

> ifelse (Choicel == "Zeros", D1 <- (X1 == 0),
D1 <- is.na(X1))

If the value of Choicel is equal to “Zeros”, then the DI <-(X1 == 0)
command is executed, and, in all other situations, it is DI <- is.na(Xx1). Not
exactly what we had in mind, but it illustrates the range of options available in
R. In Section 64 we 'ﬂemon%ga%e the use of the i f else construction to avoid
inspecting a large number of if statements.

@
£

&

Do Exercise 2 in Section 6.6 on creating a new categorical variable
with the ifelse command, using the owl data.

6.4 More on Functions and the 1 £ Statement

In the following we discuss passing multiple arguments out of a function and the
ifelse command, with the help of a multivariate dataset. The Dutch govern-
ment institute RIKZ carried out a marine benthic sampling program in the
summer of 2002. Data on approximately 75 marine benthic species were col-
lected at 45 sites on nine beaches along the Dutch coastline. Further information
on these data and results of statistical analyses such as linear regression, general-
ised additive modelling, and linear mixed effects modelling, can be found in Zuur
et al. (2007, 2009).

The data matrix consists of 45.rows (sites) and 88 columns (75 species and 13
explanatory variables). You could apply multivariate analysis techniques to see
which species co-occur, which sites are similar in species composition, and which
environmental variables are driving the species abundances. However, before
doing any of this, you may want to start simply, by calculating a diversity index
and relating this index to the explanatory variables.

-~ A diversity index means that, for each site, you will characterise the 75 species
with a single value. There are different ways of doing this, and Magurran (2004)
describes various diversity indices. We do not want to engage in a discussion of
which is better. You only need to develop an R function that takes as input an
observation-by-species matrix, potentially with missing values, and a variable
that tells the function which diversity index to calculate. To keep it simple, we
limit the code to three indices. Interested readers can extend this R function and
add their own favourite diversity indices. The three indices we use are:

1. Total abundance per site.

2. Species richness, defined as the number of different species per site.

3. The Shannon index. This takes into account both the presence/absence
nature of the data and the actual abundance. It is defined by

m
Hi=— Z,. pij % 10gy pij

118 Study material. Do not distribute 6 Loops and Functions

Py is calculated by

where p;; is the proportion of a particular species j at site 7, and m (in the
first equation) is the total number of species. The total number of species is #.

6.4.1 Playing the Architect Again

Just as with the previous example presented in this chapter, begin by making a
sketch of the tasks to be carried out.

1. Import the data and investigate what you have in terms of types of
variables, variable names, dimension of the data, and so on.

2. Calculate total abundance for site 1. Repeat this for site 2. Automate this
process, making the code as general as possible. Use elegant and efficient
coding.

3. Calculate the different number of species for site 1. Repeat this process for
site 2. Automate this process, and make the code as general as possible.

4. Do the same for the Shannon index.

5. Combine the code, and use an i f statement to choose between the indices.
Use elegant coding.

6. Putall the code in a function and allow the user to specify the data and the
diversity index. The function should return the actual index and also
indicate which diversity index was chosen (as a string).

In the following, we transform this sketch into fully working R code.

6.4.2 Step 1: Importing and Assessing the Data

Import the RIKZ data, separate the species data from the environmental data,
and determine the size of the data with the following R code.

> Benthic <~ read.table("C:/RBook/RIKZ.txt",
header = TRUE)

> Species <- Benthic/[, 2:76]

> n <~ dim(Species)

> n

[1] 45 75

The first column in the data frame Benthic contains labels, columns 2-76
contain species data, and columns 77-86 are the explanatory variables. The

6.4 More on Functions and the if Statement 119

species data are extracted and stored in the data frame Species. Its dimension
is 45 rows and 75 columns, and these values are obtained and stored in n using
the dim command. To save space, results of the names and str command are
not shown here; all variables are coded numerically.

6.4.3 Step 2: Total Algg;zifance per Site
Cq}culate the sum of zilj species at site 1 by using
> sum (Species [1,], na.rm = TRUE)
[1] 143
The total number of species at site 1 is 143. The same can be done for site 2:
> sum(Species[2,], na.rm = TRUE)
[1] 52

To avoid typing this command 45 times, construct a loop that calculates the
sum of all species per site. Obviously, we need to store these values. The
following code does this. ~

> TA <- vector(length = n[1])
> for (i in 1:nfl1]){
TA[i1] <- sum(Species[i,], na.rm = TRUE)
}

The vector TA is of length 45 and contains the sum of all species per
site:

> TA

[1] 143 52 70 199 67 944 241 192 211 48 35
[12] 1 47 38 10 1 47 73 8 48 6 42
[231 29 0 43 33 34 67 46 5 7 1 1
[34] 102 352 6 99 27 85 0 19 34 23 O
[45] 11

Three sites have no species at all, whereas at one site the total abun-
dance is 944. Note that you must define TA as a vector of length 45 before
constructing the loop or TA[i] will give an error message (see the code
above). You also need to ensure that the index 7/ in the loop is indeed
between 1 and 45; T{46] is not defined. Instead of using length = 45 in

120 Study material. Do not distribute 6 Loops and Functions

the vector command, we used length = n[1]; remember that the task was
to make the code as general as possible. The loop is what we call the brute
force approach, as more elegant programming, producing identical results,
is given by:

> TA <- rowSums (Species, na.rm = TRUE)
> TA

[1] 143 52 70 199 67 944 241 192 211 48 35
[12] 1 47 38 10 1 47 73 8 48 6 42
[231 29 0 43 33 34 67 4o 5 7 1 1
[347 102 352 6 99 27 85 0 19 34 23 0
[45] 11

The rowSums command takes the sum for each row. Note that this
requires only one line of coding and also involves less computing time

(albeit for such a small dataset the difference is very small), and is prefer-
able to the loop.

6.4.4 Step 3: Richness per Site
The number of species at site 1 is given by
> sum(Species (1,] > 0, na.rm = TRUE)
[11 11

There are 11 different species at site 1. Species|[l,] > 0 creates a
Boolean vector of length 75 with elements TRUE and FALSE. The function
sum converts the value TRUE to 1, and FALSE to 0, and adding these

values does the rest.
For site 2, use

> sum(Species (2,] > 0, na.rm = TRUE)
[1] 10

To calculate the richness at each site, create a loop as for total abun-
dance. First define a vector Richness of length 45, then execute a loop

from 1 to 45. For each site, richness is determined and stored.

> Richness <- vector(length = n[1])
> for (i in 1:n[1]){

6.4 More on Functions and the 1 f Statement 121

Richness [i] <- sum(Species[i,] > 0, na.rm = TRUE)
}

> Richness

[1] 11 10 13 11 10 8 98 19176 1 4 3 3
[16] 1 3 3 1 43226 0 65 4164
[317 2 1 1 3 43 57 5 0711 302

'ﬂQe elegant approach uses the rowSums command and gives the same result:

> Richness <- rowSums (Species > 0, na.rm = TRUE)
> Richness

f1] 11 10 13 11 108 98 19176 1 4 3 3
(16 1 3 3 1 43226 0 65 41¢64
f3r] 2 1 1 3 43 57 5 0711302

6.4.5 Step 4: Shannon Index per Site

To calculate the Shannon index, we need only three lines of elegant R code that
include the equations of the index:

> RS <- rowSums (Species, na.rm = TRUE)

> prop <- Species / RS

> H <- ~rowSums (prop * loglO(prop), na.rm = TRUE)
> H

[1] 0.76190639 0.72097224 0.84673524

[4] 0.53083926 0.74413939 0.12513164

[7] 0.40192006 0.29160667 1.01888185

[10] 0.99664096 0.59084434 0.00000000
< Cut to reduce space>

We could have used code with a loop instead. The calculation can be done
even faster with the function “diversity”, which can be found in the vegan
package in R. This package is not part of the base installation; to install it, see
Chapter 1. Once installed, the following code can be used.

> library(vegan)
> H <~ diversity(Species)
> H

122 Study material. Do not distribute

6 Loops and Functions

1 2 3 4 5
1.7543543 1.6600999 1.9496799 1.2223026 1.7134443
6 7 : 8 9 10
0.2881262 0.9254551 0.6714492 2.3460622 2.2948506
11 12 13 14 15
1.3604694 0.0000000 0.4511112 0.5939732 0.9433484
16 17 18 19 20

6.4 More on Functions and the 1f Statement

Index <- rowSums (Spec

> 0, na.rm = TRUE) }

1f (Choicel == "Total Abundance) {

Index <- rowSums (Spec,
if (Choicel == "Shannon")
RS <- rowSums (Spec, na
prop <- Spec / RS.
Index <- *f’rowSL;;dgySf*'(prop

na.rm = TRUE) }
{
.rm = TRUE)

* logl0O(prop),

[¥8}

0.0000000 0.7730166 0.1975696 0.0000000 0.8627246
< Cut to reduce space>

Note that the values are different. The diversity help file shows that this

function uses the natural logarithmic transformation, whereas we used the

logarithm with base 10. The diversity help file gives instructions for chan-
ging this when appropriate.

A limitation of using the vegan package is that this package must be
installed on the computer of the user of your code.

6.4.6 Step 5: Combining Code

Enter the code for all three indices and use an if statement to select a

particular index.

> Choice <- "Richness"”

> 1if (Choice == "Richness") {
Index <- rowSums (Species >0, na.rm = TRUE) }
> 1f (Choice == "Total Abundance”) {

Index <- rowSums (Species, na.rm = TRUE) }
> 1if (Choice=="Shannon") {
RS <~ rowSums (Species, na.rm = TRUE)
prop <- Species / RS
Index <- -rowSums (prop*logl0(prop), na.rm = TRUE) }

Justchange the value of Choice to’’ Total Abundance’’ or” Shannon'’
to calculate the other indices.

6.4.7 Step 6: Putting the Code into a Function

You can now combine all the code into one function and ensure that the
appropriate index is calculated and returned to the user. The following code
does this.

Index. function <- function(Spec, Choicel) {
if (Choicel == "Richness'") {

na.rm = TRUE) }

list (Index = Ifg;dex, MyChoice = Choicel)

y ol

The if statement ensures that only one index is calculated. For small
datasets, you could calculate them all, but for larger datasets this is not good
practice. Before executing the code, it may be wise to ensure that none of the
variables within the function also exists outside the function. If they do, remove
them with the rm command (see Chapter 1), or quit and restart R. We renamed
all input variables so that no duplication of variable names is possible. In order
to execute the function, copy the code for the function, paste it into the console,
and type the command:

> Index.function (Species, "Shannon")

$Index

[1] 0.76190639 0.72097224 0.84673524 0.53083926
[5] 0.74413939 0.12513164 0.40192006 0.29160667
[9] 1.01888185 0.99664096 0.59084434 0.00000000
[13] 0.19591509 0.25795928 0.40969100 0.00000000
[17] 0.33571686 0.08580337 0.00000000 0.37467654
[21] 0.37677792 1.23972435 0.62665477 0.00000000
[25] 0.35252466 0.39057516 0.38359186 0.00000000
[29]1 0.58227815 0.57855801 0.17811125 0.00000000
[33] 0.00000000 0.12082909 0.08488495 0.43924729
[377 0.56065567 0.73993117 0.20525195 0.00000000
[41] 0.65737571 0.75199627 0.45767851 0.00000000
[45] 0.25447599
$MyChoice

[1] "Shannon"

Note that the function returns information from of the final command,
which in this case is a 1ist command. Recall from Chapter 2 that a 1ist
allows us to combine data of different dimensions, in this case a variable with 45
values and also the selected index.

124 Study material. Do not distribute 6 Loops and Functions

Is this function perfect? The answer is no, as can be verified by typing
> Index.function(Species, "total abundance’)
The error message produced by R is

Error in Index.function (Species, "total abundance™):
object "Index" not found

Note that we made a typing error in not capitalizing “total abundance”.
In the previous section, we discussed how to avoid such errors. We extend
the function so that it inspects all if statements and, if none of them

is executed, gives a warning message. We can use the if else command

for this.

Index. function <- function(Spec,Choicel) {

if (Choicel == "Richness") {

Index <- rowSums (Spec > 0, na.rm = TRUE) } else
if (Choicel == "Total Abundance") |

Index <- rowSums (Spec, na.rm = TRUE) } else
if (Choicel == "Shannon") {

RS <- rowSums (Spec, na.rm = TRUE)
prop <- Spec / RS
Index <- ~rowSums (prop*log(prop),na.rm=TRUE) } else {
print ("Check your choice)
Index <- NA }
list(Index = Index, MyChoice = Choicel) }

R will look at the first i £ command, and, if the argument is FALSE, it will go
to the second if statement, and so on. If the variable Choicel is not equal to
“Richness”, “Total Abundance”, or “Shannon”, the function will execute the
command,

print ("Check your choice”)
Index <- NA

You can replace the text inside the print command with anything appro-
priate. It is also possible to use the stop command to halt R. This is useful if the
function is part of a larger calculation process, for example, a bootstrap
procedure. See the help files on stop, break, geterrmessage, or warning.
These will help you to create specific actions to deal with unexpected errors in
your code.

6.6 Exercises 125

Table 6.1 R functions introduced in this chapter

Function Purpose Example

ipeg Opens a jpg file jpeg(file = "AnyName.3pg”)
dev.off Closes the jpg file dev.off()

function Makes a function z <- function(x, y){ }
paste Concatenates variables as characters paste(a”, "b”, sep ="7)
if Conditional staterent if (@) {=x<-1}

ifelse Conditional statement ifelse(a, x<-1, x<-2)

if elseif Conditional statement if(a)y{x<-1}elseif (b)
WF {x<-2}

6.5 Which R Functions Did We Learn?

Table 6.1 shows the R functions that were introduced in this chapter.

6.6 Exercises

Exercise 1. Using a loop to plot temperature per location.

In Section 6.2, sibling negotiation behaviour was plotted versus arrival
time for each nest in the owl data. A graph for each nest was created and
saved as a jpg file. Do the same for the temperature data; see Exercise 4.1 for
details. The file temperature.xls contains temperature observations made at
31 locations (denoted as stations in the spreadsheet) along the Dutch coast-
line. Plot the temperature data versus time for each station, and save the
graph as a jpg file.

Exercise 2. Using the i felse command for the owl data.

The owl data were sampled on two consecutive nights. If you select the data
from one nest, the observations will cover both nights. The two nights differed
asto the feeding regime (satiated or deprived). To see observations from a single
night, select all observations from a particular nest and food treatment. Use the
ifelse and paste functions to make a new categorical variable that defines
the observations from a single night at a particular nest. Try rerunning the code
from Exercise 1 to make a graph of sibling negotiation versus arrival time for
observations of the same nest and night.

Exercise 3. Using the function and if commands with the benthic dataset.

In this exercise we provide the steps for the function that was presented in
Section 6.4: the calculation of diversity indices. Read the introductory text in
Section 6.4 on diversity indices. Import the benthic data and extract columns
2-76; these are the species.

126 Study material. Do not distributeé ¢ Loops and Functions

Calculate total abundance at site 1. Calculate total abundance at site 2.
Calculate total abundance at site 3. Calculate the total abundance at site 45,
Find a function that can do this in one step {sum per row). Brute force may work
as well (Loop), but is less elegant.

Calculate the total number of different species in site | (species richness).
Calculate species richness for site 2. Do the same for sites 3 and 45. Find a
function that can do this in one step.

Create a function using the code for all the diversity indices. Make sure that
the user can choose which index is calculated. Ensure that the code can deal with
missing values.

If you are brave, add the Shannon index. Apply the same function to the
vegetation data.

Chapter 7
Graphing Tools

Chapter 5, the plot function was introduced. We demonstrated elementary
scatterplots, modifying plotting characters, and adding x- and y-labels and a
main title. In this chapter, we introduce more graphing tools. Not all of them
are among our favourites. For example, we have never used pie charts or bar
charts. However, these graphs seem to be on the shortlist of so many scientists
that we find it necessary to include them in this book. They are discussed in
Sections 7.1 and 7.2. Tools to detect outliers——the boxplot and Cleveland
dotplot—are presented in Sections 7.3 and 7.4, respectively. We also demon-
strate graphs illustrating the mean with lines added to represent the standard
error. Scatterplots are further discussed in Section 7.5. Multipanel scatterplots
are discussed in Sections 7.6 and 7.7, and advanced tools to display multiple
graphs in a single window are presented in Section 7.8.

7.1 The Pie Chart
7.1.1 Pie Chart Showing Avian Influenza Data

We demonstrate the pie chart using the avian influenza dataset from Exercise 1
in Section 3.7. Recall that the data represent the numbers of confirmed human
cases of Avian Influenza A/(H5N1) reported to the World Health Organization
(WHO). The data for several countries were taken from the WHO website at
www.who.int and are reproduced only for educational purposes. We exported
the data in the Excel file, BidFlu.xls, to a tab-separated ascii file with the name
Birdflucases.txt. The following code imports the data and presents the usual
information.

> setwd("C:/RBook/")
> BFCases <- read.table(file = "Birdflucases.txt",

header = TRUE)
> names (BFCases)
[1] "Year" "Azerbaijan" "Bangladesh"
[4] "Cambodia"™ "China" "Diibouti"
A.F. Zuur et al., 4 Beginner’s Guide to R, Use R, 127

DOI 10.1007/978-0-387-93837-0_7, © Springer Science+Business Media, LLC 2009

